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ABSTRACT
The theory of wave propagation in non-isothermal porous rocks has been
introduced in geophysics in recent years by combining the single-phase-
lag (SPL) Lord-Shulman (LS) model of heat conduction with Biot’s poroelas-
ticity theory. However, the theory of SPL thermoporoelasticity is inad-
equate in describing the lagging behavior of thermal relaxation for wave
dissipation due to fluid and heat flow effects. We address this problem by
incorporating a dual-phase-lags (DPL) model of heat conduction into ther-
moporoelasticity, utilizing analytical solutions and numerical simulations.
The DPL model involves two lagging times: the (macroscopic) heat-flux
lagging time sq from the LS model and an additionally introduced lagging
time sT of temperature gradient that characterizes the fluid phase. A
plane-wave analysis predicts four propagation waves, namely, fast P, slow
P, thermal (T), and shear (S). We calculate wavefield snapshots by using a
finite-difference solver for the DPL thermoelastic equations and provide
further insight into the physics of two lagging times for porous rocks. The
simulations show that the DPL model induces higher thermal attenuation
and larger velocity dispersion compared to the SPL model, especially at
high frequencies. The influence of fluids is crucial for wave propagation
within thermoporoelastic media.
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1. Introduction

The study of wave propagation in non-isothermal media is significant in various fields, including
earthquake seismology, geothermal exploration, thermal-enhanced oil recovery, and ultradeep
hydrocarbon exploration (e.g., [1–3]).

The previous theory of thermoelasticity [4–6], which is based on the parabolic equation of
heat conduction, describes the coupling between the fields of displacement and temperature but
predicts infinite velocities for thermal waves. This problem has been solved by introducing a
delay term into the heat equation [1, 2, 7–10]. In particular, Carcione et al. [2] solved the new
thermoelastic equations with the Fourier pseudospectral method to compute the spatial deriva-
tives, and Wang et al. [11] derived the second-order tensor Green’s function based on the Lord-
Shulman (LS) equations. The LS theory predicts three propagation modes, namely, a fast P wave
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(E wave), a slow thermal P wave (T wave), and a shear wave (S wave). The P and T modes are
dispersive and lossy, presenting similar characteristics of the fast and slow P waves in poroelastic
media. Hou et al. [12] investigated the effect of thermal properties (thermal conductivity, thermal
expansion coefficient, and specific heat) on wave velocity and attenuation. Much attention has
been paid to analytical solutions of wave-induced thermoelastic attenuation and associated ther-
moviscoelasticity mechanisms based on the Kelvin-Voigt model [13–16], including the more gen-
eral Zener and Cole-Cole models [17–19]. A detailed discussion on the effect of the lagging time
on the attenuation peak and relaxation frequency is referred to Carcione et al. [2].

Thermoporoelasticity combines Biot’s equations and classical heat conduction [20, 21]. The
dynamical equations predict four propagation modes (e.g., [9]), namely, those mentioned above
and the slow (Biot) P diffusion/wave. The shear wave is unaffected by the thermal effects in
homogeneous media. By using the LS model of heat conduction with a single-phase-lag (SPL)
time, Carcione et al. [1] performed wave simulations with the Fourier pseudospectral method and
showed that the thermal and Biot slow wave have the same behavior, that is, diffusive at low fre-
quencies and wave-like at high frequencies. The conversion of P waves to Biot and thermal
modes leads to the so-called mesoscopic energy attenuation [17]. Wei et al. [22] formulated a fre-
quency-domain Green function as a displacement-temperature solution of the SPL thermoporoe-
lasticity equations to investigate the effect of fluid viscosity and thermal properties. Kumar et al.
[23] generalized the theory to a double-porosity structure of pores and cracks, but the theory pre-
dicts negative dissipation factors, indicating instability. Li et al. [24] incorporated the SPL model
into the Biot-Rayleigh double-porosity theory [25] to obtain a double-porosity thermoporoelastic-
ity theory that predicts positive dissipation factors. Wang et al. [26] developed a generalized ther-
moporoelasticity theory, including the LS and Green-Lindsay models with a SPL for wave
propagation in partially saturated media.

The lagging time is closely related to the nonequilibrium features of the thermodynamic transi-
tions. Hetnarski and Ignaczak [27] examined various heat conduction equations used in thermo-
elasticity. The heat conduction process in the SPL thermoelastic and thermoporoelastic models is
described by the Cattaneo-Vernotte (CV) equation [28–30], where the lagging time sq of heat
flow controls the macroscopic transition from diffusion to wave behavior. An extensive literature
has been devoted over the years to heat transfer processes concerning the CV model [31–33].
However, the phase lag of the heat-flux vector tends to induce thermal waves with sharp wave-
fronts that separate heated and unheated regions because the CV model ignores spatial micro-
scopic effects. Considering the difference between model predictions and experimental results,
more targeted and detailed heat conduction models have been proposed. By introducing a lagging
time corresponding to the spatial interaction, Qiu and Tien [34] proposed a two-step model from
the microscopic phonon-electron perspective to better predict the surface reflectance of metal
thin layers. Tzou [35, 36] and Chandrasekharaiah [37] proposed a dual-phase-lag (DPL) model
that incorporates microscopic effects into the macroscopic formulation through a lagging time sT,
which is related to temperature gradients (TGs). The DPL model combines diffusion and wave
behavior, and fits well the properties of metallic materials with delay times on the picosecond
level [36] and of biological materials on the microsecond or second level [38–42]. For porous
rocks, microscopic effects are also particularly important for energy transport and are attributed
mainly to the pore-fluid phase, as demonstrated in this study.

We simulate wave propagation in two-phase porous media with dissimilar thermal properties
based on the theory of DPL thermoporoelasticity. The heat-flux lagging time sq and the TG lag-
ging time sT are incorporated into the model. The article is organized as follows. First, we briefly
introduce the DPL model and incorporate it into the theory of LS thermoporoelasticity to charac-
terize the microscopic effects. Then, the velocity and attenuation as a function of frequency is
obtained by a plane-wave analysis. Next, we model the wavefields by solving the DPL thermopor-
oelastic equations with the rotated staggered-grid (RSG) finite-difference (FD) method [43–45]

2 Y. LIU ET AL.



and analyze the physics. Finally, we provide further insight into the physics of the two lagging
times for porous rocks by comparing thermal relaxations for wave dissipation based on experi-
mental data from metallic materials and sandstones.

2. DPL thermoporoelasticity theory

Due to the difference in thermal properties between the pore infill (fluid) and frame, it is neces-
sary to consider the microscopic space interaction in the heat transfer process. In comparison to
the CV theory used in the SPL model, the DPL theory accurately describes the transmission of
thermal energy at very short spatial and/or temporal scales, which avoids the underestimation of
thermal effects on wave dissipation. Two distinct lagging times are involved in the transient pro-
cess. The majority of thermal energy is transmitted into the background medium, where the heat-
flux lagging time sq represents an average time delay of this process [46]. The TG lagging time sT
is interpreted by Tzou [46] particularly as “the delay time … caused by the microstructural inter-
actions (small-scale heat transport mechanisms occurring in microscale, or smallscale effects of
heat transport in space).”

2.1. Heat conduction

Heat transport occurring at time t can be described by the following energy equation [47],

�r � q r, tð Þ þ S r, tð Þ ¼ Cp
@Ta r, tð Þ

@t
, (1)

where q is the heat-flux vector, Ta is the absolute temperature, S is the heat source, Cp is the
bulk-specific heat of the unit volume at constant pressure, and r is the space variable.
Considering the micro-spatial interaction in rocks, two lagging times are involved in the following
constitutive equation,

q r, t þ sqð Þ ¼ �crTa r, t þ sTð Þ, (2)

where c is the bulk coefficient of heat conduction (or thermal conductivity). We refer to the
physical and theoretical explanations of heat conduction in metallic phonon-electron and sand
bed solid-gas interactions. The lagging times sq and sT correspond to the delays in the transport
of two distinct energy carriers [36, 46], where sq is the heat-flux lagging time, which can be
regarded as the lag in the overall background heat transfer of the rock, and sT is the additional
lagging time due to the fluid. Both lagging times are assumed to be intrinsic thermal properties
of thermoporoelastic materials, related to the thermal properties of the solid and fluid phases.

Equations (1) and (2) describe the delay behavior in heat transport by a set of differential
equations. Expanding the Taylor series for time t in Eq. (2) yields the equivalent formula,

q r, tð Þ þ
XX
i¼1

sðiÞq
ðiÞ!

@ðiÞ

@tðiÞ
q r, tð Þ ¼ �c rTa r, tð Þ þ

XY
j¼1

sðjÞT
ðjÞ!

@ðjÞ

@tðjÞ
rTa r, tð Þ½ �

8<
:

9=
; , X,Y � 1, (3)

where X and Y determine a progressive interchange between the diffusive and wave-like behaviors
[48]. Considering the behavior of thermal waves, we choose the simplest form, that is, X¼Yþ 1.
The phase-lags are assumed small, implying that the second-order terms in sT and the third-order
terms in sq and subsequent terms are negligible. In this case, Eq. (3) becomes

q r, tð Þ þ sq
@q r, tð Þ

@t
þ 1
2
sq

2 @
2q r, tð Þ
@t2

þ oðqÞ ffi �c rTa r, tð Þ þ sT
@rTa r, tð Þ

@t
þ o rTað Þ

� �
, (4)

substituting Eq. (4) into Eq. (1) gives
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c rTa r, tð Þ þ sT
@rTa r, tð Þ

@t

� �
¼ Cp

@Ta r, tð Þ
@t

þ sq
@2Ta r, tð Þ

@t2
þ 1
2
sq

2 @
3Ta r, tð Þ
@t3

� �
: (5)

Following Carcione et al. [2], the heat equation in thermoporoelastic media can be written as

c DT þ sTDT
_

� �
¼ c0sqX¼2A1 þ T0b sq

X¼2 A2 þ A3ð Þ� �þ S, (6)

where sqX¼2 ¼ 1, sq , 12 sq
2

� �Τ, Ai ¼ _Ai, €Ai, } _Ai

� �
, i¼ 1, 2, 3 correspond to T, em, ef respectively, c0

is the bulk specific heat of the unit volume in the absence of deformation, b is the coefficient of
thermal stress, D is the Laplacian operator, and the dot above a variable denotes time differenti-
ation, T is the increment of temperature over a reference T0, em and ef are the solid and fluid
strain, respectively. In the following, the subscripts “m” and “f” refer to the solid (dry) frame and
fluid, respectively.

2.2. Governing equations

The stress-strain constitutive relations in the dynamical thermoporoelastic medium are [1, 22]

rij ¼ kdijuk, k þ l ui, j þ uj, ið Þ þ aMdij auk, k þ wk, kð Þ � bdijT þ fm
rf ¼ �/p ¼ /M auk, k þ wk, kð Þ � bf T þ ff

,

(
(7)

where rij and rf are the stress components of the frame and fluid, respectively, p is the fluid pres-
sure, k and l are the dry-rock L�ame constants, dij is the Kronecker-delta, ui is the displacement
components of the frame, / is the porosity, and f are external sources.

The elastic coefficients in Eq. (7) are

a ¼ 1� Km

Ks
,Km ¼ kþ 2

3
l, b ¼ bs þ /bf

M ¼ Ks

1� /� Km
Ks

þ / Ks
Kf

,wi ¼ / ci � uið Þ
,

8>>><
>>>:

(8)

where K is the bulk moduli, and ci are the displacement components of the fluid.
The dynamic equations are

rij, j ¼ q€ui þ qf €wi þ fm

�pð Þ, i ¼ qf €ui þm€wi þ g
j
_wi þ ff

c T, ii þ sT _T , ii

� 	
¼ qCesqX¼2A1 þ bT0 sqX¼2 UþWð Þ� �þ S

,

8>>><
>>>:

(9)

with

q ¼ 1� /ð Þqs þ /qf

m ¼ 1qf
/

,

8><
>: (10)

where q is the density, 1 is the tortuosity, g is the fluid viscosity, j is the frame permeability, Ce

is the specific heat capacity, U ¼ _ui, i, €ui, i, €ui, i½ � and W ¼ _wi, i, €wi, i, €wi, i½ �: The effect of microscopic
interactions vanishes when the double-phase coupling approaches infinity, implying that both
phase-lags sq and sT (macroscopic) approach zero. Equation (5) reduces to the classical diffusion
equation in this case and the assumption of instantaneous thermodynamic equilibrium is
retrieved.

Substituting the constitutive relations (7) into the dynamical equations (9), we obtain the fol-
lowing compact equations describing the coupling between the displacement components and
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temperature fluctuations,

kþ lþ a2M
� 	

uj, ij þ lui, jj þ aMwj, ij � bT, i ¼ q€ui þ qf €wi

M auj, ij þ wj, ijð Þ �
bf
/
T, i ¼ qf €ui þm€wi þ g

j
_wi

c T, ii þ sT _T , ii

� 	
¼ qCesqX¼2A1 þ bT0 sqX¼2 UþWð Þ� �þ S

:

8>>>><
>>>>:

(11)

The coupling of heat and strain only involves volume strains due to the dynamic equations
(9). Only one mechanism is considered for the displacement-temperature interaction, that is, the
expansion-contraction propagation of P waves induces a dissipative decaying T-wave mode,
which is an experimentally confirmed heat-wave interaction mechanism [12]. A plane-wave ana-
lysis to obtain the phase velocity and attenuation factor of the wave modes is given in
Appendix A.

3. Particle velocity-stress-temperature formulation

We consider the (x,z)-plane and solve the differential equations by using a first-order approach
in time, called particle velocity-stress-temperature formulation in elasticity. We recast the equa-
tions as new expressions to be used for numerical simulations. Eq. (7) become

_vx ¼ b11 @xrxx þ @zrxz � fxð Þ � b12 @xpþ g
j
qx


 �
� Px

_vz ¼ b11 @xrxz þ @zrzz � fzð Þ � b12 @zpþ g
j
qz


 �
� Pz

_qx ¼ b21 @xrxx þ @zrxz � fxð Þ � b22 @xpþ g
j
qx


 �
� Xx

_qz ¼ b21 @xrxz þ @zrzz � fzð Þ � b22 @zpþ g
j
qz


 �
� Xz

_rxx ¼ kþ 2lð Þ@xvx þ k@zvz þ a2M @xvx þ @zvzð Þ þ aM @xqx þ @zqzð Þ � bwþ _f xx
_rzz ¼ kþ 2lð Þ@zvz þ k@xvx þ a2M @xvx þ @zvzð Þ þ aM @xqx þ @zqzð Þ � bwþ _f zz
_rxz ¼ l @xvx þ @zvzð Þ þ _f xz

_p ¼ �aM @xvx þ @zvzð Þ �M @xqx þ @zqzð Þ þ bf
/
w� 1

/
_f f

,

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

(12)

with

b11 b12
b21 b22

� �
¼ qf

2 � qm
� ��1 �m qf

qf �q

� �
, (13)

where vi and qi are the components of the particle velocity fields of the frame and fluid, respect-
ively. We define

T
� ¼ w, w

� ¼ H, (14)

and Eq. (113) yields
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_H ¼ 2c
qCesq2

@xxT þ @zzT þ sT @xxwþ @zzwð Þ½ � � 2
sq2

wþ sqH
� 	� 2S

qCesq2

� 2bT0

qCesq2

@xvx þ @zvz þ @xqx þ @zqz þ sq @xPx þ @zPz þ @xXx þ @zXzð Þ
þ 1
2
sq

2 @xCx þ @zCz þ @xKx þ @zKzð Þ

2
4

3
5 , (15)

with

Cx ¼ _Px,Cz ¼ _Pz

Kx ¼ _Xx,Kz ¼ _Xz
:

�
(16)

Equations (12)–(16) can be written in matrix form as

_v þ s ¼ Mv, (17)

where

v ¼ vx , vz , qx , qz ,rxx ,rzz , rxz , p,T ,w,H½ �Τ, (18)

is the unknown vector,

s ¼ �b11fx , � b11fz , � b21fx , � b21fz , _f xx ,
_f zz ,

_f xz , �
_f f
/

, 0, S0

" #Τ
, (19)

is the source vector. Matrix M is the propagation operator derived from Eqs. (12)–(16). The solu-
tion to Eq. (17) subject to the initial condition v(0) ¼ v0 is formally given by

vðtÞ ¼ exp tMð Þv0 þ
ðt
0
exp sMð Þs t � sð Þds, (20)

where exp(tM) is called the evolution operator.
The eigenvalues of M may have negative real parts and differ greatly in magnitude. The pres-

ence of both large and small eigenvalues indicates that the problem is stiff. Moreover, the pres-
ence of real positive eigenvalues can induce instability in the time-stepping method. To solve
these problems, the differential equations are solved with the splitting algorithm used by
Carcione and Quiroga-Goode [49] and Carcione and Seriani [50]. The propagation matrix can be
partitioned as

M ¼ Mr þMs, (21)

where the subscript r indicates the regular matrix, and the subscript s denotes the stiff matrix,
involving the quantity c and the coupling terms. The evolution operator can be expressed as
exp(MrþMs)t. It is easy to show that

exp Mdtð Þ ¼ exp
1
2
Msdt


 �
exp Mrdtð Þ exp 1

2
Msdt


 �
, (22)

has second-order accuracy O(dt2). We solve the equations with the time integration method in
Appendix B.

4. Results

4.1. Plane-wave analysis

We obtain velocity and attenuation in saturated quartzite using the properties listed in Table 1.
The lagging times are sq ¼ 7.81� 10�8 s and sT ¼ 4.74� 10�7 s. The calculation of lagging times
and thermal properties is discussed in Section 5.2. In addition, we calculated the wave velocity
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for a type of synthetic material. Referring to Carcione et al. [1], we define the value of the ther-
mal conductivity of the hypothetical medium as c¼ 8.76� 104 m kg/(s3	K), with a corresponding
increase in the lagging times of sq¼ 7.81� 10�4 s and sT¼ 4.74� 10�3 s. The reason for compar-
ing different materials is to demonstrate the physical behavior associated with different lagging
times and thermal properties. As indicated by Eq. (A3), the S wave is independent of the thermal
effects because the shear strains are not coupled with the temperature field in homogeneous
media. That is, the S wave is not affected by temperature.

Figure 1 shows the frequency-dependent phase velocity and attenuation for the SPL model
(sT ¼ 0) [1, 22]. The solid and dashed lines correspond to saturated quartzite and a high
thermal conductivity synthetic material, respectively. Figure 1(b) shows the fast P-wave attenu-
ation results. We can see that the fast P wave has two Zener-like relaxation peaks, which are
related to the Biot and thermal loss mechanisms. Moreover, the thermal and Biot slow waves
have similar characteristics, being strongly diffusive at low frequencies. For the synthetic
material, the thermal attenuation peak moves to low frequencies.

Figure 2 shows the results for the DPL model. As indicated in Section 5.2, we state that the
relationship between the two lagging times in rocks is sq < sT. Other properties are the same as
in Figure 1 except for the lagging times. Increasing the delay time also shifts the frequency of the
thermal attenuation peak to a lower frequency. Figure 2b shows that the characteristic frequency
of the thermal wave is reduced by four orders of magnitude. The DPL model is more sensitive to

Table 1. Material properties.

Properties Values

Shear modulus, l 8.6 GPa
Density, qs 2640 kg/m3

Frame bulk modulus, Km 1.7 GPa
Grain modulus, Ks 7.88 GPa
Water bulk modulus, Kf 2.4 GPa
Porosity, u 0.3
Permeability, j 1 Darcy
Tortuosity, 1 2
Water density, qf 1000 kg/m3

Thermoelasticity coefficient, bf 40,000 kg/(m s2 K)
Viscosity, g 0.001 Pa/s
Bulk specific heat capacity, Ce 0.25 m2 /(s2 K)
Thermoelasticity coefficient, b 120000 kg/(m s2 K)
Absolute temperature, T0 300 K
Thermal conductivity, c 8.76m kg/(s3 K)

Figure 1. Phase velocity (a) and attenuation factor (b) as a function of frequency for the SPL model. The properties are given in
Table 1. The solid line corresponds to saturated quartzite (sq ¼ 7.81� 10�8 s and sT ¼ 0 s), whereas the dashed line corresponds
to a synthetic material (sq ¼ 7.81� 10�4 s and sT ¼ 0 s).
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changes in thermal properties and delays time than the LS model, which confirms the sT physical
interpretation. Figure 3 illustrates the effect of the two mechanisms, that is, poroelasticity and
thermoelasticity. In the uncoupled case (b¼bf¼ 0), the attenuation of the P wave (a single peak
in the kHz range) is of poroelastic nature. On the other hand, zero viscosity implies that all
energy losses are due to thermal effects. Figure 3c shows that the thermal attenuation is inde-
pendent of the fluid viscosity, with attenuation in the MHz frequencies.

We compare the phase velocity and attenuation of several typical rocks with different frames
and fluids. In addition to the lagging times, other model properties related to the fluid and rock
frame are changed (see Appendix C). The results are shown in Figures 4 and 5. We observe that:

1. Saturation with different fluids in the same quartzite frame: the results are not only affected
by the fluid properties (density, viscosity, etc.), but also by the thermal properties (thermal
conductivity, specific heat). When the fluid is gas (air), the limit velocity and velocity vari-
ation of the P wave are the largest (Figure 4a,b), and the attenuation frequency range is
wider than that of glycerol and water (Figure 4d,e). Figures 4c and f indicate that the T wave
velocity and attenuation for glycerin-saturated quartzite are higher. The P wave is more
affected by the fluid, while the T wave is by the thermal properties.

2. Different rock frames saturated with water: at relatively low frequencies (<102 Hz), the vel-
ocity and attenuation are the same. Discrepancies occur as frequency increases. This is
because the wave properties at high frequencies are dominated by the thermal effects,
whereas those at low frequencies are mainly affected by the Biot flow. The fast P-wave vel-
ocity dispersion decreases, while the limit velocity increases (Figure 5a). The relaxation fre-
quencies do not change by varying the rock-frame properties.

Figure 2. Phase velocity (a) and attenuation factor (b) as a function of frequency for the DPL model. The properties are given in
Table 1. The solid line corresponds to saturated quartzite, whereas the dashed line corresponds to a synthetic material.

Figure 3. Attenuation factor of the fast P wave (a), slow P wave (b), and thermal wave (c) in the DPL model. The properties are
those of saturated quartzite.
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3. When the rock is denser and stiffer, there is a rapid energy exchange between the pore infill
and the background. The shorter lagging time results in high velocity and low attenuation.
The pore-fluid properties affect both the thermal process and the Biot mechanism.

4.2. Simulations

Next, we compute snapshots of the wavefield by using the RSG-FD method, with a mesh of
461� 461 grid points. The source is a Ricker wavelet located at the center of the mesh and has
the time history

Figure 5. Phase velocity (a–c) and attenuation factor (d–f) of the fast P wave, slow P wave, and T wave correspond to the DPL
model. The solid, dashed, and dotted lines correspond to water-saturated quartzite, granite, and limestone, respectively.

Figure 4. Phase velocity (a–c) and attenuation factor (d–f) of the fast P wave, slow P wave, and T wave correspond to the DPL
model. The solid, dashed, and dotted lines correspond to quartzite saturated with air, water, and glycerol, respectively.
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wðtÞ ¼ cos 2p t � t0ð Þf0½ � exp �2 t � t0ð Þ2f02
� �

, (23)

where f0 is the central frequency, t0¼ 3/(2f0) is the delay time.
Figure 6a shows a snapshot of the wavefield for saturated quartzite, where we assume a grid

spacing of dx ¼ dz¼ 0.15mm, a time step of dt¼ 10 ns, and a center frequency of 0.6MHz.
Figure 6b shows the correspondence between the plane-wave analysis and the wave velocity
extracted from the snapshot. The fast P wave and the slow P wave travel at velocities of 3380m/s

Figure 6. Snapshots of vx at 6 ls in saturated quartzite and a dilatational stress source (sxx and szz) with a center frequency of
0.6MHz, corresponding to the solid lines of Figure 1.

Figure 7. Snapshots of vz (a), sxz (b), and T (c) in DPL saturated quartzite, corresponding to the solid lines of Figure 2. The prop-
erties are those to produce Figure 6.

Figure 8. Snapshots of vz (a), sxz (b), and T (c) in DPL high thermal conductivity media, corresponding to the dashed lines of
Figure 2. The properties are those to produce Figure 6.

10 Y. LIU ET AL.



and 1118m/s, respectively, corresponding to the two waveforms in the snapshot. The T wave is
diffusive due to a high value of the attenuation factor at the source frequency band.

Figure 7 shows vz, sxz, and T snapshots of DPL saturated quartzite (Figure 2). The fast and
slow P-wave velocities are less than the limit velocity, which are 3375m/s and 1106m/s respect-
ively. Figure 8 shows similar snapshots for high thermal conductivity media, corresponding to the
dashed lines in Figure 2. Increasing the lagging time results in a significant decrease in the
attenuation factor and peak frequency so that the T wave is wave-like. According to the stress-
strain relationships, if b is equal to zero, the waves become uncoupled.

Figure 9 compares snapshots of the fluid particle velocity qz for quartzite saturated with different
fluids. The attenuation of the fast P-wave is the lowest in the case of gas. According to Figure 4f,
the extreme attenuation causes the diffusion-like character of the T and Biot (slow) waves (Figure
9a). Furthermore, the slow P-wave velocity for water saturation is higher than that for glycerol.
Snapshots of the solid particle velocities vx for different frames saturated with water are shown in
Figure 10. The P-wave velocity is higher for limestone and lower for quartzite, and the same behav-
ior can be observed in the simulations.

Finally, we present an example of wave propagation in inhomogeneous media. We consider a
three-layer medium, where the properties of the upper and lower half spaces are the same. In
Figure 11a, the upper and lower half spaces are water-saturated quartzite, and the middle layer is
glycerin-saturated quartzite. The wave velocity in the middle layer is the higher one. On the other
hand, in Figure 11b the velocity of this layer is lower because the upper and lower half spaces are
water-saturated limestone. Figure 11c corresponds to water-saturated-quartzite half spaces, and
the middle layer has a high thermal conductivity (water-saturated synthetic medium). Other

Figure 9. Snapshots of the particle velocity of the fluid qz in quartzite saturated with air (a), water (b), and glycerol (c). The prop-
erties are those to produce Figure 6.

Figure 10. Snapshots of the particle velocity of the solid vx at 5 ls in saturated quartzite (a), granite (b), and limestone (c). The
properties are those to produce Figure 6.
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properties are those produced in Figure 6. The snapshots are computed at 6 ls, and show
reflected, transmitted, and converted-transmitted waves, denoted by r, t, and ct.

5. Discussion

5.1. Physical meaning of the lagging times in metals and sand

In this section, we compare the DPL model with the microscopic two-step model and discuss the
physical meaning of the lagging times in rocks based on the experimental results of thin metal
layers and sand beds. The thermal response time and the phonon-electron lagging time are char-
acteristics of thin metal layers. The two-step model proposes that the energy exchange between
microscopic particles must be considered in describing the thermal behavior, as shown in
Figure 12a.

The double lagging times of the DPL theory are derived in analogy with the two-step model.
Equation (2) of Qiu and Tien [34] accounting for microscopic interactions has the same form as
Eqs. (4) and (5) of Tzou [35] employing the macroscopic DPL concept. The macro representation
of the lagging times is

sq ¼ aE
VT0

2
, sT ¼ ae

VT0
2
, (24)

where aE is the equivalent thermal diffusivity of the medium, VT0 is the T-wave velocity, and ae
is the electron diffusivity in the metal. The lagging time of the heat-flux vector (sq) captures the

Figure 11. Temperature snapshots in a three-layer medium. The upper and lower half-spaces have the same properties. The
labels indicate the fast P wave (Pf), slow P wave (Ps), direct reflected (r), converted (c), and transmitted (t) waves. The properties
are those to produce Figure 6.

Figure 12. Different delay behaviors in (a) metal thin layer and (b) sand bed.
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thermal wave behavior, the equivalent time-delay response of the medium as a whole, while the
lagging time of the TG (sT) captures the effect of the electron gas on the lattice, the response of
the microscale interaction. Experiments in several metals confirmed the above point [34, 51, 52]),
taking Cu as an example sT ¼ 70.833 ps and sq ¼ 0.4348 ps, differ by two orders of magnitude.
In addition, the simulations based on the DPL model better describe the thermal waves observed
in superfluid liquid helium [35].

To further emphasize the correspondence between lagging time and microstructure, Tzou [46]
used the DPL model to describe thermal lagging in sands, as illustrated in Figure 12b. In analogy
with phonons and electrons in metals, the solid and gas phases are treated as different energy car-
riers. The physical mechanisms are different, but the analogy of microstructural interaction in
space with the fast-transient effect in time is similar. The sT is regarded as the lagging time of the
pore infill, which is proportional to the thermal diffusivity of the fluid. The transient experiment
confirms that the DPL model smoothes the sharp wavefronts of the CV theory in describing heat
transfer in porous materials, which is shown in Figures 6.6 and 6.14 of Tzou [46]. More detailed
analysis and experiments also discuss the lagging response in porous media [53, 54].

5.2. Application of the DPL theory to rocks

In the thermoelastic theory, heat conduction is described by the CV equation. The introduction
of the lagging time sq leads to the finiteness of the thermal wave velocity. However, the pore infill
induces energy exchange at the microscopic spatial scale. Our interpretation is that the heat-flux
lagging time sq represents the macroscopic effect of the bulk rock and the TG lagging time sT
embodies the microscopic effect of the fluid phase.

Regarding sq, Carcione et al. [2] calculated the CV delay time according to the Rudgers [8] lat-
tice model. When considering the limit case in thermoelasticity, the two (P and T) waves can be
completely uncoupled, and both will attain the same limit velocity. Thus, the lagging time sq can
be calculated by substituting the P-wave velocity for the T-wave velocity. We replace VT0 in

Eq. (A7) with the P-wave velocity, VP0 ¼
ffiffiffiffiffiffiffiffi
kþ2l
q

q
¼ 2457m=s, and then obtain the value of the

heat-flux lagging time sq ¼ aE
VT0

2 ¼ c
c0VP0

2 ¼ 1:49� 10�8s [2]. Implicit in the theory is the fact that

heat is transported by elastic waves, and it follows that the maximum T-wave velocity is lower
than the velocity at which an elastic disturbance propagates in the medium. Moreover, the form
of sq in the DPL theory is exactly the same as Eq. (24), and the equivalent thermal diffusivity is
related to the specific heat capacity and thermal conductivity in two-phase porous media

aE ¼ c0m þ c0f
cm þ cf

: (25)

The lagging time is

sq ¼ aE
VP0

2
: (26)

Regarding sT, ae in Eq. (24) corresponds to the thermal diffusivity of the fluid in a thermopor-
oelastic medium. But since the mineral grains in actual rocks are much smaller than the sand
particles, a uniform temperature distribution is established instantly when heat flows.

According to the modified formula of Eq. (6.18) in Tzou [46], sT is

sT ¼ am þ af
VP0

2
, (27)

with
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am ¼ cm
c0m

, af ¼
cf
c0f

: (28)

The values of sT and sq are calculated according to the above Eqs. (25)–(28) and experimental
data of Rudgers [8], Kjartansson [55], and Carcione et al. [1, 2]. The properties are shown in
Table 2. We assume that the reference velocity of the saturated quartzite is 3000m/s. The lagging
times are sq ¼ 7.81� 10�8 s and sT ¼ 4.73� 10�7 s. The range of wave velocity in the rocks is
in the order of 103 m/s, but the velocity has no effect on the relationship between the two lagging
times. By comparing the thermal properties of solid and fluid, we find that the two lagging times
are always sT >sq for rocks. That is, the pore fluid takes more time to reach the final thermal
equilibrium.

6. Conclusions

We combine the DPL model and thermoporoelasticity to develop a DPL theory for wave propa-
gation in porous media, considering the dissimilar thermal relaxations between the frame and the
fluid phase. This implies two lagging times: the heat-flux lagging time sq for the macroscopic
effect of the whole rock, and the TG lagging time sT corresponding to the microscopic effect of
the fluid phase. Compared to the SPL theory, the DPL model predicts higher attenuation and
limit velocity. The introduction of the additional lagging time implies that the relaxation peak
moves to lower frequencies as the lagging time increases. The plane-wave analysis shows how the
solid and fluid phases affect the velocity and attenuation of the elastic and thermal waves. The
lagging time determines the diffusion length of the heat and fluid flows, dominating the inelastic
thermal effects at high frequencies, but barely influencing the wave features in the seismic fre-
quency band. Finally, we develop a FD algorithm to solve the DPL thermoporoelastic equations.
A time-splitting algorithm overcomes instability problems. The theory can be used to explain
experimental data, especially for porous rocks containing organic inclusions associated with ther-
moviscoelasticity and thermal-relaxation mechanisms.

APPENDIX A: plane-wave analysis

To examine the characteristics of wave propagation in thermoporoelastic media, we consider the following homo-
geneous plane-wave expressions,

ui ¼ Asi exp �ix t � lj
vc
xj


 �� �

wi ¼ Bdi exp �ix t � lj
vc
xj


 �� �

T ¼ C exp �ix t � lj
vc
xj


 �� � ,

8>>>>>>><
>>>>>>>:

(A1)

Table 2. Thermal properties of different materials.

Substance T0 [	K] q [Mg/m3] K [GPa] c0 [J/(g	K)] c [W/(m	K)] b [10�5	K-1]
Copper 298.15 8.933 139.0 0.3847 386.0 5.01
Lead 298.15 11.34 36.6 0.1276 35.0 8.67
Limestone 300 2.71 76.0 2.28 3.85 0.339
Quartzite 300 2.64 42.0 1.98 8.16 0.108
Granite 300 2.65 46.0 1.56 – 0.78
Water 298.15 0.997 2.23 4.18 0.60 23.37
Glycerol 298.15 1.26 4.64 2.38 0.29 50.50
Water 554 0.773 0.0055 3.89 0.59 219.9
Helium 298.15 0.00016 0.00016 5.1975 0.15 365.9
Air 298.15 0.0012 0.00014 1.0045 0.024 367.90
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where si and di are the solid and fluid polarizations, respectively, A, B, and C are amplitude constants, x is the
angular frequency, vc is the complex velocity, lj denotes the propagation directions, xj are the position components,
and i ¼ ffiffiffiffiffiffiffi�1

p
:

Substituting Eq. (A1) into Eq. (11) yields a system of algebraic equations,

kþ lþ a2M
� 	

x
vc

� 	2Asjljli þ l x
vc

� 	2Asi þ aM x
vc

� 	2Bdjljli � ib
x
vc
Cli ¼ qx2Asi þ qfx

2Bdi

M a x
vc

� 	2Asjljli þ x
vc

� 	2Bdjljlih i
� i

bf
/
x
vc
Cli ¼ qfx

2Asi þmx2Bdi � i
g
j
xBdi

�c x
vc

� 	2Cþ isTx x
vc

� 	2Ch i
¼ qCe ixC� sqx2C� 1

2
sq

2ix3C


 �
þ

bT0
x
vc
xAsili þ x

vc
xBdili


 �
þ sq i

x
vc
x2Asili þ i

x
vc
x2Bdili


 �
� 1
2
sq

2 x
vc
x3Asili þ x

vc
x3Bdili


 �� �
:

8>>>>>>>>>>><
>>>>>>>>>>>:

(A2)

For S waves, sili ¼ dili ¼ 0, and since the propagation direction is perpendicular to the displacement vector, we
have

vc Swaveð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l

q� qf
1
/�i g

jxqf

vuut : (A3)

We see that the S-wave propagation is independent of the thermal properties in isotropic homogeneous media.
For P waves, sili ¼ dili ¼ 1, and the propagation direction is parallel to the displacement vector. The dispersion

relation is

a vc
2

� 	3 þ b vc
2

� 	2 þ cvc
2 þ d ¼ 0, (A4)

where

a ¼ qCe/N 1þ 1
2
sqix


 �
xL� i

g
j
q


 �

b ¼ i/
g
j
K � x

g
j
/ cþ icsTxð Þqþ sq 1þ 1

2
sqix


 �
K

� �
þ /qCeH þ T0bJ

� �

�ix2 / cþ icsTxð ÞLþ qCeHsq 1þ 1
2
sqix


 �� �
þ T0bJsq 1þ 1

2
sqix


 �� �

c ¼ x / qCeMEþ g
j

cþ icsTxð ÞF
� �

þ T0bG
� �

þix2 / cþ icsTxð ÞH þ qCeMEsq 1þ 1
2
sqix


 �� �
þ T0bGsq 1þ 1

2
sqix


 �� �
d ¼ �ix2 cþ icsTxð Þ/ME

,

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(A5)

with

E ¼ kþ 2l, F ¼ Eþ a2M,G ¼ Ebf þM a� 1ð Þ abf � /b
� 	

H ¼ mF þ qM � 2aMqf , J ¼ bf q� qfð Þ þ /b m� qfð Þ,K ¼ qCeF þ T0b
2

L ¼ mq� qf
2,N ¼ 1þ ixsq

:

8>><
>>: (A6)

The phase velocity and attenuation factor of the P waves are

vp ¼ Re
1
vc


 �� ��1

,A ¼ �xIm
1
vc


 �
: (A7)

Deresiewicz [6] introduced another attenuation coefficient, more akin to the dissipation factor (inverse of the
Q factor), namely,

L ¼ 4p
Avp
x

: (A8)
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APPENDIX B: Splitting algorithm

We solve the differential equations with a time-splitting algorithm. Equation (19) allows us to solve the unstable
equations separately. The time integration from t to t þ dt for the stiff matrix Ms is solved to obtain the inter-
mediate solution from Eqs. (12)–(16). These are

_vx ¼ � g
j
b12qx, _vz ¼ � g

j
b12qz

_qx ¼ � g
j
b22qx, _qz ¼ � g

j
b22qz

_rxx ¼ �bw, _rzz ¼ �bw⏧/ _p ¼ bfw, _H ¼ � 2
sq2

w� 2
sq

H

:

8>>>>>><
>>>>>>:

(B1)

We obtain

vx
 ¼ vxn þ b12
b22

exp � g
j
b22dt


 �
� 1

� �
qx

n, vz
 ¼ vz
n þ b12

b22
exp � g

j
b22dt


 �
� 1

� �
qz

n

qx
 ¼ exp � g
j
b22dt


 �
qxn, qz
 ¼ exp � g

j
b22dt


 �
qzn

rxx
 ¼ rxxn þ 1
2
sqb exp � dt

sq

 !
cos

dt
sq

þ sin
dt
sq

 !
� 1

" #
wn

rzz
 ¼ rzzn þ 1
2
sqb exp � dt

sq

 !
cos

dt
sq

þ sin
dt
sq

 !
� 1

" #
wn

p
 ¼ pn � sqbf
2/

exp � dt
sq

 !
cos

dt
sq

þ sin
dt
sq

 !
� 1

" #
wn

w
 ¼ exp � dt
sq

 !
cos

dt
sq

þ sin
dt
sq

 !
wn

:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

(B2)

We use the time-splitting algorithm of Carcione et al. [2]. Discretizing time as t ¼ ndt, yields

vxnþ1 ¼ vx 
 þdt b11 @xrxx 
 þ@zrxznð Þ � b12 @xp 
 þ g
j
qx



 �� �

vznþ1 ¼ vz 
 þdt b11 @xrxzn þ @zrzz
ð Þ � b12 @zp 
 þ g
j
qz



 �� �

qxnþ1 ¼ qx 
 þdt b21 @xrxx 
 þ@zrxznð Þ � b22 @xp 
 þ g
j
qx



 �� �

qznþ1 ¼ qz 
 þdt b21 @xrxzn þ @zrzz
ð Þ � b22 @zp 
 þ g
j
qz



 �� �
rxxnþ1 ¼ rxx 
 þdt kþ 2lð Þ@xvx 
 þk@zvz 
 þa2M @xvx 
 þ@zvz
ð Þ þ aM @xqx 
 þ@zqz
ð Þ � bw
� �
rzznþ1 ¼ rzz 
 þdt kþ 2lð Þ@zvz 
 þk@xvx 
 þa2M @xvx 
 þ@zvz
ð Þ þ aM @xqx 
 þ@zqz
ð Þ � bw
� �
rxznþ1 ¼ rxzn þ dt l @xvx 
 þ@zvz
ð Þ½ �

pnþ1 ¼ p 
 þdt �aM @xvx 
 þ@zvz
ð Þ �M @xqx 
 þ@zqz
ð Þ þ bf
/
w


" #

Tnþ1 ¼ Tn þ dt w
ð Þ
wnþ1 ¼ w 
 þdt Hnð Þ

Hnþ1 ¼ Hn þ dt

2c
qCesq2

@xxT
n þ @zzT

n þ sT @xxw 
 þ@zzw
ð Þ½ � � 2
sq

Hn � 2
sq2

w 
 � 2S
qCesq2

� 2bT0

qCesq2

@xvx 
 þ@zvz 
 þ@xqx 
 þ@zqz

þsq @xPx 
 þ@zPz 
 þ@xXx 
 þ@zXz
ð Þ
þ 1
2
sq

2 @xCx 
 þ@zCz 
 þ@xKx 
 þ@zKz
ð Þ

2
6664

3
7775

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(B3)

where
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Cx
 ¼ b11 @xr_xx 
 þ@zr_xz
n

� 	� b12 @x p_
 þ g
j
q_x



 �

Cz
 ¼ b11 @xr_xz
n þ @zr_zz


� 	� b12 @z p_
 þ g
j
q_z



 �

Kx
 ¼ b21 @xr_xx 
 þ@zr_xz
n

� 	� b22 @x p_
 þ g
j
q_x



 �

Kz
 ¼ b21 @xr_xz
n þ @zr_zz


� 	� b22 @z p_
 þ g
j
q_z



 �
,

8>>>>>>>>>>><
>>>>>>>>>>>:

(B4)

where eighth- and second-order FD approximations are used for the space and time derivatives, respectively. The
variables indicated with an asterisk correspond to the intermediate solutions at each time step.

APPENDIX C: Properties setting

In Figures 4 and 5, we plot the results of the plane-wave analysis for different fluids and frames. The properties of
quartzite for different saturating fluids are shown in Table C1, and the properties of different frames are shown in
Table C2. Non-listed units are those of Table 1.
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Table C1. Properties of quartzite saturated by different fluids.

Properties Values (Air/water/glycerol)

Water bulk modulus, Kf 0.14/2.4/8.5
Permeability, j 0.001/1/100
Water density, qf 100/1000/1260
Thermoelasticity coefficient, bf 80,000/40,000/20,000
Viscosity, g 0.00001/0.001/0.8
Bulk specific heat capacity, Ce 0.12/0.25/0.18
Thermal conductivity, c 8.18/8.76/8.45
Reference velocity, Vp0 2700/3000/3200

Table C2. Properties of different rock frames.

Properties Values (quartzite/granite/limestone)

Shear modulus, l 8.6/8.8/10.5
Density, qs 2640/2650/2710
Frame bulk modulus, Km 1.7/2.0/2.9
Grain modulus, Ks 7.88/8.1/8.6
Bulk specific heat capacity, Ce 0.25/0.23/0.26
Thermoelasticity coefficient, b 120,000/130,000/150,000
Thermal conductivity, c 8.76/5.28/4.45
Reference velocity, Vp0 3000/3200/3700
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