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Abstract— Estimation of subsurface properties by using the
scattering integral equation is a method that finds increasing
use in near-surface and shallow oil/gas exploration, based on
seismic, low-frequency electromagnetic, and surface-radar sur-
veys. The method can accurately simulate physical realizations
induced by small-scale perturbations, but its accuracy depends
on a suitable low-frequency property model. We propose a 3-D
geological-structure-guided model building to provide a reliable
low-frequency model and combine it with the Born–Wentzel–
Kramers–Brillouin–Jeffreys (WKBJ)-approximation-based inver-
sion algorithm. Instead of the traditional approach based
on artificially interpreted horizons, we use 3-D seismic-slope
attributes as lateral constraints, which contain more geological
information. Plane-wave destruction (PWD) in 3-D is exploited
to extract the 2-D slopes along the inline and crossline directions,
which are the key factors in computing 3-D slopes. Then, by intro-
ducing the shaping regularization, we build low-frequency models
by solving the inverse problem. Numerical analysis indicates
that an appropriate background model is essential for seismic
modeling with the Born–WKBJ approximation. The methodology
is applied to synthetic and 3-D field data, and the examples show
that it provides reliable background models and improves the
inversion performance.

Index Terms— 3-D structure constraints, Born–Wentzel–
Kramers–Brillouin–Jeffreys (WKBJ) approximation, model
building, pre-stack seismic inversion.

I. INTRODUCTION

PRE-STACK seismic inversion with amplitude-versus-
offset (AVO) or amplitude-versus-angle (AVA) techniques

is widely adopted to extract subsurface properties from seismic
data. The AVO/AVA modeling and corresponding inversion
can be classified into two main categories, namely ray-tracing
and wave-equation methods [1]. The first is based on a
single-interface assumption and the most common are the
Zoeppritz equation and its approximations for isotropic media,
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and the Rüger simplified equation in the anisotropic case [1].
Wave-equation methods based on an analytical or approx-
imate solution to the wave equation obtain the full wave-
field [1]–[6]. Compared with ray-tracing methods [7]–[12],
the second approach considers the amplitudes and phases of
primary reflections, converted waves, multiples and converted
modes [13]–[15].

Although wave-equation-based pre-stack inversion is not
new [16], [17], it is finding increasing application in geo-
physics with the latest developments in computer tech-
nology. The inversion consists in minimizing the misfit
between the measured and synthetic data under certain con-
straints [12], [18], where the forward operator plays an
essential role [3]. The wave-equation-based modeling can be
numerical [19] or analytical [1], [13], [14], [20]. Generally,
the second, including the reflectivity method, Green’s function
(in the homogeneous cases), or propagator matrix, uses a
1-D model and an analytical solution [21]–[23]. However,
in the case of complex structures and lithologies, numeri-
cal modeling, such as finite differences and finite elements,
is better suited for the inversion. Its inversion, namely full
waveform inversion (FWI) [19], has been developed for
decades, but limited by the high computational complexity.
Thus, the target-oriented waveform inversion is mainly based
on the analytical modeling and called pre-stack waveform
inversion (PWI) [1], [4], [6], [14].

Due to the strong nonlinear relationship between the syn-
thetic data and properties (parameters), the PWI usually is
based on a nonlinear optimization, such as simulated anneal-
ing [5] and genetic algorithm [14]. In order to improve
the computational efficiency, the Fréchet derivative (the par-
tial derivative of the forward operator with respect to the
model parameters) is employed, which is required to use
gradient-based linear optimization [1], [3], [4], [6], [15].
However, calculating the Fréchet gradient of a nonlinear
forward operator is time-consuming and mathematically com-
plex. Therefore, the researchers linearize the wave-equation
modeling.

The wavefield can be computed with the Lippmann–
Schwinger equation based on the Wentzel–Kramers–
Brillouin–Jeffreys (WKBJ) approximation, even for strongly
inhomogeneous media [24]–[26]. Analytical solutions based
on the Green function are difficult to obtain in this case
[27], [28]. The WKBJ is a high-frequency approximation
and neglects the coupling between wave modes. Therefore,
the solution of the Lippmann–Schwinger equation is an
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approximation, but its solution requires to invert a matrix,
leading to a high computation cost, especially for high-
dimensional models [29]–[31]. Thus, the Born approximation
is used, based on a Taylor expansion and retaining the
first-order term, which accelerates the algorithm [32]–[35].
The accuracy of the Born–WKBJ approximation highly
depends on the intermediate wavefield generated with the
low-frequency background medium [36]–[38].

In the FWI, there are several approaches to obtain a
low-frequency velocity model. For uniform-density acoustic
inversion, the low-frequency model is based on the P-wave
velocity, which is obtained with classical velocity analy-
sis [39]. Tomography is another, more accurate choice, solving
an inverse problem to update the velocity model [40]–[42].
However, the accuracy of these approaches depends, to a great
extent, on the quality of the seismic data. Chen et al. [43]
proposed a new model building method for FWI, performing
a well-log interpolation constrained by the 2-D geological
structure attribute (local plane-wave slope).

For the pre-stack inversion, low-frequency initial models
are built by routinely interpolating well data along manually
interpreted horizons, which provides the spatial morphology
of the subsurface structure to some extent. This approach
considers a limited number of geological elements and may
fail in the case of existing unusual geological bodies, such as
salt domes and volcanic intrusions. Besides, it requires a large
amount of workloads and introduces artificial errors, especially
for complex geological conditions [18], [44]. To overcome
these problems, Huang et al. [44] introduced a 2-D seismic-
slope-regularized model building method into pre-stack seis-
mic inversion and achieved good results. However, this method
is only applicable to 2-D data and a 3-D approach is required,
since not all the seismic lines cross the wells, and the slope
of a spatial sample may not be along the direction of a single
line.

We propose a 3-D data-driven model building method regu-
larized by 3-D seismic slope attributes, obtained with a plane-
wave destruction (PWD) [45], [46], and exploit the reshaping
regularization to achieve a reliable model. Then, we intro-
duce this algorithm into the Born–WKBJ-approximation-based
PWI, a method highly affected by the given low-frequency
model, to improve the inverted results.

This article is organized as follows. First, we briefly review
the modeling and inversion theories based on the scattering
integral and introduce the 3-D geological-structure-guided
well-log interpolation. Second, we investigate the effect of the
background and initial models on the modeling and inversion
results, using the synthetic examples. Then, the 3-D Claer-
bout’s “qdome” model is exploited to test the proposed model
building method. Finally, we combine the model building with
the Born–WKBJ approximation and apply the methodology to
field data.

II. THEORY AND METHODOLOGY

A. Born-Approximation Modeling

According to the elastic wave propagation theory, wave
motion can be expressed by the first-order velocity–stress

wave equation

−�kmpq∂mτpq + ∂tρvk = fk (1a)

�i jmr∂mvr − ∂t Si j pqτpq = hi j (1b)

where τ and v represent stress/force and particle velocity, Si j pq

are the components of the compliance tensor, ρ denotes the
bulk density, f and h represent external force and stress-rate
source, respectively, and ∂ denotes the partial differential
operator. We transform (1) into the frequency-wavenumber
domain to obtain

−ikm�kmpqτpq + iωρvk = fk (2a)

ikm�i jmrvr − iωSi j pqτpq = hi j (2b)

where ω and k denote the angular frequency and wavenumber,
respectively.

According to de Hoop et al. [47], the symmetrical tensors
of rank 2 in (2) can be decomposed into their omnidirectional
and deviatoric parts as follows:

iωρvk − ikm

�
τ σ
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By introducing the background properties S0 and ρ0,
we rewrite (3) as
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S+\σ,+\σ
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Moreover, for isotropic elastic media, the compliance tensor
S can be written as

Sσ,σ
i j pq = ��σ

i j pq, S+\σ,+\σ
i j pq = M�σ

i j pq (5)

where

� = 1

3λ + 2μ
, M = 1

2μ
. (6)

According to the Lippmann–Schwinger integral equation,
the total field in the perturbed medium P = �−τ σ ,−τ+\σ , v

�T

can be set as the sum of two parts, that is, the background
wavefield P0 and the scattering wavefield PS

P
�
kx, ky, kz, ω

	 = P0
�
kx, ky, kz, ω

	+ PS
�
kx, ky, kz, ω

	
. (7)
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On the other hand, the field generated by a point source can
be represented by Green functions, G, as

−τ σ
0,pq(r)

=

 �

Gσ,σ
0,pqi j(r − rS) · hσ

i j + Gσ,+\σ
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dr (8a)
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or, in matrix form⎡
⎢⎣
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where rS is the location of the source. Gσ,σ
pqi j , G+\σ,σ

pqi j ,
Gσ,+\σ

pqi j , and G+\σ,+\σ
pqi j are the stress/deformation rate source

Green functions, Gσ, f
pqk and G+\σ, f

pqk are the stress/force source
ones, Gv,σ

ri j and Gv,+\σ
ri j are the particle velocity/deformation

rate source ones, and Gv, f
rk is the particle-velocity/force

one [37], [38]. The expressions in components are

Gσ,σ
pqi j(r) = − 1

iω�
�σ

pqi jδ(r)

+ 1

iωρ�2
�σ

pqnr�
σ
i jmkknkm Grk(r) (10a)

G+\σ,+\σ
pqi j (r) = − 1

iωM
�

+\σ
pqi jδ(r)

+ 1

iωρM2
�+\σ

pqnr�
+\σ
i jmkknkm Grk(r) (10b)

Gσ,+\σ
pqi j (r) = − 1

iωρ�M
�σ

pqnr�
+\σ
i jmkknkm Grk(r) (10c)

G+\σ,σ
pqi j (r) = − 1

iωρ�M
�+\σ

pqnr�
σ
i jmkknkm Grk(r) (10d)

Gσ, f
pqk(r) = − 1

ρ�
�σ

pqnr knGrk(r) (10e)

G+\σ, f
pqk (r) = − 1

ρM
�+\σ

pqnr knGrk(r) (10f)

Gv,σ
ri j (r) = − 1

ρ�
�σ

i jnkkn Grk(r) (10g)

Gv,+\σ
ri j (r) = − 1

ρM
�

+\σ
i jnk kn Grk(r), Gv, f

rk (r)=− iω

ρ
Grk(r)

(10h)

where

Grk(r) = 1

v2
S
δrk GS(r) + 1

ω2
kr kk(GP − GS)(r) (11a)

with
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4π |r| exp

�
− iω

vP
|r|
�
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In (11), vP = (λ + 2μ/ρ)1/2 and vS = (μ/ρ)1/2 denote the
P- and S-wave velocities, respectively.

Based on (4), the scattering wavefield satisfies
⎡
⎢⎣
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where the property contrast is
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⎡
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⎤
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ρ0
− 1. (13b)

In (13), �, M , and ρ denote the true properties, and �0,
M0, and ρ0 denote the parameters of the background model.

Equation (12) can be expressed in the discrete form as
⎡
⎢⎣
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+\σ
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⎥⎦ = iω�r
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that can be simplified as

PS = G · ζ (υ)P. (15)

Substituting (15) into (7), we can obtain the Lippmann–
Schwinger equation based on the WKBJ approximation

P = P0 + G · ζ (υ)P (16)

which can be solved formally as

P = [I − G · ζ (υ)]−1P0. (17)

However, a matrix inversion is usually avoided when dealing
with large matrices. Approximations, such as Born, are used
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TABLE I

FORWARD MODELING ALGORITHM USING THE
BORN–WKBJ APPROXIMATION

to solve this problem. According to this approximation, (16)
can be reformulated via a Taylor expansion as

P =
⎡
⎣ ∞�

j=0

(G · ζ ) j

⎤
⎦P0. (18)

Then, by retaining the first-order term, the Born–WKBJ
equation of the total wavefield is

P = P0 + GζP0. (19)

The scattered wavefield PS can be obtained. By using
the relation between displacement U and particle velocity v,
we obtain

v = iωU (20)

from which we can compute the synthetic seismogram by
using the scattered wavefield.

The procedure of the forward modeling using Born–WKBJ
approximation is indicated in Table I.

B. Inversion Based on the Born–WKBJ Approximation

Equation (7) describes the relationship among the total, the
background, and the scattered wave fields

P = P0 + PS (21a)

with

PS = F(P) · υ (21b)

where F denotes a kernel function of P, and υ is the matrix
of the subsurface properties. There is a linear relation between
the measured data and the subsurface model.

Based on the regularization algorithm, the objective function
of the Born–WKBJ-based inversion is

J (υ) = �dobs − F(P) · υ�2 + λR(υ) (22)

where R(χ) denotes the regularization penalty (prior con-
straint) and λ is a weight coefficient, which balances the data
residual and prior constraint. A smaller weight yields a set of
sparse solutions, while a larger one causes smoother solutions.

According to (19) and (21), the total wavefield P is related
to the wavefield P0 of the background model (low-frequency
model). Thus, the accuracy of the low-frequency model sig-
nificantly affects the modeling and inversion results. Then,
an effective method for low-frequency model building is
required.

Fig. 1. Diagram showing the relations between 2-D seismic slopes (red
arrows in the planes along the inline and crossline directions) with the actual
3-D slope (yellow arrow).

C. 3-D Seismic Slope Attribute Regularized Model Building

It is common to build the low-frequency model by inter-
polating well logs along the picked geological horizons by
artificial interpretation, which requires intensive workloads
and considers only a small number of geological elements
as constraints, especially for complex structures. Here, a 3-D
data-driven model building algorithm is proposed by intro-
ducing 3-D seismic slope attributes of geological structures as
interpolation constraints. According to Huang et al. [44], one
can achieve the models by interpolating well logs with 2-D
seismic slopes. Such slope attributes, extracted from seismic
profiles by a plane-wave decomposition algorithm, are used to
replace the artificially picked horizons as lateral constraints.
However, this method is 2-D by using 2-D slope estimation
and 2-D interpolation algorithm.

Fig. 1 shows a 3-D model with structural features. The
yellow arrow shows the true slope direction of a point example
and can be computed by two 2-D slope directions (red arrows)
in x (inline) and y (crossline) planes with the angles θ2 and θ1

with respect to the x- and y-axes, respectively. Then, the slope
at this point is

θ = arccos(cos θ1 cos θ2) (23)

where θ2 and θ1 denote the seismic slope attributes along
the inline and crossline directions, respectively, which can be
calculated by the 3-D PWD algorithm (see Appendix).

By considering the extracted slope attributes as lateral
constraints, an interpolation strategy is presented by solving
the inverse problem to reconstruct the 3-D models of the
subsurface properties.

Fig. 2 shows the equivalent of a field example (square
area) with several randomly distributed wells (small circles).
By taking the well marked by the red solid circle as a
reference, the 2-D geological-structure-guided model build-
ing [44] performs the interpolation along the inline or crossline
directions with a 2-D slope attribute. However, the process is
more complex in the 3-D case, since we have to interpolate in
arbitrary directions. Let us assume that we need to reconstruct
a 3-D model by using the reference well (red solid circle). With
this well at the center of a circle, rotating the interpolation
direction through a certain angle, we have the 2-D profile
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Fig. 2. Diagram showing the well-log data interpolation by using the 3-D
seismic slope attribute.

along the “true” direction indicated by the oblique dashed
line in Fig. 2. Then, we obtain the 3-D seismic slope θ by
using (23) and the 3-D PWD outlined in the Appendix. Based
on this slope, the 2-D interpolation along the “true” profile
can be performed by solving a shaping-regularization-based
inverse problem. Then, continuing the rotation of the “true”
direction, we perform the same operation until we cover the
complete circle. And the final 3-D model is obtained by
resampling all the 2-D interpolated profiles according to the
grids of the field.

Next, the geological-structure-guided interpolation process
is explained. Generally, the wells are randomly distributed in
a real field and can be considered as a sampling (or mask)
operator to act on a subsurface property model

�X = Ylog (24)

where � denotes the matrix of the sampling operator, X corre-
sponds to the subsurface property model, and Ylog represents
the sparsely distributed well logs. Due to the sparsity sampling,
most of the components of the sampling operator are zero.
Thus, the inverse problem in (24) is ill-posed. Regularization
is one of the most widely used methods to solve this problem.
The conventional L2-norm regularized misfit function is

X̂ = arg min
���X − Ylog

��2
2 + λ�X�2

2. (25)

However, the model building process solved by (24) is not
constrained by seismic data, and the inclusion of geological
information as a lateral constraint is necessary. Therefore,
an objective function based on a reshaping regularization is
built, which introduces the slope attributes as constraints to
solve the inverse problem, instead of the classical interpola-
tion to obtain the reconstructed models. In this framework,
a structural smoothing operator [45], [46] is introduced and
the problem is iteratively solve as

X̂ = �
I − S + λS�T�


−1 · λS�TYlog (26)

where S and �T denote the shaping operator and the adjoint of
the forward operator, respectively. The structural smoothness
shaping operator S is

S = PHHTPT (27)

where H is a triangle smoothing operator according to
Chen et al. [43] and Fomel [45], [46] and P is a summation

TABLE II

ALGORITHM OUTLINING THE MODEL BUILDING METHOD
BASED ON THE 3-D SEISMIC SLOPES

operator to average all the traces along the structural direction.
Setting λ = 1

�
c2 and substituting (27) into (26), we obtain

X̂ = PH
�
c2I + HTPT

�
�T� − c2I



PH

�−1
HTPT�TYlog. (28)

In (28), X̂ denotes the interpolated 2-D model. Unlike the
classical Tikhonov regularization, the shaping regularization
iterative algorithm introduces the geological structure con-
straint from seismic data by using a structural smoothness
shaping operator S. In building an initial model, a slope
attribute extracted by the PWD algorithm is set to define S.
Table II outlines the algorithm for the 3-D model building
method.

III. EXAMPLES

A. Born–WKBJ Approximation Modeling

We use a 1-D model to analyze how the Born–
WKBJ-approximation forward modeling is affected by the
low-frequency background model. The 1-D profile is part of
the Marmousi model [48], [49], as shown in Fig. 3(a), which
shows the elastic properties vP, vS, and ρ, and � and M
obtained with (6), while (13) gives χ�, χM , and χρ [see
Fig. 3(b)]. These logs (blue curves) are considered as the
true properties, and we use different low-frequency models to
analyze the influence of the background model on the synthetic
responses computed with the Born–WKBJ approximation.

Travel times are highly affected by the low-frequency (long-
wavelength) component of the model. And inaccurate velocity
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Fig. 3. (a) Elastic properties vP, vS, ρ, �, and M of a trace extracted
from the Marmousi model, where the blue and red lines denote the real and
low-frequency background models, respectively. (b) Contrast parameters χ�,
χM , and χρ calculated by using properties in (a).

Fig. 4. Zero-offset synthetic seismic traces obtained with the reflectivity
method (blue solid curves) and Born–WKBJ approximation by using different
background models (red-dashed curves). (a) Good. (b) Slightly deviated.
(c) Deviated. (d) Oversmoothed. (e) Oversmoothed and deviated models.

information can cause a travel time gap between the synthetic
and the observed data, which may even lead to the cycle-
skipping phenomenon [19].

Fig. 4 shows zero-offset synthetic traces (red-dashed curves)
obtained with the Born–WKBJ approximation for differ-
ent low-frequency background models. From top to bot-
tom, the synthetic data (red-dashed) are simulated with the
true, the slightly deviated (only a few samples deviated from
the true ones), the moderately deviated (a part of samples
deviated from the true ones), the over-smoothed, and the poor
(over-smoothed and partially deviated) models, respectively.
The reflectivity method (RM, blue curves in Fig. 4) is used as
a benchmark for comparison. The comparison indicates that
deviations from the true model affect the travel times and
the amplitudes depending on the magnitude of the deviation.
The slightly deviated model achieves the response with the
relatively exact travel time and amplitudes [see Fig. 4(b)]. The
over-smoothed model lacking important structural information
leads to a significant difference of travel time between the

Fig. 5. (a) and (c) Well-log profiles (blue) and background models (red).
(b) and (d) Contrast parameters obtained with the true logs and the background
models. (a) and (b) Over-smoothed. (c) and (d) Regular models.

Born–WKBJ and exact simulations [see Fig. 4(d)]. When
the time shift exceeds half a wavelength, the cycle skip-
ping phenomenon occurs, which poses serious problems for
the wave-equation-based inversion process. When using the
over-smoothed model with many wrong samples, we can see
the serious deviations of the waveform [see Fig. 4(e)]. Thus,
a suitable background model is essential for the accuracy of
wavefield simulation by Born–WKBJ approximation method.
The proposed model building based on 3-D slope attributes
provides a reasonable background model to obtain accurate
synthetic traces. Besides, it gives an initial model with good
low-frequency information for gradient-based seismic inver-
sions.

B. Born–WKBJ Inversion
To further verify the effect of a given low-frequency model

on the Born–WKBJ inversion, we adopt a well-log model,
including logs of �, M , and ρ, shown as blue lines in
Fig. 5(a) and (c). By smoothing these logs, we obtain two
kinds of initial models, an over-smoothed version [red lines
in Fig. 5(a)] and a relatively regular one [red lines in Fig. 5(c)]
as background for simulation and initial models for inversion.
Fig. 5(b) and (d) shows χ�, χM , and χρ computed with (13),
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Fig. 6. True model (blue) and inversion (red) by using (a) over-smoothed
model of Fig. 5(b) and (b) regular (better) model of Fig. 5(d).

using the over-smoothed [see Fig. 5(a)] and regular models
[see Fig. 5(c)]. We generate a pre-stack angle gather by
convolving the reflection coefficients with a Ricker wavelet
of 30-Hz dominant frequency.

Then, by using the pre-stack inversion based on the
Born–WKBJ approximation, we obtain the inverted χ�, χM ,
and χρ . As shown in Fig. 6, the initial model significantly
affects the results. Compared with the over-smoothed model,
the regular one yield better results [see Fig. 6(b)]. The
results of the over-smoothed model show significant devia-
tions from the true model, especially the density [right panel
in Fig. 6(a)].The numerical example verifies the importance
of a good low-frequency initial model to the Born–WKBJ
pre-stack inversion. To obtain a reasonable initial model with
a suitable low-frequency trend, we introduce the proposed 3-D
geological-structure-guided model building in Section III-C.

Gaussian random noise is added to the synthetic data to
obtain gathers with SNR (signal-noise-ratio) of 10, 5, and
2, which are used to verify the stability of the Born–WKBJ
method. Fig. 7 shows the results, where the regular ini-
tial models of Fig. 5(d) are adopted. The root-mean-square
errors (RMSE) between the inversion and real data are given
in Table III. Fig. 7(a) shows that the inversion using the gather
with an SNR of 10 agrees well with the true one (blue lines).
For an SNR of 5, the velocities are still acceptable, but the
inverted density has more errors (see Table III). The results
with an SNR of 2 [see Fig. 7(c)] indicate that the density is
more affected by noise than the velocities.

The Born–WKBJ method is compared with the conventional
method, that is, the Zoeppritz-based least-squares inversion.
Here, a multilayer block model is set up in the depth domain
[see the blue lines in Fig. 8(b)]. The input gather is generated
by the Born–WKBJ approximation, which includes the full-
wavefield. Fig. 8 shows the comparison between the conven-
tional method and the Born–WKBJ waveform inversion in the
time (a) and depth (b) domains. Since the former does not
consider the full wave response, the results are unacceptable,

Fig. 7. Born–WKBJ inversion using gathers with SNR of (a) 10, (b) 5, and
(c) 2. The real data and inversion results are indicated with blue solid and red
dashed lines, respectively.

TABLE III

ROOT-MEAN-SQUARE ERRORS (RMSE) BETWEEN THE
INVERSION RESULTS IN FIG. 7 AND THE REAL DATA

especially for the density, where the multiples and converted
modes of the input data, regarded as primary reflections, are
a cause of errors [see Fig. 8(a)]. In contrast, the Born–WKBJ
method makes use of the various internal multiple reflections
and obtains better results [see Fig. 8(b)].

C. 3-D Structural-Geology Model Building

Claerbout’s “qdome” model [50] is considered as an exam-
ple to test the model building method. Fig. 9 shows the 3-D
cube and inner profiles of the “qdome” vP model. It has a
complex geological structure, which is difficult to manually
pick and generate an initial model. The proposed approach
builds the 3-D model as the following steps.

1) As shown in Fig. 10(a), a depth-domain seismic data,
or seismic image, is obtained with the root-mean-square
velocity, using time-depth conversion.

2) We extract two plane-wave slope attributes in the inline
[see Fig. 11(a)] and crossline [see Fig. 11(b)] directions
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Fig. 8. Inversion results of a block model using a gather with the full wave
responses. (a) Time domain by Zoeppritz-based AVA inversion. (b) Depth
domain by Born–WKBJ waveform inversion. The blue solid, black dotted,
and red dashed line are the real data, initial, and inverted models, respectively.

Fig. 9. 3-D Claerbout’s “qdome” P-wave velocity vP model. (a) 3-D cube.
(b) Inner details.

Fig. 10. (a) 3-D post-stack seismic data of the “qdome” model and (b) random
well locations on the base map.

Fig. 11. Seismic slope attributes, extracted from Fig. 10(a), along (a) inline
and (b) crossline directions, by using the 3-D PWD algorithm.

from the depth-domain data by using the 3-D PWD
algorithm (see the Appendix).

3) Randomly distributed well-log locations are displayed in
the base map [see Fig. 10(b)]. From well-log data and
the seismic slope attributes, we obtain the interpolated
model (see Fig. 12) according to the process in Table II.

Fig. 12. Interpolated model by using the 3-D model building algorithm.
(a) 3-D cube. (b) Inner details.

Fig. 13. (a) 3-D post-stack seismic data and (b) wavelets extracted from the
angle gathers.

Fig. 14. Seismic slope attributes extracted from the 3-D data in Fig. 13(a)
along (a) inline and (b) crossline directions.

Comparing the interpolated (see Fig. 12) and the actual
model (see Fig. 9), we find that the proposed method can
effectively restore the real model. At least, it provides a proper
low-frequency trend.

IV. REAL-DATA APPLICATION

Seismic data from an oilfield in the North Sea is used to
verify the feasibility of the proposed 3-D model building and
Born–WKBJ inversion. Fig. 13(a) shows the 3-D post-stack
seismic data, which contains 121 survey lines, each with 201
CDPs. The angle of the pre-stack gathers ranges from 0◦ to
30◦. As shown, the target section has a relatively stable geo-
logical structure, which is suitable for the scattering integral
equation (Born–WKBJ approximation) as forward modeling.
The seismic wavelets used for inversion are extracted from the
angle gathers, including the wavelets for near-, mid-, and far-
angle, as shown in Fig. 13(b). The available logs are P- (vP)
and S-wave (vS) velocities, and density (ρ).

The 3-D geological-structure-guided model building is
adopted to compute the background models of the forward
modeling and the initial models for the inversion. We extract
seismic slope attributes by using the 3-D PWD algorithm
from the post-stack data (see Appendix). Fig. 14(a) and (b)
shows the slope cubes along the inline and crossline direc-
tions, respectively. Setting the seismic slopes as constraints,
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Fig. 15. Low-frequency background models by using the proposed 3-D
model building. (a) vP. (b) vS. (c) ρ.

Fig. 16. 3-D inversion by using Born–WKBJ approximation, based on the
over-smoothed model. (a) vP. (b) vS. (c) ρ.

we interpolate the well-log data by using an inversion method
based on the shaping regularization and obtain the 3-D
low-frequency models, as shown in Fig. 15, which shows
the low-frequency models of vP [see Fig. 15(a)], vS [see
Fig. 15(b)], and ρ [see Fig. 15(c)]. Regarding the Born–WKBJ
inversion, the target parameters are the contrasts of the elastic
parameters χ�, χM , and χρ , which are computed according
to (13).

We perform the inversion to obtain the contrasts using two
sets of initial models, the over-smoothed model (obtained by
smoothing the models in Fig. 15) and the regular model, built
with the proposed method (shown in Fig. 15). Figs. 16 and 17
show the results of the inversion based on the over-smoothed
and regular models, respectively, where the differences are
evident, with the latter results much better (containing more
detailed information). The results of the over-smoothed model
show a lower resolution and contain scarce high-frequency
information, especially for vP and vS. The results for density
are the worst, but the improvement of the continuity in
density by using the regular model can be observed in the
deeper formations. Density is much less sensitive to seismic
response than velocity, and it is difficult with conventional PP

Fig. 17. 3-D inverted by using Born–WKBJ approximation, based on the
regular model. (a) vP. (b) vS. (c) ρ.

inversion methods, using wave equation inversion, to obtain
an acceptable density estimation. Here, the far-angle range of
the seismic data is not used for the inversion test due to the
bad quality, which maybe another reason for the unexpected
density estimations.

V. CONCLUSION

We implement a 3-D geological-structure-guided model
building into a pre-stack seismic inversion based on the
Born–WKBJ approximation. Unlike other forward operators,
for example, the reflectivity method, the modeling accuracy
depends strongly on a proper background (low-frequency)
model, which can be obtained with the present model building
algorithm. Besides, the methodology provides a suitable initial
model for the gradient-based inversion. Synthetic and real-data
applications demonstrate that the inversion combined the pro-
posed model building algorithm provides acceptable results for
subsurface-property characterization.

APPENDIX

3-D PLANE-WAVE DESTRUCTION

According to Claerbout [51], local plane waves can be
expressed by the following differential equation:

∂P
∂x

+ θ
∂P
∂ t

= 0 (A.1)

where θ is the seismic slope attribute and P denotes the
wavefield data which is a function of time (t) and space (x).
In a local area, the slope can be considered as a constant, thus

P(x, t) = f (t − θx). (A.2)

Transforming (A.1) from the time to frequency domain
yields

∂P̂
∂x

+ iωθ P̂ = 0 (A.3)

where P̂ is the frequency-space version of P obeying

P̂(x) = P̂(0)eiωθ x (A.4)
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which means that a plane wave can be predicted by a two-term
filter. In other words, several plane waves can be accomplished
by cascading several filters. The filter can be represented in
the Z transform as

A(Zx) = 1 + a1 Zx + a2 Z 2
x + · · · + aN Z N

x (A.5)

or

A(Zx) =
�

1 − Zx

Z1

��
1 − Zx

Z2

�
· · ·
�

1 − Zx

Z N

�
(A.6)

where Zi corresponds to the zero points of the polynomial.
The 2-D filter in the time-space domain can be expressed as

A(Zt , Zx) = 1 − Zx
B(Zt)

B
�
1
�

Zt

	 . (A.7)

The ratio B(Zt)/B(1/Zt) denotes an all-pass digital fil-
ter approximating the time-shift operator eiωθ . According to
Fomel [45], we define a modified form of the filter in (A.6)
as

C(Zt , Zx) = A(Zt , Zx)B

�
1

Zt

�
= B

�
1

Zt

�
− Zx B(Zt)

(A.8)

which avoids the polynomial division. The plane-wave destruc-
tion filter C is a function of the slope attribute θ . When
expanding the 2-D condition to 3-D, we need to estimate two
different slopes θ1 and θ2 from the available data simulta-
neously. According to Fomel [45], one can update the initial
slopes by using �θ1 and �θ2 after solving the following linear
equation:
C�(θ1)C(θ2)�θ1d + C(θ1)C�(θ2)�θ2d + C(θ1)C(θ2)d ≈ 0.

(A.9)

Here, C(θ) denotes an operator of convolving the known
data d with the filter C(Zt , Zx) in (A.7), and differentiating
the filter operator C(θ) with respect to θ , we obtain C�(θ).
The regularization should be applied to both slopes along the
two dimension θ1 and θ2:

εD�θ1 ≈ 0, εD�θ2 ≈ 0 (A.10)

where D and ε denote an appropriate roughening operator and
a scaling coefficient, respectively.

Then the seismic slopes θ1 and θ2 for the 3-D case are
obtained.
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