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ABSTRACT

Acoustoelasticity describes the interaction of acoustic
waves with nonlinear elastic deformations, particularly the
change of wave velocity due to initial stresses or strains in a
predeformed body. The theory extends the strain energy to
cubic terms (third-order elasticity) and allows for finite strains
to model deformations at high confining pressures. However,
the theory considers equant (stiff) pores but neglects the ef-
fects of soft (compliant) pores, such as microfractures, cracks,
and grain contacts. Our main contribution is to include these
effects. Application of the novel poroacoustoelasticity theory
to ultrasonic measurements on carbonate samples at varying
confining pressures provides a better fit for the measured data
of pressure dependence of wave velocity. We have quantified
the contribution of the compliant pores to the nonlinear
behavior of the wave velocity and determined the relation be-
tween the threshold pressure (beyond which the theories with
and without compliant pores yield the same velocity) and
porosity and permeability. The extension of poroacoustoelas-
ticity theory by incorporating a dual-pore structure provides
better description for stress dependence of wave velocity in
fluid-saturated heterogeneous rocks, which can be applicable
in further field studies regarding reservoir characterization
and in situ stress estimation.

INTRODUCTION

In situ tectonic stress variations play an important role in reser-
voir rock properties, including seismic wave velocities. The pres-
sure dependence of the velocity variations includes linear and
nonlinear behavior that cannot be described by the linear theory
of elasticity.

Theoretical models of nonlinear elasticity are proposed by Guyer
and Johnson (1999, 2009) and by Guyer et al. (1995) to simulate
wave propagation using the Preisach-Mayergoyz space (Mayergoyz,
1985). Lyakhovsky et al. (1997) propose a damage rheology model
without using finite strains, and Vakhnenko et al. (2006) introduce the
soft ratchet model for longitudinal vibrations in sedimentary rocks.
Recently, Sens-Schönfelder et al. (2019) propose a model for non-
linear elasticity in rocks, based on friction of internal interfaces
and the process of contact aging. These theories incorporate the in-
fluence of cracks, but neglect the nonlinear acoustoelasticity and fluid
deformation. Mavko et al. (1995) develop a simple method to predict
stress-induced anisotropy in dry Barre Granite and Massillon Sand-
stone, where the approach does not assume a specific crack geometry
and is not limited to small crack densities. However, this model con-
siders the influence of cracks from a macroscopic perspective and is
not suitable to study the pressure dependence of crack porosity, as-
pect ratio, and density.
To explain the nonlinear behaviors of materials, the concepts of

hyperelasticity and acoustoelasticity have been developed, which in-
volve third-order elastic constants (3oEC) (Murnaghan, 1937; Hughes
and Kelly, 1953; Thurston and Brugger, 1964; Johnson, 1981; John-
son, 1983; Pao and Gamer, 1985; Shams et al., 2011). These nonlinear
elasticity theories have been applied to rock mechanics (Johnson and
Shankland, 1989; Meegan et al., 1993). Winkler and Liu (1996) suc-
cessfully measure the 3oEC of dry rock samples and apply the acous-
toelasticity theory, resulting in accurate predictions of stress-induced
velocity variations. However, Winkler and McGowan (2004) perform
similar experiments on water-saturated rocks and find that the results
could not be well explained by the acoustoelasticity theory. A possible
explanation is that the theory neglects the presence of the pore fluid.
Based on the linear theory of elasticity, Biot (1956a, 1956b) de-

rives wave equations for a two-phase porous rock, where the cou-
pling between the solid and fluid is taken into account. Biot (1973)
develops a semilinear theory by using seven elastic constants for
porous media, of which four characterize the linear behavior and
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three the nonlinear behavior. The poroacoustoelasticity theory in-
corporates nonlinear terms into Biot’s equations (Biot, 1956a,
1956b; Grinfeld and Norris, 1996; Donskoy et al., 1997; Guo et al.,
2009; Ba et al., 2013), but the predicted velocities do not agree with
the measurements at high pore pressures (Guo et al., 2009; Ba et al.,
2013), where the velocity shows an exponential behavior as a func-
tion of differential pressure, possibly explained by the closure of
microcracks.
The factors affecting wave velocity include mineralogical com-

position, porosity, pore fluid, and, particularly, pore structure (Tu-
tuncu et al., 1994; Agersborg et al., 2008; David and Zimmerman,
2012; Ba et al., 2017). Walsh (1965) describes rocks with a double-
porosity system consisting of stiff and compliant pores, the latter
represented by cracks, microfractures, and grain contacts. Walsh’s
model was established with the dual-pore structure, and he finds
that compliant pores have a stronger influence on the dry-rock elas-
tic moduli than stiff pores, and he develops a relation between these
moduli and confining pressure Pc (pore pressure Pf = 0), which can
be used to estimate the compliant porosity. Cheng and Toksöz
(1979) use the effective modulus obtained by Kuster and Toksöz
(1974) to estimate the porosity in sandstones, but their result
showed that this theory is not suitable when the crack density is
high. Other works have also considered this problem (Fortin et al.,
2007; Tran et al., 2008; Izumotani and Onozuka, 2013).
Based on an exponential relation between crack density and pres-

sure, Zimmerman et al. (1986) establish a method to estimate the
compressibility of sandstones and obtain a distribution of compliant
pores with different aspect ratios. Using the Mori-Tanaka theory
(Mori and Tanaka, 1973), David and Zimmerman (2012) extend
the Zimmerman model (D-Z model) to compute the porosity and
the elastic moduli from dry-rock wave velocities. Duan et al.
(2018) and Zhang et al. (2019) adopt this model to estimate the pore
microstructure.
Here, we use the poroacoustoelasticity theory developed by Ba

et al. (2013). Because this theory properly describes the deforma-
tion of stiff pores, we obtain the 3oEC from the velocities at high
effective (differential) pressures. However, it neglects the influence
of compliant pores. Fu and Fu (2018) use a dual-porosity model
suggested by Shapiro (2003) to model the effect of nonlinear de-
formations due to compliant porosity by using a semiempirical
equation, but due to the adjustable parameter in this model, it is
difficult to perform quantitative analysis about compliant porosity.
On the other hand, the D-Z model appears to be appropriate to es-
timate the variations in dry-rock elastic moduli and porosity caused
by compliant pores. Hence, we extend the poroacoustoelasticity
theory by incorporating this model and apply it to carbonate sam-
ples to illustrate its effectiveness.

ROCK-PHYSICS MODELS

The D-Z model

David and Zimmerman (2012) consider randomly oriented stiff
and compliant pores, and they evaluate the elastic properties of the
rock skeleton in three steps (Walsh, 1965).
Step 1: Walsh (1965) provides the following expression for the

effective bulk compliance of the dry rock:

Ceff ¼ C0 −
dϕ

dP
; (1)

where C0 ¼ 1∕Kgr is the bulk compliance of the grains, with Kgr as
the bulk modulus of the grains, and ϕ is the total porosity. Note that
Ceff is related to the rate of change of porosity with pressure rather
than porosity directly.
Step 2: Stiff pores are added into the rock matrix to create the host

material. According to the Mori-Tanaka theory (Mori and Tanaka,
1973), the effective bulk and shear compliances of the rock contain-
ing only stiff pores are, respectively,

Cstiff ¼ C0

�
1þ ϕstiff

1−ϕstiff
P�

�
Sstiff ¼ S0

�
1þ ϕstiff

1−ϕstiff
Q�

� ; (2)

where Kstiff ¼ 1∕Cstiff and Gstiff ¼ 1∕Sstiff are the respective
moduli. The shear compliance of the grains is S0 ¼ 1∕Ggr , where
Ggr is the shear modulus, ϕstiff is the stiff porosity, and P� and Q�

are geometric factors (Wu, 1966).
Step 3: Compliant pores are added into the host material to com-

plete the model. Different effective-medium theories may give dis-
similar crack densities. David and Zimmerman (2012) compare the
Mori-Tanaka and differential effective-medium schemes, but there
is a small difference between the results of the two theories, with the
first theory better describing the exponential pressure dependence
of the bulk compressibility, which is consistent with the empirical
law by Zimmerman et al. (1986) (it was established based on ob-
servations in sandstones). By neglecting the interactions between
stiff and compliant pores, the effective bulk and shear compliances
Ceff and Seff are (David and Zimmerman, 2012), respectively,

Ceff ¼ Cstiff

�
1þ 16ð1 − ðvstiffÞ2ÞΓ

9ð1 − 2vstiffÞ
�

Seff ¼ Sstiff

�
1þ 32ð1 − vstiffÞð5 − vstiffÞΓ

45ð2 − vstiffÞ
�
; (3)

where vstiff ¼ ð3Kstiff − 2GstiffÞ∕ð6Kstiff þ 2GstiffÞ; Γ is the crack
density; and Keff ¼ 1∕Ceff and Geff ¼ 1∕Seff are the respective
moduli.
The crack porosity ϕc is obtained via the crack density Γ and the

aspect ratio α as

ϕc ¼
4

3
παΓ: (4)

The relation between the crack density and the differential pres-
sure P(MPa) is empirical and has the form

ΓðPÞ ¼ Γ0e
−P∕p̂; (5)

where p̂ is a compaction coefficient.
The relationship between a crack with initial aspect ratio αi and

the closure pressure Pclose is (Walsh, 1965)

αi ¼
4ð1 − v2stiffÞPclose

πEstiff

; (6)

where Estiff ¼ 3Kstiffð1 − 2vstiffÞ is the Young’s modulus of the host
material.
David and Zimmerman (2012) study the relationship between the

aspect ratio distribution and the compliant porosity, whereas in the
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present work we analyze the pressure dependence of the compliant
porosity based on equation 6. This porosity decreases due to the
closure of cracks with initial aspect ratio αi, and the decrement
is given from equation 4,

dϕc ¼
4

3
παidΓ: (7)

Substituting equations 5 and 6 into equation 7, we obtain

dϕc ¼ −
16ð1 − v2stiffÞP

3πEstiff p̂
Γ0e

−P∕p̂dP: (8)

By integration of equation 8, we obtain the porosity decrement of
compliant pores for all pressures. Because the deformation of stiff
pores is smaller than compliant pores, the variation in the porosity
of stiff pores can be neglected. Then, the total porosity is

ϕ ¼ ϕ0 þ dϕc; (9)

where ϕ0 is the initial porosity.

Poroacoustoelasticity

Poroacoustoelasticity extends the strain energy function to cubic
terms and adopts the finite strain theory, because the infinitesimal
strain theory is inappropriate to describe deformations at high con-
fining pressures. The Lagrangian strain tensors are�

Aij ¼ 1
2
ðuj;i þ ui;j þ uk;iuk;jÞ; i; j; k ¼ 1; 2; 3

BiðiÞ ¼ UðiÞ;i þ 1
2
U2

ðiÞ;i
; (10)

where ui and Ui denote the solid and fluid displacements, respec-
tively, in the xi-direction, and A and B are the solid and fluid strains,
respectively.
The solid and fluid stress components σij and τij are obtained

from the strain energy function W,

σij ¼
∂W
∂Aij

and τij ¼
∂W
∂Bij

; i; j ¼ 1; 2; 3: (11)

Based on the low-frequency limit of Biot’s equations (Biot,
1956a), by neglecting the interaction between the solid and fluid
phases, the resulting velocity expressions of the poroacoustoelastic-
ity theory, under hydrostatic stress conditions, are (Ba et al., 2013)�

ρV2
P ¼ ðKdr þMn2 þ 4

3
GdrÞ þ Ψ1Aþ Ψ2B

ρV2
S ¼ Gdr þ Ψ3Aþ Ψ4B

; (12)

where VP andVS are the compressional wave (P-wave) and shear-wave
(S-wave) velocities, respectively;Kdr andGdr are the dry-rock bulk and
shear moduli, respectively; ρ is the saturated-rock density; the coupling
modulus of fluid-saturated rock M and the Biot’s coefficient n are8>><

>>:
n ¼ 1 − Kdr

Kgr

M ¼ Kgr

1−ϕ−Kdr
Kgr

þϕ

�
Kgr
Kf

� ; (13)

where Kf is the bulk modulus of the pore fluid.

In linear elasticity, the potential energy is a quadratic function of
strain, whereas here (the poroacoustoelasticity theory) it is a cubic
function of strain (the coefficients in the n-order terms are termed
the n-order elastic constants). Equation 12 gives the synthetic elastic
constants Ψjðj ¼ 1; 2; 3; 4Þ containing the 3oEC,8>>><
>>>:
Ψ1¼7M1þM2þ7

2
M4þ9M5þ2M8þM9þ3M10þ3M11

Ψ2¼7M3þ7
2
M4þ9M7þ3M10þ3M11

Ψ3¼3M1−1
4
M6−3

4
M8

Ψ4¼ 3
2
M4−3

4
M9

;

(14)
where Miði ¼ 1; 2; 3; 4Þ and Mjðj ¼ 5; 6; n; 11Þ are the second-or-
der elastic constants and 3oEC, respectively. A comprehensive re-
view can be found in Ba et al. (2013). The positive elastic strains A
and B of the rock matrix and pore fluid in stiff pores, respectively,
are (see Appendix A) (

A ¼ Pc−ϕPf

3ð1−ϕÞKgr

B ¼ θ−ð1−ϕÞ3A
3ϕ

; (15)

where Pc and Pf are the confining and pore pressures, respectively,
and

θ ¼ Pc − nPf

Kdr

(16)

is the bulk strain.
At high confining pressures, compliant pores tend to close,

and the poro-acoustoelasticity theory can be used to calculate the
3oEC related to the stiff pores (Fu and Fu, 2018). The figure in
Appendix B describes the rock-physics model.

EXPERIMENTAL DATA

We compare experimental data, obtained in the laboratory for car-
bonates, with the theory with and without compliant pores. The five
carbonate samples (E1, E2, E3, F1, and F2) have been collected
from the Cambrian formations of the Tarim Basin, Northwest
China, and the other three samples (A, B, C) have been collected
from the Permian formations, Sichuan Basin, Southwest China. The
samples are granular dolomites with dissolved pores, whose proper-
ties are given in Table 1. The in situ confining pressure and temper-
ature of the two formations are approximately 80 MPa and 140°C,
respectively, whereas the depth exceeds 4 km. The experimental
setup is that of Guo et al. (2009). The samples were saturated with
oil (kerosene) at confining pressures increasing from 20 to 80 MPa,
at a constant pore pressure of 10 MPa, and a temperature of 140°C.
Measurements were also performed at full gas (nitrogen) and water
saturations at 80 MPa and 140°C. We measured P- and S-wave
velocities using piezoelectric transducers at a range of confining
pressures and amplitude of the signal. Figure 1 shows how the con-
fining pressure affects amplitude of the signal, which is represen-
tative of all samples.

MODELING

Estimations of the dry-rock moduli and total porosity

The saturated-rock bulk and shear moduli Kw and Gw are
obtained from the measured velocities,

Acoustoelasticity for dual-pore rocks MR19
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Kw ¼ ρððVPÞ2 −
4

3
ðVSÞ2Þ; Gw ¼ ρðVSÞ2: (17)

Then, the dry-rock elastic moduli Kdr and Gdr are obtained from
the high-frequency ones of Mavko and Jizba (1991).
The D-Z model requires the following four steps.

Step 1: Evaluate the crack density at each
pressure. Because compliant pores tend to close
at high differential pressure (in this range, we as-
sume that the most compliant pores are closed
and categorize those remaining as stiff pores,
which can be well described by acoustoelastic-
ity), we use the dry-rock elastic moduli in this
range (Kstiff ≈ Khp

dr and Gstiff ≈Ghp
dr ) to obtain

the crack density. Based on the moduli calculated
from equation 17, we use equation 3 (Keff ¼ Kdr

and Geff ¼ Gdr) to obtain the crack density Γ
by a least-squares regression at the differential
pressure P.
Step 2: Obtain the fitting parameters of Γ0

and p̂ based on P and Γ. To obtain the crack den-
sity at all pressures, we use equation 5 to fit the
discrete data points obtained in step 1.
Step 3: Establish the relation between Kdr, Gdr,

and P. To obtain the pressure dependence of the
effective moduli (the dry-rock elastic moduli), we substitute equa-
tion 5 into equation 3 to calculate the moduli for all of the differ-
ential pressures.
Step 4: Establish the relation between P and ϕ. By using the

fitting parameters calculated from step 2, the relation between
the total porosity and differential pressure is obtained by combining
equations 8 and 9.

Estimations of the 3oEC

To estimate the synthetic elastic constants Ψj(j = 1, 2, 3, 4) ac-
curately, we use two sets of velocity measurements of the P- and
S-waves at high confining pressures Ph1

c and Ph2
c . First, we calculate

the elastic strains A and B of the rock matrix and pore fluid in the
stiff pores from equation 15,
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Figure 2. Pore-closed pressure as a function of initial aspect ratio
of closed pores for all samples. The legend indicates the sample
number.

Table 1. Properties of the carbonate samples.

Lithology
Dry-rock

density (g/cm3) Porosity (%) Permeability (mD)

Dolomite

A 2.45 11.63 0.661

B 2.51 11.73 0.138

C 2.45 11.75 0.075

E1 2.69 5.10 0.091

E2 2.66 5.34 0.458

E3 2.67 5.47 0.174

F1 2.41 12.08 162.753

F2 2.44 12.28 22.819
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Figure 1. (a) P and (b) S waveforms at different confining pressures for sample A. Red
marks are the picks at which the traveltime is taken.
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Figure 3. Crack density as a function of differential pressure for
all samples. Crack density decreases with differential pressure and
approaches zero at the high pressures. The compliant pores tend to
close with the increasing differential pressure. The legend indicates
the sample number.
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� AjPc¼Ph1
c
¼ Pc−ϕPf

3ð1−ϕÞKgr

BjPc¼Ph1
c
¼ θ−3ð1−ϕÞB

3ϕ

(18)

and � AjPc¼Ph2
c
¼ Pc−ϕPf

3ð1−ϕÞKgr

BjPc¼Ph2
c
¼ θ−3ð1−ϕÞA

3ϕ

: (19)

The density of the pore fluid at the experimental conditions is
obtained with the empirical equations of Batzle and Wang (1992).
By combining the dry-rock density and the porosity, the fluid den-
sity estimated above provides the density of the saturated rock ρ.
By substituting the rock and fluid properties into equation 12,
we combine equations 12, 18, and 19 to obtain the synthetic elastic
constants Ψjðj ¼ 1; 2; 3; 4Þ.

RESULTS

Elastic rock properties analysis based on the D-Z
model

The compliant pores mainly dictate the rock properties at low
pressures. According to equation 6, microcracks with the initial as-
pect ratio αi close at the different pressure Pclose. As shown in Fig-
ure 2, the pore-closed pressure Pclose increases linearly with the
initial aspect ratio of the compliant pores. The aspect ratios are gen-
erally less than 0.01 for all experimental pressures. This value is
taken as the limit between stiff and compliant pores.
Figure 3 shows that the crack density of the eight samples decreases

with pressure, as expected, because the compliant pores close for in-
creasing differential pressures. Figure 4 displays the compliant-poros-
ity decrement of the crack porosity as a function of pressure. The
dry-rock moduli are shown in Figure 5 (based on equation 5), where
the trend is similar to that of Figure 4. As the differential pressure
increases, compliant pores close and this increases the stiffness of
the rock. Figure 6 shows the dry-rock moduli as a function of the
compliant-porosity decrement, illustrating the contribution of compli-
ant pores to the nonlinear behavior of the rock properties.

Wave velocity based on the poroacoustoelasticity and
D-Z models

In this case, the stiffness moduli, porosity, and
3oEC, Ψjðj ¼ 1; 2; 3; 4Þ, are needed. The latter
are estimated by substituting the measured veloc-
ities at high pressures in equation 12, whereas the
dry-rock elastic moduli and porosity are esti-
mated with the D-Z model. Figure 7 compares
the velocities predicted by the poroacoustoelas-
ticity theory with and without compliant pores.
The agreement with the experimental data is
good at high pressures, but the theory without
compliant pores has a large deviation at low pres-
sures. For the P waves, the poroacoustoelastic
theory, combined with the D-Z model, agrees
well with the measurements. The disagreement
at low pressures may be due to pore connections,
because these are neglected in the theory (com-
pliant pores are assumed to be independent of
each other).

Figure 8 compares theory and experiment, where oil has been
replaced by gas and water. The data corresponds to a confining pres-
sure of 80 MPa and a temperature of 140°C. As can be seen, the
predictions agree with the experimental measurements. The discrep-
ancy can be explained by the fact that we used experimental data at
high pressures to compute the elastic constants of the host material,
where all the cracks are assumed to be closed. Instead, some cracks
may not be completely closed for the considered carbonate samples.
To analyze the contribution of the compliant pores to the P-wave
velocity, we define the differential pressure at which the theories
with and without compliant pores yield approximately the same
velocity within an error of 1%, called the threshold pressure. Let
us denote this velocity yielded by the theory with (without) com-

pliant pores by VðT1Þ
P (VðT2Þ

P ). We define R ¼ ðVðT1Þ
P − Vð1Þ

P ∕VðT2Þ
P

−Vð2Þ
P Þ, where Vð1Þ

P and Vð2Þ
P are the velocities of the theory without

and with compliant pores, respectively, at differential pressures
lower than the threshold pressure. Then, the contribution of com-
pliant pores is 1 − R. As shown in Figure 9, this value decreases
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Figure 5. (a) Dry-rock bulk modulus and (b) shear modulus of the eight samples as a
function of the differential pressure. The legend applies to both panels.
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Figure 4. Compliant-porosity decrement as a function of differen-
tial pressure. The vertical axis is the absolute value of the cumula-
tive compliant-porosity variation from 0 MPa to P. The legend
indicates the sample number.
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with differential pressure, indicating that the po-
roacoustoelasticity with compliant pores is more
effective to describe stress-induced velocity at
lower pressures. The higher threshold-pressure
values of sample F1 (the black curve) can be
attributed to significant pore connections, be-
cause this sample has high permeability given its
porosity.
As shown in Figure 10, the threshold pressure

increases with the initial porosity, but, as above,
the differences can be due to the presence of con-
nections between the compliant pores. The same
pressure as a function of permeability is shown in
Figure 11. It increases with permeability, i.e.,
possibly related to more pore connections.

DISCUSSION

Unlike many nonlinear elastic models, poroacoustoelasticity fo-
cuses on the stress dependence of velocity, including the solid and
fluid strains, up to the 3oEC. In this work, we introduce the D-Z
model to modify the theory by considering the influence of the com-
pliant pores.
We analyze the two fitting parameters of the D-Z model based on

the high-pressure approximation. Then, we model the pressure
dependence of the crack properties, whereas the original theory de-
scribes the relation between the crack properties and the distribution
of aspect ratios (David and Zimmerman, 2012; Duan et al. 2018;
Zhang et al. 2019). Shapiro (2003) provides a simple model to study
crack deformation, with a semiempirical model based on a Taylor
expansion. Fu and Fu (2018) use Shapiro’s model to obtain the non-
linear velocity predictions, which are similar to the results of this
study (as shown in Figure 7); nevertheless, there is an adjustable
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Figure 7. P- and S-wave velocities as a function of differential pres-
sure. The full circles correspond to the measurements. The solid lines
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and without compliant pores, respectively. The agreement between the
theory and the experiment is good except for low pressures for some
samples. This discrepancy may come from connected pores, which are
not included in the theory.
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parameter ϕcdrs and an underdetermined initial porosity ϕc0 in the
Fu and Fu theory. In this work, a cumulative compliant-porosity
decrement is introduced. Figure 4 shows this decrement as a func-
tion of differential pressure, which approaches a constant value at
high differential pressures. By assuming that the compliant pores
close at high pressures, the computed cumulative-compliant poros-
ity decrement is approximately equal to the initial compliant poros-
ity. In this manner, we avoid having to evaluate the initial compliant
porosity ϕc0 of Fu and Fu (2018).
The limitation of the poroacoustoelasticity theory is the measure-

ment of the 3oEC (Biot, 1973; Norris et al., 1994; Degtyar and
Rokhlin, 1998; Ba et al., 2013). Compliant porosity varies with
stress, resulting in variations of the second-order elastic constants
of the rock skeleton. Similarly, the 3oEC also depend on stress, due
to variations of the compliant porosity; i.e., Ψj in equation 12 de-
pends on pressure. Ba et al. (2013) and Fu and Fu (2018) neglect
this effect, although their predictions fit experimental data.

However, the effect of compliant-pore variation on 3oEC is still
unclear and must be considered in future work.
In this work, we introduce a threshold pressure to differentiate the

applications of poroacoustoelasticity with and without compliant
pores in carbonates. Figure 9 quantitatively shows that the theory
with compliant pores is more effective for describing the wave
velocity in the pressure range below the threshold pressure. Higher
initial porosity may be associated with higher compliant porosity
(Zhang and Bentley, 2003) and higher permeability indicates a
higher degree of pore connection. Figures 10 and 11 show that a
higher initial porosity and permeability could be related to higher
threshold pressures in carbonates, i.e., a stronger impact of compli-
ant pores on rock properties. Furthermore, wave-induced fluid flow,
which is associated with compliant microcracks, may lead to wave
anelasticity and attenuation (Guo et al., 2018a, 2018b), which is not
considered in this study. To incorporate the effect of wave-induced
fluid flow into the traditional acoustoelasticity theory will result in
even more complicated mathematical equations, which may be con-
sidered in a future work.

CONCLUSION

Poroacoustoelasticity describes the nonlinear behavior of rocks
caused by the deformation of stiff pores as a function of differential
pressure. Generalizing this theory by including the effects of
compliant pores (cracks, microfractures) improves the agreement
between theory and experiment. The new theory is applied to model
the wave velocities of carbonate samples as a function of differential
pressure. The results lead to the following conclusions: (1) the novel
theory considers the effects of stiff and compliant pores on
the rock properties and matches the data at all differential pressures;
(2) the original and novel poroacoustoelasticity theories predict the
same velocities at high confining pressures, when all of the com-
pliant pores tend to close; (3) the differential pressure threshold at
which the two theories coincide increases with porosity and per-
meability; and (4) the creation of pore connections, neglected by
the novel theory, can be the cause of mismatches with the exper-
imental data.
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Figure 10. Differential pressure at which the theories with and
without compliant pores yield the same result as a function of initial
porosity for all samples.
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Figure 11. Differential pressure at which the theories with and
without compliant pores yield the same result as a function of per-
meability for all samples.
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of the remaining compliant pores can be neglected).

Acoustoelasticity for dual-pore rocks MR23

D
ow

nl
oa

de
d 

02
/1

3/
21

 to
 1

34
.7

.2
15

.1
96

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

20
-0

31
4.

1



DATA AND MATERIALS AVAILABILITY

Data associated with this research are available and can be
obtained by contacting the corresponding author.

APPENDIX A

ELASTIC STRAINS IN POROELASTICITY THEORY

The elastic strains A and B of the rock matrix and pore fluid in
stiff pores, respectively, are given in Gassmann (1951):

−
ΔVs

V
¼ Pc −Pf

Kgr

þð1−ϕÞ Pf

Kgr

¼ Pc −ϕPf

Kgr

−
ΔVs

Vs

¼−
ΔVs

Vð1−ϕÞ ¼
Pc −ϕPf

ð1−ϕÞKgr

A¼ Pc −ϕPf

3ð1−ϕÞKgr

−
ΔV
V

¼ Pc −Pf

Kdr

þ Pf

Kgr

¼ θ

−
ΔV
V

¼−
ΔVsþΔVf

V
¼−

ΔVs

V
þ
�
−
ΔVf

V

�

−
ΔVf

V
¼−

ΔV
V

−
�
−
ΔVs

V

�
¼ θ−

Pc −ϕPf

Kgr

¼ θ− 3ð1−ϕÞA

−
ΔVf

Vf

¼−
ΔVf

Vϕ
¼ θ− 3ð1−ϕÞA

ϕ

B¼ θ− 3ð1−ϕÞA
3ϕ

; (A-1)

where Vs, Vf , and V denote the solid volume, fluid volume, and
total rock volume, respectively, andΔ denotes the differential value.

APPENDIX B

WORKFLOW OF ROCK-PHYSICS MODEL

The rock-physics model of the poroacoustoelasticity theory
with a dual-pore structure is constructed by the workflow shown in
Figure B-1.
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