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ABSTRACT

Seismic waves in an attenuative porous medium are generally
inhomogeneous waves, which have different directions of
propagation and attenuation. The dissipation factors (1/Q) of
inhomogeneous waves are strongly dependent on the degree
of wave inhomogeneity and cannot be expressed correctly with
the usual 1/Q expressions valid only for homogeneous waves.
We have used the differing definitions of 1/Q for inhomo-
geneous waves (i.e., the ratio of the time-averaged dissipated
energy density to the time-averaged strain energy density or
time-averaged total energy density) and the complex form of
the energy balance equations of poroviscoelastic media to derive
concise and explicit expressions for the dissipation factors. They
are given as simple functions of the material parameters and the
wave inhomogeneity parameter for inhomogeneous SV-waves
and fast and slow P-waves. The isotropic, poroviscoelastic

medium under consideration is upscaled from effective Biot
theory for a double-porosity solid, which is the most general
theory to describe wave propagation in a reservoir. We find that,
if the inhomogeneity parameter is infinite (i.e., the inhomoge-
neity angle is 90°) for all three Biot waves, then the dissipation
factors only depend on the ratio of the imaginary to the real part
of the complex shear modulus. Our explicit expressions for the
dissipation factors of poroviscoelastic materials also are reduced
to obtain their counterparts for viscoelastic media as a special
case. The inhomogeneous waves in an example poroviscoelastic
material are used to demonstrate that the 1/Q values of the three
Biot waves strongly depend on the inhomogeneity parameters
and furthermore the different definitions may cause significant
differences of 1/Q values. We find that the dissipation factor
of fast P-waves may decrease with the increasing degree of
inhomogeneity, which contradicts previously published
results.

INTRODUCTION

Most materials near the earth’s surface, especially porous reser-
voirs, are dissipative with significant intrinsic energy absorption.
The seismic waves propagating in such materials are generally inho-
mogeneous waves; that is, they do not have the same propagation
and maximum attenuation directions (Lockett, 1962). The degree of
wave inhomogeneity can significantly change the phase velocity,
attenuation factor, and other properties that are the fundamental
characteristics of the waves. Such waves are far from being
well-studied, especially for porous reservoirs such as in petroleum
exploration, geothermal investigations, and groundwater search.
Therefore, it is of critical importance to investigate the dependence
of these characteristics on the degree of wave inhomogeneity. The
damping or anelastic property of seismic waves commonly is rep-

resented by the inverse quality factor Q−1 (also called the dissipa-
tion factor). The dimensionless quantity Q−1 generally is defined as
the ratio of the time-averaged dissipated energy density to the time-
averaged strain energy density (denoted as Q−1

V ; see Carcione,
2014). An alternative definition replaces the denominator in the ra-
tio with the time-averaged energy density (denoted as Q−1

T ; see Bu-
chen, 1971). For homogeneous waves in isotropic media, which
have the same directions of propagation and attenuation, there are
two alternative definitions of the dissipation factor: (1) Q−1

V , which
can be expressed as the ratio of the imaginary part of the squared
complex wavenumber k over the real part, Q−1

V ¼ Imðk2Þ∕Reðk2Þ,
and (2) Q−1

T , which can be written as the following function of the
attenuation coefficient α, phase velocity v, and frequency ω: Q−1 ¼
2αv∕ω (Carcione, 2014). Therefore, these equations actually are
viewed as the general definition of Q−1 in many publications.
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However, for highly dissipative media, inhomogeneous waves (in
which the propagation direction is not parallel to the attenuation
vector), these different definitions of Q−1 can lead to significant
differences, which must be clarified. This is especially the case
for seismic waves in porous media, where the definition Q−1

V for
homogeneous waves can result in negative or even infinite values
for Q−1, which obviously is inadmissible.
The most popular theory to describe seismic wave propagation in

a porous solid (e.g., a petroleum reservoir) is Biot theory. According
to the classic Biot theory (Biot, 1956a, 1956b, 1962a, 1962b), in a
homogeneous material the only energy dissipation mechanism is
called Biot global flow, which is created at the scale of a wave-
length. There is a relative displacement between the solid and
the viscous fluid in the pore space, which takes energy out of
the wave. Biot theory predicts that there are typically three types
of seismic wave in a porous solid, that is, the S-wave and the fast
and the slow P-waves; in this paper, they are denoted respectively as
the S-, P1-, and P2-wave for simplicity.
The classic Biot theory when applied to homogeneous media (in-

homogeneity of the medium should not be confused with inhomo-
geneity of the wave, which refers to amplitude variations on the
wavefront) cannot explain the high level of attenuation in the seis-
mic frequency range (i.e., 1–1000 Hz) observed in actual reservoirs.
Based on the double-porosity and dual-permeability (DPDP) model
(Pride et. al., 2004), effective Biot theory can explain this high-level
attenuation with the inner flow dissipation mechanism. It arises
from material inhomogeneity at the mesoscopic scale in which there
are two porous phases present having dissimilar compressibilities
and permeabilities such that, during the passage of a P-wave, there
is local fluid flow between them. Therefore, in effective Biot theory,
there are two dissipation mechanisms: inner flow and Biot global
flow. However, the DPDP model, to date, has been developed only
for P- but not S-waves. Liu et al. (2018) uspscale and generalize
effective Biot theory to the poroviscoelastic model, which will
be used to investigate the dissipation factors of the three Biot waves
(S-, P1-, and P2-waves) in this paper.
Unlike the S- and P1-waves, P2-waves are thought to be

diffusive in the low-frequency range and only rarely have been
observed experimentally in synthetic water-saturated sandstone
(Plona, 1980) and natural water-saturated sandstone (Kelder and
Smeulders, 1997). It has been determined that the definition
Q−1 ¼ −ImðMÞ∕ReðMÞ (where M is the complex modulus) is
not suitable for P2-waves because, for diffusive modes, the real part
of the complex modulus Re(M) tends to zero (or equally, as stated
by Berryman and Wang [2000], the imaginary and real parts of the
complex velocity are of comparable size). This means that Q−1

could tend to infinity or even negative values. The latter is unaccept-
able from a physical point of view, but Q = 0 holds for a pure dif-
fusion equation in which all energy is dissipated and none is stored.
To avoid the above complication, Berryman and Wang (2000) use

the definitionQ−1 ¼ 2αv∕ω in all cases, by which theQ−1 of the P2-
waves is calculated to be close to 2 (for low frequency). Possibly for
the same reason, this definition also is used in other publications for
Biot waves, for example, Badiey et al. (1998), Chen (2016), and Tur-
gut and Yamamoto (1988). However, it must be understood that the
definition Q−1 ¼ 2αv∕ω is under the assumption of homogeneous
waves, which will not be correct for inhomogeneous waves.
Because of the high-level attenuation observed in near-surface

formations and petroleum reservoirs, seismic waves are generally

inhomogeneous. The P2-waves are much more highly attenuative
than P1- or S-waves. Therefore, it is very important to investigate
the dissipation factors of waves in a reservoir directly from the
definitions Q−1

V and Q−1
T with proper consideration of the inhomo-

geneity of the wave.
The dissipation features of inhomogeneous viscoelastic waves

have been investigated over many decades (e.g., Buchen, 1971;
Borcherdt, 1977, 1982, 2009; Borcherdt and Wennerberg, 1985;
Carcione and Cavallini, 1993; Cerveny and Psencik, 2005, 2006).
We have found that explicit formulas for Q−1 have been provided
first by Borcherdt and Wennerberg (1985) for viscoelastic materials
(not for porous media). Here, the word ”explicit” is taken to mean
that the Q−1 formulas are expressed as functions of the known
material parameters and the degree of wave inhomogeneity, that
is, the inhomogeneity parameter D or the inhomogeneity angle γ
(Buchen, 1971; Cerveny and Psencik, 2005). Their Q−1 formulas
are under the definition as the ratio of the time-averaged dissipated
energy density to the peak potential (strain) energy density normal-
ized by 2π (denoted as Q−1

B ; see Borcherdt, 1977). However, differ-
ent definitions of Q−1 may result in different values of Q−1 for
dissipative and inhomogeneous waves. Therefore, Q−1

B may be very
different from Q−1

V and Q−1
T , even for viscoelastic materials (Liu

et al., 2020). Liu et al. (2020) present explicit Q−1 formulas of vis-
coelastic materials under the definitions of Q−1

V and Q−1
T . Consid-

ering the relative movement between the pore fluid and the porous
solid frame, the poroviscoelastic model has much more complicated
wave equations than those of the viscoelastic model because the
extra equations to describe the fluid movement are integrated into
the wave equations (Biot, 1956a, 1956b, 1962a, 1962b; Pride et al.,
2004; Liu et al., 2018). Therefore, the viscoelastic model is the spe-
cial case of the poroviscoelastic model when the relative movement
of the pore fluid is ignored. However, various mechanisms of the
relative movement of the pore fluid are of critical importance for
describing seismic wave attenuation in near-surface formations
and petroleum reservoirs. It is obviously very important to inves-
tigate the dissipation factors based on the poroviscoelastic model.
To the best of our knowledge, no explicit formulas have been pub-
lished for porous media under the definitions of Q−1

V and Q−1
T .

In the following sections, we derive explicit, novel formulas
for the dissipation factors Q−1 under the definitions of Q−1

V and
Q−1

T for the three Biot waves in effective Biot materials, thus uni-
fying and generalizing the treatment for the first time. Then, these
results for poroviscoelastic materials are reduced to obtain their
counterpart equations for viscoelastic media as a special case. With
an example effective Biot material, we show how to use these
explicit formulas and investigate how the inhomogeneity degree
of a plane wave affects the dispersion characteristics of such waves
propagating in poroviscoelastic media. Because our equations are
derived in the x-z coordinate plane, the S-waves in our paper refer
to the SV-waves.

EFFECTIVE BIOT THEORY AND THE UPSCALED
POROVISCOELASTIC MODEL

In the frequency domain, the classic Biot wave equations (Biot,
1962a, 1962b) and the effective Biot equations (Pride et al., 2004)
have a very similar form. But the effective Biot equations are more
general than the classic Biot equations in that the Biot elastic
coefficients all become frequency dependent and can be well-
approximated with the general fractional Zener model (upscaled

T210 Liu et al.
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poroviscoelastic model; see Liu et al., 2018). If these coefficients
are set as frequency independent, the effective Biot theory reduces
to the classic Biot theory. Therefore, our investigation is based on
the effective Biot equations whose wave equations (source terms
ignored) can be written as

½ðH−GÞ∇∇þðG∇2 þω2ρÞI� · uþ ½C∇∇þω2ρfI� ·w¼ 0

½C∇∇þω2ρfI� · uþ ½M∇∇þω2 ~ρðωÞI� ·w¼ 0;

(1)

where u is the solid particle displacement and w ¼ φðU − uÞ is
the relative fluid displacement multiplied by material porosity φ.
Here, U represents the absolute fluid displacement in an inertial
reference frame. For density terms ρ and ~ρðωÞ in equation 1,
ρ ¼ φρf þ ð1 − φÞρg, ~ρðωÞ ¼ iη∕½ωk�ðωÞ� and ρg is the grain den-
sity; ρf and η are the density and viscosity of the fluid, and k�ðωÞ is
the effective dynamic permeability (Liu et al., 2018).
The elastic coefficients M, C, and H can be written as functions

of the frequency-dependent shear and bulk moduli of the solid
frame, that is, GðωÞ and KdðωÞ (for details, see Pride et. al., 2004);
together with constant grain bulk modulus Kg and fluid bulk modu-
lus Kf , (

1
M ¼ α

Kg þ ϕ
�

1
Kf − 1

Kg

�
; α ¼ 1 − Kd

Kg

H ¼ Kd þ 4G∕3þ α2M; C ¼ αM
: (2)

Because G and Kd are frequency dependent, it follows that
M, C, and H are also functions of frequency.
Liu et al. (2018) suggest a method based on the general fractional

Zener model to upscale effective Biot theory to a poroviscoelastic
model covering P- and S-waves and in which a complex modulus
ZðωÞ (representing GðωÞ and KdðωÞ) can be written as
ZðωÞ ¼ Zðω ¼ 0ÞΩZðωÞ with

ΩZðωÞ ¼
1

LZ

XLZ

l¼1

½1þ ð−iωτZεlÞαl�∕½1þ ð−iωτZσlÞαl�: (3)

In this equation, ΩZðωÞ is the relaxation function, Zðω ¼ 0Þ is the
relaxed modulus that is assumed to be known, LZ is the number of
model elements used, τZσl and τZεl are the stress and strain relaxation
times, respectively, and αl is the fractional derivative order. If
LZ ¼ 1, the equation reverts to the famous Cole-Cole model
(e.g., Picotti and Carcione, 2017). If ΩZðωÞ ¼ 1, we obtain the
result of the classic Biot model.

INHOMOGENEOUS PLANE WAVES AND THE
CHRISTOFFEL EQUATION OF EFFECTIVE BIOT

MEDIA

For inhomogenous plane waves in poroviscoelastic media, the
time-averaged stored and dissipated energy densities (Carcione
and Cavallini, 1993; Carcione, 2014) are expressed as the product
of the extended wavefield vectors and the elasticity (and/or gener-
alized mass density) matrix. Although the cited formulas are ob-
tained based on classic Biot theory, they are in a form similar to
the equations of effective Biot theory in the frequency domain,
as stated previously. To apply these equations for caluclating the

dissipation factors of the three Biot waves, we need to decompose
the effective Biot wave equations without the assumption of a
homogeneous wave and determine the eigencharacteristics that in-
clude the frequency dependence of the complex wave velocities and
the coefficients specifying the ratio between the solid and relative
fluid displacements to construct the extended inhomogeneous plane
wave field vectors.
The solid particle displacement u and the fluid displacement rel-

ative to the solid w of inhomogeneous plane waves in an effective
Biot material can be written as

uðr; tÞ ¼ ~u exp½iωðp · r − tÞ�
and wðr; tÞ ¼ ~w exp½iωðp · r − tÞ�; (4)

where ~u and ~w are the complex vector amplitudes and p is the com-
plex slowness vector. Following Cerveny and Psencik (2005, 2006),
the complex slowness is written as

p ¼ σn̂þ iDm̂ or p ¼ pp̂; (5)

where σ is the complex slowness. The real-valued unit vector n̂
is called the propagation direction; the real-valued tangent unit
vector m̂ is perpendicular to n̂ (or m̂ · n̂ ¼ 0) and represents the
attenuation direction (defining the complex dual wave vector p).
The real-valued quantity D refers to the inhomogeneity parameter
and relates to the inhomogeneity angle γ between the propagation
direction and the maximum attenuation direction through
cosðγÞ ¼ ImðσÞ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im2ðσÞ þD2

p
. The terms D and γ represent

the degree of inhomogeneity of the wave. The ranges of these in-
homogeneity parameters are −∞ ≤ D ≤ ∞ and −π∕2 ≤ γ ≤ π∕2.
Quantity p represents the complex slowness that depends on the
material parameters and will be solved from the following
Christoffel equation. The unit vector p̂ is complex (p̂ · p̂ ¼ 1).
Using equation 5, we have

p · p ¼ p2 ¼ ðσn̂þ iDm̂Þ · ðσn̂þ iDm̂Þ ¼ σ2 −D2: (6)

With equation 6, we have

p2 ¼ σ2 −D2 or σ2 ¼ p2 þD2: (7)

For a given material, the p does not change with D, but the com-
plex σ will change with D.
The phase velocity is defined as

vpv ¼ 1∕ReðσÞ; (8)

where the symbols Reð•Þ and Imð•Þ represent the real and imagi-
nary parts of a quantity. Substituting σ ¼ ReðσÞ þ i ImðσÞ and
p ¼ ReðpÞ þ i ImðpÞ into equation 7, the real and the imaginary
parts become

Explicit Q in porous media T211
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Re2ðσÞ¼0.5

�
Re2ðpÞ−Im2ðpÞþD2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Re2ðpÞ−Im2ðpÞþD2�2þ4Re2ðpÞIm2ðpÞ

p �

ImðσÞ¼ReðpÞImðpÞ∕ReðσÞ

9>>>>>=
>>>>>;
:ð9Þ

Equation 9 implies that increasing the absolute value of D, here-
after denoted as jDj, results in increasing slowness ReðσÞ and thus
decreasing phase velocity according to equation 8. Increasing jDj or
increasing slowness ReðσÞ will cause a decrease in ImðσÞ, but it is
uncertain whether this will cause a decrease in the dissipation factor
Q−1 for inhomogeneous waves. The Q−1 needs to be calculated
according to different definitions.
In a manner similar to the treatment of electroseismic waves by

Pride and Haartsen (1996), substituting equation 4 into equation 1
produces �

A B
E D

��
~w
~u

�
¼

�
0

0

�
; (10)

where�
A B
E D

�
¼

�
~ρI−Mpp ρfI−Cpp
ρfI−Cpp ðρ−Gp2ÞI− ðH −GÞpp

�
; (11)

and I is the identity matrix or tensor. The tensor pp can be viewed as
the dyadic product ppT where pT denotes the transpose of p. Equa-
tion 10 also can be written as

~w ¼ −A−1B ~u or ~w ¼ −E−1D ~u: (12)

The Christoffel equation takes the form

½A−1B − E−1D�½ ~u� ¼ ½RSIþ RPp2p̂ p̂�½ ~u� ¼ ½0�; (13)

where

RS ¼ ρf∕~ρ − ðρ − Gp2Þ∕ρf; (14)

RP¼
ðH−GÞ

ρf
−
C
~ρ
þðρ−Gp2Þ−ðH−GÞp2

ρfðp2−ρf∕CÞ
þ Cp2−ρf
~ρðp2− ~ρ∕MÞ :

(15)

The secular determinant of equation 13 has three complex roots
(eigenvalues) with corresponding eigenvectors or complex vector
amplitudes (Pride and Haartsen, 1996). The root of p2 given by
RS ¼ 0 corresponds to the S-wave slowness pð1Þ with its eigenvec-
tor, or complex amplitude vector ~uT given as

pð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ − ρ2f∕ ~ρÞ∕G

q
; ~uT · p̂ð1Þ ¼ 0: (16)

Combining equations 11, 12, and 16 produces

~wT ¼ ξð1Þ ~uT; ξð1Þ ¼ −ρf∕ ~ρ ¼ Gðp2 − ρ∕GÞ∕ρf: (17)

The complex coefficients ξðkÞ specify the ratio between the solid and
the relative fluid displacements.

Similarly, the other roots of p2 for RS þ RPp2 ¼ 0 correspond to
two longitudinal waves: the P1- and P2-waves, respectively, having
slownesses pð2Þ and pð3Þ, respectively, and their eigenvectors ~uL
given by

ðpð2;3ÞÞ2¼ 1
2

�
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−4ðρ ~ρ−ρ2fÞ∕ðHM−C2Þ

q �
b¼ðH ~ρ−2CρfþMρÞ∕ðHM−C2Þ

9=
;; ~uL¼cp̂:

(18)

Here, c is an arbitrary scalar. In a manner similar to equation 17,
we obtain

~wL¼ξðkÞ ~uL; ξðkÞ¼
ρf−CðpðkÞÞ2
ðpðkÞÞ2M− ~ρ

¼−
HðpðkÞÞ2−ρ
CðpðkÞÞ2−ρf

ðk¼2;3Þ:

(19)

THE COMPLEX FORM OF THE ENERGY
BALANCE EQUATION

The complex form of the energy balance equation of a porovis-
coelastic material is given by Carcione (2014) as follows. Note, be-
cause the time dependence of harmonic waves in our paper is
assumed to be expð−iωtÞ, whereas Carcione uses a positive expo-
nential, the negative sign involving with the time derivative has
been adjusted accordingly. The formula is

−div
�X

· v�
�
¼ 2iω

�
1

4
Reðv� · R · vÞ− 1

4
ReðeT · P · e�Þ

�

þ 2ω

�
−
1

4
Imðv� · R · vÞ þ 1

4
ImðeT · P · e�Þ

�
:

(20)

Here, v is the extended particle velocity vector

v ¼ ð _u1; _u2; _u3; _w1; _w2; _w3ÞT; (21)

P
is the extended stress tensor, P is the elasticity matrix, and R is

the mass density matrix. The extended strain array e can be ex-
pressed with the solid displacement u and the relative fluid displace-
ment w:

e ¼ ðe1; e2; e3; e4; e5; e6;−ζÞT; (22)

where

e1 ¼ ∂1u1; e2 ¼ ∂2u2; e3 ¼ ∂3u3; e4 ¼ ∂2u3þ ∂3u2;

e5 ¼ ∂1u3þ ∂3u1; e6 ¼ ∂1u2þ ∂2u1 ;
(23)

and

ζ ¼ −divw; w ¼ φðU − uÞ: (24)

T212 Liu et al.
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This complex energy balance equation has been developed for
porous and anisotropic media (Carcione, 2014). But, here we only
consider isotropic porous media. For the sake of completeness,P

and the isotropic versions of P and R are provided in Appen-
dix A. In equation 20, the vector −

P
· v�∕2 is the Umov-Poynting

vector that describes the energy flux. The physical meanings of the
other terms are described as follows.
The time-averaged strain energy density hVi is given by

hVi ¼ 1

4
ReðeT · P · e�Þ ¼ 1

4
ReðVcÞ: (25)

Here, we call eT · P · e� the complex strain energy density,
denoted as Vc given by equation A-4 in Appendix A.
The time-averaged kinetic energy density hTi is written with the

extended particle velocity array v and the generalized mass density
matrix R:

hTi ¼ 1

4
Reðv�T · R · vÞ ¼ 1

4
ReðTcÞ: (26)

Here, we call vð�ÞT · Rð�Þ · v the complex kinetic energy density,
denoted as Tc given by equation A-5 in Appendix A. The term
v is given by equation 21.
The time-averaged strain dissipated energy density hDVi and the

kinetic dissipated energy density hDTi are given by Carcione (2014)
as

hDVi ¼ −
1

2
ImðVcÞ ¼ −

1

2
ImðeT · P · e�Þ; (27)

hDTi ¼
1

2
ImðTcÞ ¼ 1

2
Imðvð�ÞT · R · vÞ: (28)

EXPLICIT DISSIPATION FACTORS FOR
INHOMOGENEOUS WAVES IN EFFECTIVE BIOT

MATERIALS

For a given wave type k (k ¼ 1;2; 3 for S-, P1-, and P2-waves,
respectively), the solid particle displacement uðkÞ and the relative
fluid displacement wðkÞ can be written as

uðkÞ ¼ ~uðkÞ exp½iωðpðkÞ · r − tÞ�; wðkÞ ¼ ξðkÞuðkÞ: (29)

Here, ~uðkÞ is the complex vector amplitude of wave type k. The co-
efficients ξðkÞ are specified in equations 17 and 19. For the sake of
simplicity, we will remove the superscript (k) without causing con-
fusion. Furthermore, without loss of generality, we consider only
the 2D case. For an inhomogeneous wave propagating in the x-z
plane along the z-direction, the propagation direction is written
as n̂ ¼ ð0;0; 1Þ with its orthogonal direction in the x-z plane as
m̂ ¼ ð1;0; 0Þ. Using equation 5, the complex slowness along
direction n̂ is calculated as σ. Thus, the slowness vector p is written
as (px,0, pz)

p¼ðpx;0;pzÞ¼ σn̂þ iDm̂¼ σð0;0;1Þþ iDð1;0;0Þ (30)

or

px ¼ iD; pz ¼ σ: (31)

After the complex slowness vector p is determined, the complex
amplitudes are defined according to the eigenvectors of the corre-
sponding wave types (equations 16 and 18).
The solid particle displacement of waves can be written for the S-

wave as

u ¼ Aðpz; 0;−pxÞ exp½iωðp · r − tÞ� (32)

and for the P1- or P2-waves as

u ¼ Aðpx; 0; pzÞ exp½iωðp · r − tÞ�: (33)

As mentioned in the “Introduction” section, the two most com-
monly defined dissipation factors are Q−1

V (e.g., Carcione, 2014)
and Q−1

T (e.g., Buchen, 1971), which using equations 25, 26, 27,
and 28 can be written as

Q−1
V ¼ hDTi þ hDVi

2hVi ¼ ImðTcÞ − ImðVcÞ
ReðVcÞ ; (34)

Q−1
T ¼ hDTi þ hDVi

hTi þ hVi ¼ 2 ImðTcÞ − 2 ImðVcÞ
ReðTcÞ þ ReðVcÞ : (35)

Comparing equation 34 with 35 indicates that the difference be-
tweenQ−1

V andQ−1
T depends on the difference between hVi and hTi.

If the difference tends to zero, then Q−1
V tends to equal Q−1

T .
The complex strain and kinetic energy densities Vc and Tc of the

S-, P1-, and P2-waves, denoted as Vc
1;2;3 and Tc

1;2;3, are derived in
Appendices B and C for S- and P-waves, respectively. Then, the
dissipation factors are obtained for each of the three Biot waves
under the definitions of Q−1

V and Q−1
T .

Substituting Vc
1 (equation B-5) and Tc

1 (equation B-8) into equa-
tions 34 and 35 produces the explicit form of the dissipation factors
of inhomogeneous S-waves Q−1

SV and Q−1
ST under the definitions

Q−1
V and Q−1

T , respectively:

Q−1
SV¼

jξj2Imð~ρÞðjp2þD2jþD2Þ−ð4D2jp2þD2jþjp2þ2D2j2ÞImðGÞ
ð4D2jp2þD2jþjp2þ2D2j2ÞReðGÞ :

(36)

The Q−1
SV of a homogeneous wave, that is, Q−1

SVH is obtained as

Q−1
SVH ¼ Q−1

SVðD ¼ 0Þ ¼ jξj2Imð~ρÞ − jσ2HjImðGÞ
jp2jReðGÞ : (37)

Liu et al. (2020) mathematically define the dissipation factors at
the infinite degree of wave inhomogeneity as the limiting dissipa-
tion factors Q−1ðD ¼ ∞Þ. The limiting dissipation factor of the
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SV-waves under the definition of Q−1
V is obtained by setting

D ¼ ∞ in equation 36:

Q−1
SVðD ¼ ∞Þ ¼ −ImðGÞ∕ReðGÞ: (38)

The Q−1
ST is given as

Q−1
ST ¼

2jξj2Imð ~ρÞðjp2þD2jþD2Þ−2ð4D2jp2þD2jþjp2þ2D2j2ÞImðGÞ
IQD

IQD¼½ρþρf2ReðξÞþjξj2Reð ~ρÞ�ðjp2þD2jþD2Þ
þð4D2jp2þD2jþjp2þ2D2j2ÞReðGÞ

9>>=
>>;;

(39)

The Q−1
ST of a homogeneous wave, that is, Q−1

STH is obtained as

Q−1
STH ¼ Q−1

STðD ¼ 0Þ

¼ 2
jξj2Imð~ρÞ − ðjp2jÞImðGÞ

ρþ ρf2ReðξÞ þ jξj2Reð~ρÞ þ ðjp2jÞReðGÞ : (40)

In a manner similar to equation 38, we have the limiting dissi-
pation factor of the SV-waves under the definition of Q−1

T :

Q−1
STðD ¼ ∞Þ ¼ −2ImðGÞ∕ReðGÞ: (41)

Substituting Vc
2;3 (equation C-5) and Tc

2;3 (equation C-7) into
equations 34 and 35 produces the explicit form of the dissipation
factors for P1-wavesQ−1

P1V and P2-wavesQ−1
P2V under the definitions

Q−1
V ; and P1-waves Q−1

P1T and P2-waves Q−1
P2T under the definitions

Q−1
T :

Q−1
P1V;P2V ¼ ðjp2 þD2j þD2Þjξj2Im~ρ − VIP1;P2

VRP1;P2
; (42)

where

VIP1;P2 ¼ 4D2jp2þD2jImðGÞþ ½D4þjp2þD2j2�ImðHÞ
−2D2½Reðp2ÞþD2�ImðλÞþ2ReðξÞjp2j2ImðCÞþ jξp2j2ImðMÞ;

(43)

VRP1;P2 ¼ 4D2jp2þD2jReðGÞþ ½D4þjp2þD2j2�ReðHÞ
−2D2½Reðp2ÞþD2�ReðλÞþ2ReðξÞjp2j2ReðCÞþ jξp2j2ReðMÞ:

(44)

Note that the subscripts P1, P2 mean that (p, ξ) should be
replaced with (pð2Þ, ξð2Þ) and (pð3Þ, ξð3Þ), respectively.
The Q−1

P1V;P2V of a homogeneous wave, that is, Q−1
P1VH;P2VH , is

obtained as

Q−1
P1VH;P2VH ¼Q−1

P1V;P2VðD¼ 0Þ

¼ jξj2Im~ρ− jp2j½ImðHÞþ2ReðξÞImðCÞþ jξj2ImðMÞ�
jp2j½ReðHÞþ2ReðξÞReðCÞþ jξj2ReðMÞ� :

(45)

In a manner similar to equation 38, the limiting dissipation factors
of the P1- and P2-waves under the definition of Q−1

V are given as

Q−1
P1V;P2VðD ¼ ∞Þ ¼ −ImðGÞ∕ReðGÞ: (46)

The Q−1
P1T and Q−1

P2T are given as

Q−1
P1T;P2T ¼2

ðjp2þD2jþD2Þjξj2Imð ~ρÞ−VIP1;P2
ðjp2þD2jþD2Þ½ρþ2ρfReðξÞþjξj2Reð ~ρÞ�þVRP1;P2

:

(47)

The Q−1
P1T;P2T of homogeneous waves, that is, Q−1

P1TH;P2TH, are
obtained as

Q−1
P1TH;P2TH

¼2
jξj2Im~ρ− jp2j½ImðHÞþ2ReðξÞImðCÞþjξj2ImðMÞ�

½ρþ2ρfReðξÞþjξj2Reð~ρÞ�þjp2j½ReðHÞþ2ReðξÞReðCÞþjξj2ReðMÞ� :

(48)

In a manner similar to equation 41, the limiting dissipation factors
of the P1- and P2-waves under the definition of Q−1

T are given as

Q−1
P1T;P2TðD ¼ ∞Þ ¼ −2 ImðGÞ∕ReðGÞ: (49)

Note that, for the P1-waves, p will be replaced with pð2Þ and ξ
will be replaced with ξð2Þ, and, for the P2-waves, p will be replaced
with pð3Þ and ξ will be replaced with ξð3Þ.
With equations 38, 41, 46, and 49, we find for all three Biot

waves that their limiting dissipation factors only depend on the
complex shear modulus G of the solid frame and are equal to
−ImðGÞ∕ReðGÞ and −2 ImðGÞ∕ReðGÞ for the definitions of Q−1

V

and Q−1
T , respectively.

REDUCED FORM OF EXPRESSION FOR THE
DISSIPATION FACTORS IN A VISCOELASTIC

MATERIAL

In this section, the Q−1 formulas in the previous section will be
reduced to the dissipation factors in viscoelastic materials, denoted
as Q̆−1 with an over arc on the symbol Q−1. The homogeneous for-
mulas of Q̆−1 should be the same as the well-known formulas of
viscoelastic materials, which thus provide a validation of the cor-
rectness of the Q−1 formulas we derive for effective Biot materials.
The fluid bulk modulus Kf (equation 2) is set as zero, which

leads to

M → 0: (50)
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Then, the viscosity of the fluid is set as infinity η → ∞, which
leads to

~ρ → ∞; ξ → 0: (51)

With the viscoelastic assumptions (i.e., equations 50 and 51) and
ignoring the energy related to fluid flux w, the wave equation 1 is
reduced to its viscoelastic wave version:

½ðH̆ − GÞ∇∇þ ðG∇2 þ ω2ρÞI� · u ¼ 0: (52)

It is well known that the corresponding slownesses for the S- and
P-waves are given as

p̆ð1Þ ¼
ffiffiffiffiffiffiffiffiffi
ρ∕G

p
; p̆ð2Þ ¼

ffiffiffiffiffiffiffiffiffi
ρ∕H̆

q
; H̆ ¼ Kd þ 4G∕3: (53)

Here, the top arc “·̆” again represents the quantities for viscoelastic
(as opposed to effective Biot) materials.
Using equations 17 and 19 with η → ∞, we easily can derive

jξj2Imð~ρÞ → 0: (54)

With the assumptions (equations 50, 51, and 54), the Q̆−1 formu-
las for viscoelastic materials are easily obtained from the corre-
sponding Q−1 formulas of the effective Biot materials.
The terms Q̆−1

SV and Q̆−1
SVH are obtained from equations 36 and 37,

respectively:

Q̆−1
SV ¼ Q̆−1

SVH ¼ −ImðGÞ∕ReðGÞ: (55)

It is noteworthy that Q̆−1
SV is equal to the corresponding limiting dis-

sipation factor discussed previously. Therefore, Q̆−1
SV is independent

of the degree of SV-waves inhomogeneity (i.e., D) for viscoelastic
materials.
From equations 39 and 40, Q̆−1

ST and Q̆−1
STH are obtained as

Q̆−1
ST ¼

−2ð4D2jp2þD2jþ jp2þ2D2j2ÞImðGÞ
fρðjp2þD2jþD2Þþð4D2jp2þD2jþ jp2þ2D2j2ÞReðGÞg

(56)

and

Q̆−1
STH ¼ −2jp2jImðGÞ∕fρþ jp2jReðGÞg: (57)

By equation 56, it is easy to find that, unlike the case of Q̆−1
SV, quantity

Q̆−1
ST is dependent on the degree of the SV-wave inhomogeneity. Equa-

tions 56 and 57 are exactly same as equations 39 and 40, respectively,
of Liu et al. (2020), although they are derived independently.
Based on equations 43 and 44, VIP and VRP are defined as

VIP1ðξ ¼ 0Þ and VRP1ðξ ¼ 0Þ, respectively, that is

VIP ¼ 4D2jp2 þD2jImðGÞ þ ½D4 þ jp2 þD2j2�ImðH̆Þ
− 2D2½Reðp2Þ þD2�ImðλÞ; (58)

VRP ¼ 4D2jp2 þD2jReðGÞ þ ½D4 þ jp2 þD2j2�ReðH̆Þ
− 2D2½Reðp2Þ þD2�ReðλÞ: (59)

The terms Q̆−1
PV and Q̆−1

PVH are obtained from equations 42 and 45,
respectively, as

Q̆−1
PV ¼ −VIP∕VRP; (60)

Q̆−1
PVH ¼ −ImðH̆Þ∕ReðH̆Þ: (61)

Equations 60 and 61 are equivalent to equations 30 and 32,
respectively, of Liu et al. (2020), although they are derived
independently.
Then, in a similar manner using equations 47 and 48, we obtain

Q̆−1
PT ¼ −2VIP∕fðjp2 þD2j þD2Þ½ρ� þ VRPg; (62)

Q̆−1
PTH ¼ −2jp2jImðH̆Þ∕fρþ jp2jReðH̆Þg: (63)

Equations 62 and 63 are exactly the same as equations 31 and 33,
respectively, of Liu et al. (2020), although once again they are
derived independently.
It is important to note that equations 38, 41, 46, and 49 of the

limiting dissipation factors Q−1ðD ¼ ∞Þ of the poroviscoelastic
materials hold true for their viscoelastic counterparts considered
as a special case. The dissipation factors Q̆−1

SVH and Q̆−1
PVH in equa-

tions 55 and 61 are well known for viscoelastic materials under the
definition of Q−1

V . The dissipation factors Q̆−1
STH and Q̆−1

PTH in equa-
tions 57 and 63 easily can be proven to be equal to 2 ImðσPÞ∕ReðσPÞ
and satisfy the well-known value 2αv∕ω (see section 1 and Appen-
dix B of Liu et al., 2020). The fact that the reduced expressions (to
viscoelastic formulas) of the Q̆−1 values from the poroviscoelastic
formulas in this research are exactly the same as those directly
derived from the viscoelastic formulas in Liu et al. (2020) strongly
supports the correctness of the Q−1 expressions developed in
this paper.

NUMERICAL EXAMPLES

The example material that we use in this section for numerical
computations is a homogeneous water-filled effective Biot medium
that is very similar to sample material A in Liu et al. (2018). In this
material, the relaxed bulk modulus and the shear modulus are fre-
quency dependent. A single fractional Zener element (i.e., the Cole-
Cole model) can satisfactorily represent the frequency dependence
for this material. For the sake of completeness, the material proper-
ties are listed in Table 1, along with the parameters of the Cole-Cole
model — τσ ,τε,α — which represent the relaxation times of stress
and strain and the fractional derivative order of the fractional Zener
element (see equation 3 for LZ = 1). The superscripts of the Cole-
Cole model parameters G and Kd in Table 1 refer to the frequency-
dependent shear modulus GðωÞ and the frequency-dependent bulk
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modulus KdðωÞ. The relaxed velocities of this material are
VP0 ¼ 3072 ðm∕sÞ, VS0 ¼ 1606 ðm∕sÞ for the P1- and S-waves,
respectively.
To calculate Q−1 with our stipulated approach, the degree of

wave inhomogeneity D must be assigned. Here, D has the units
of slowness. Theoretically speaking, the range of D is (−∞,
þ∞). For the effective Biot materials, we suggest using a normal-
ized version of D whereby it is divided by the unrelaxed slowness
(inverse phase velocity vphy at ω = ∞):

D ¼ D̂Reðσ½ω ¼ ∞�Þ ¼ D̂∕vphyðω ¼ ∞Þ: (64)

The reason to choose the unrelaxed slowness rather than the relaxed
slowness to normalize D is that the phase velocity vphy of the P2-
waves tends to zero at ω ¼ 0 and may cause instabilities (see
equation 64).
Figure 1 shows the dispersion curves and dissipation factors of

homogeneous S- and P1-waves in the effective Biot material and the
classic Biot material given in Table 1. There are two energy dissi-
pation mechanisms, the inner flow model and the Biot global model
in the effective Biot theory. With the upscaled poroviscoelastic
model (Liu et al., 2018) from the effective Biot model (Pride et al.,
2004) the S-waves and P1-waves show very strongly dispersive
phase velocities (and high dissipation factors) from the seismic fre-
quency band up to the ultrasonic frequency range, as observed in
subsurface reservoir studies. The classic Biot model (Biot, 1956a,

1956b, 1962a, 1962b) has only one (i.e., Biot global) energy dis-
sipation mechanism, which shows its dissipation peak around a fre-
quency of 1.0 E + 6 Hz, that is, the Biot relaxation frequency that
separates the viscous-force-dominated flow from the inertial-force-
dominated flow (Biot, 1962a, 1962b; Pride et al., 2004). Figure 1
shows that effective Biot theory can correctly describe the high-
level dissipation observed in natural reservoirs. That is the reason
we choose it in our research.
Figure 1a shows the S-wave phase velocities veBS and vcBS for an

effective Biot material (denoted with superscript eB) and a classic
Biot material (denoted with superscript cB). Figure 1b shows the
P1-wave phase velocities veBP1 and vcBP1 . Compared with the veBP1
curve, the dispersion curve vcBP1 of the classic Biot theory has min-
imal frequency dependence.
In Figure 1c, the solid line 1∕QeB

SV;T shows the S-wave dissipation
factors 1∕QeB

SV and 1∕QeB
ST under the definition of Q−1

V and Q−1
T , re-

spectively. For the effective Biot material and the homogeneous
waves, they are almost identical. The “dashed” line 1∕QcB

SV;T shows
the attenuation curves 1∕QcB

SV and 1∕QcB
ST for the classic Biot

material, and the homogeneous waves having negligible difference.
The 1∕QeB of the effective Biot model clearly has two dissipation
peaks, the very broad one corresponding to the inner flow mecha-
nism that is superposed with the high-frequency one denoted with a
“*” sign corresponding to the Biot global flow mechanism (Biot,
1956a, 1956b, 1962a, 1962b). For the sake of convenience, the
two peaks are called the inner flow peak and the Biot flow peak,

Table 1. Material properties of the sample rocks and fluids.

Parameter Water

Grains and fluid

Kf (Nm−2) 2.3E + 9

ρf (kgm−3) 1000

ηf (Nm−2) 0.001

Parameter Grains

Kg (Nm−2) 3.9E + 10

ρg (kgm−3) 2650

Solid frame

Parameter Material

Kd (Nm−2) 7.8Eþ 9 (ω ¼ 0)

G (Nm−2) 5.94Eþ 9 (ω ¼ 0)

ϕ 0.21

κ (m2) 1.03 E-14

T T ¼ 0.5ð1þ 1∕ϕÞ

Cole-Cole model parameters for material

Shear modulus

τGσ (s) 2π × 4.08E-5

τGε (s) 2π × 5.19E-5

αG 0.527

Bulk modulus

τKdσ (s) 2π × 2.68E-5

τKdε (s) 2π × 1.90E-4

αKd 0.505

T216 Liu et al.

D
ow

nl
oa

de
d 

05
/2

2/
20

 to
 3

7.
12

5.
78

.0
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



respectively, in this paper. Please note that 1∕QcB of the classic Biot
model exhibits only the Biot flow dissipation peak. Figure 1d shows
the P1-wave dissipation factors 1∕QeB

P1V and 1∕QeB
P1T denoted by the

solid line 1∕QeB
P1V;T and 1∕QcB

P1V and 1∕QcB
P1T denoted by the dashed

line 1∕QcB
P1V;T in a manner similar to Figure 1c. But the Biot global

dissipation peaks in the four curves are very tiny (concentrated
around the frequency axis and denoted with the “*” sign).
Figure 2 shows the phase velocity dispersion curves and dissipa-

tion factors of the homogeneous P2-waves in the effective Biot
material and the classic Biot material given in Table 1. Figure 2a
shows the P2-wave phase velocities veBP2 and vcBP2 for the effective
Biot material (denoted with superscript eB) and the classic Biot
material (denoted with superscript cB); Figure 2b shows the corre-
sponding P2-wave dissipation factors of 1∕QeB

P2T and 1∕QcB
P2T under

the definition of Q−1
T as well as 1∕QeB

P2V and 1∕QcB
P2V under the def-

inition Q−1
V with their ordinate values given on the right side. Fig-

ure 2a shows that the effective Biot P2-wave phase velocity has
dispersion features very similar to its classic Biot counterpart.
The inner flow dissipation mechanism does not cause much differ-
ence on the P2-waves, especially for low frequencies, that is, less
than the Biot relaxation frequency. This fact is well-represented by
the dissipation factor curves 1∕QeB

P2T and 1∕QcB
P2T under the defini-

tion of Q−1
T (see the solid line and the “dotted” line). However, the

curves 1∕QeB
P2V and 1∕QcB

P2V under the definitionQ−1
V show apparently

inadmissible results. The 1∕QcB
P2V curve for the classic Biot material

has extremely high values (≫ 500) in the low-frequency range,
whereas 1∕QeB

P2V even has negative values (see their y-axis on the right
side of the figure). The physical meaning behind this observation is
that a P2-wave is more like a diffusive mode at low frequency in
which the real part of the complex modulus Re(Z) tends to be zero
and the imaginary and real parts of the of the complex velocity are of
comparable size (Berryman and Wang, 2000). Thus, as we have
stated, Berryman and Wang (2000) use the definition Q−1¼2αv∕ω
in all cases, by which the Q−1 of a P2-wave is calculated to be near 2
(for the low frequency, similar to our Q−1

T values). For a better under-
standing of this phenomenon, we investigate the dissipation factors
of homogeneous diffusive waves in Appendix D. It is worth mention-
ing again that the definitionQ−1 ¼ 2αv∕ω is strictly only valid under
the assumption of homogeneous waves.
Figure 3 is a partial enlargement of Figure 2 in the frequency range

from 1.75E5 to 1.0E7 Hz. From this figure, we find that, as the fre-
quency exceeds the Biot relaxation frequency, for the homogeneous
S-waves and the P1-waves, the dissipation factor curves under the
definition of Q−1

T and Q−1
V have a negligible difference for either

an effective Biot material or a classic material. In the high-frequency
range, the P2 wave gradually transforms from a diffusive wave to a
propagative wave. In a subsequent section, we will investigate how
the degree of the inhomogeneity of the wave affects Q−1

P2 .
Figure 4 shows the dispersion curves and dissipation factors

of inhomogeneous S-waves in the effective Biot material given
in Table 1. Phase velocities (Figure 4a) increase with increasing fre-
quency and decrease with increasing inhomogeneity parameter D,
as expected. Similar to what is observed in Figure 1c, the dissipation

Figure 2. Dispersion curves and dissipation factors of P2-homo-
geneous waves for the effective Biot material and classic Biot
material given in Table 1: (a) P2-wave phase velocities, veBP2 and
vcBP2 , for effective Biot material (denoted with superscript eB) and
classic Biot material (denoted with superscript cB) and (b) P2-wave
dissipation factors of 1∕QeB

P2T and 1∕QcB
P2T under the definition of

Q−1
T ; 1∕QeB

P2V and 1∕QcB
P2V under the definition Q−1

V with the
right-side y-axis.

Figure 1. Dispersion curves and dissipation factors of homogeneous
waves for the effective Biot material and classic Biot material given in
Table 1: (a) S-wave phase velocities veBS and vcBS for effective Biot
material (denoted with superscript eB) and classic Biot material (de-
noted with superscript cB), respectively; (b) P1-wave phase velocities
veBP1 and vcBP1 ; (c) S-wave dissipation factors of 1∕QeB

SV and 1∕QeB
ST

under the definition of Q−1
V and Q−1

T , respectively, for effective Biot
material are identical and denoted by 1∕QeB

SV;T, 1∕QcB
SV , and 1∕QcB

ST
classic Biot material are identical and denoted by 1∕QcB

SV;T ; (d) in a
manner similar to (c), P1-wave dissipation factors 1∕QeB

P1V and
1∕QeB

P1T are denoted by 1∕QeB
P1V;T, and 1∕QcB

P1V and 1∕QcB
P1T are de-

noted by 1∕QcB
P1V;T. The “star” symbols in (c and d) indicate the

frequencies of Biot dissipation peaks. Note that in (c and d) the
two curves for Q−1

V and Q−1
T are identical in each case of a classic

and an effective Biot material.
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factor diagrams under the definition of Q−1
T ( Figure 4b), Q−1

ST ,
shows two dissipation peaks (corresponding to the inner flow
and Biot flow mechanisms) for smaller values of D. But it is inter-
esting to see that, with increasing D, the two dissipation peaks have

opposite trends, the contribution to Q−1
ST by the Biot flow decreases

(see the smaller peak denoted with Biot flow) whereas the contri-
bution to Q−1

ST from the inner flow mechanisms increases (see the
very broad and larger peak denoted with inner flow). This phenome-
non can be explained easily by our limiting dissipation factor
expression Q−1

STðD ¼ ∞Þ ¼ −2 ImðGÞ∕ReðGÞ (see equation 41).
For the homogeneous SV-waves (D ¼ 0), the Q−1

ST dispersion
contributed by inner flow (so denoted) tends to the dispersion of the
shear modulus, that is, −ImðGÞ∕ReðGÞ (see equations 16 and 40).
With increasing D, Q−1

ST tends to go up to its limiting dissipation
factor −2 ImðGÞ∕ReðGÞ. But, in the frequency range of the Biot-
flow dissipation peak, the value of −2 ImðGÞ∕ReðGÞ is below the
homogeneous Q−1

ST because of superposition of the contribution
from Biot flow. Therefore, the Biot-flow peak tends to disappear
with increasing D. In summary, the dissipation factors of S-waves
tend to monotonically change from their homogeneous dissipation
factor values towards their limiting dissipation factor values.
Figure 5 presents a comparison between Q−1

V and Q−1
T of

S-waves, denoted as Q−1
SV and Q−1

ST , at different values of the
inhomogeneity parameter D. Although Q−1

ST of the inner flow peak
increases with increasing D, its Q−1

SV counterpart is almost indepen-
dent of D (see the circle sign as the peak point). This can be ex-
plained from equation 36. At a frequency around the inner flow
peak, the Imð~ρÞ term has a very small value and equation 36 tends
to equal its homogeneous wave version, that is, equation 55 that is
already the limiting dissipation factor Q−1

SVðD ¼ ∞Þ and is totally
independent of D. But Q−1

ST trends up to its limiting dissipation fac-
tor that is double the current value of Q−1

SV with increasing D. Thus,
difference between Q−1

SV and Q−1
ST significantly increases with

Figure 3. Partial enlargement of Figure 2 in the frequency range
from 1.75 × 105 to 1.0 × 107 Hz.

Figure 4. Dispersion curves and dissipation factors of inhomo-
geneous S-waves for effective Biot material given in Table 1.
(a) Phase velocities and (b) dissipation factors under the definition
of Q−1

T are given at different D values. The two dissipation peaks
correspond to the inner flow and Biot flow dissipation mechanisms.
The star * signs (the lower plot) indicate the Biot flow dissipation
peak.

Figure 5. Comparison between Q−1
V and Q−1

T of S-waves for the
effective Biot material given in Table 1 at different D values:
(a) D ¼ 0.15∕VSu, (b) D ¼ 0.3∕VSu, (c) D ¼ 0.5∕VSu, and
(d) D ¼ 1.0∕VSu. The “circle” symbol indicates an almost-constant
Q−1

SV peak of 0.028 at frequency of 3512 Hz. The “star” symbol
indicates the frequencies of Biot global flow dissipation peaks.
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increasing D. We can draw the same conclusions as we did for
Figure 4.
In Figure 6, we show the dispersion curves and dissipation factors

of inhomogeneous P1-waves in the effective Biot material given in
Table 1. Phase velocities (Figure 6a) increase with increasing fre-
quency and decrease with increasing inhomogeneity parameter D,
as expected. The dissipation factor plots (Figure 6b) under the def-
inition ofQ−1

T , that is,Q−1
P1T , decrease with increasingD. This seems

contradictory to Borcherdt and Wennerberg (1985) and also is re-
ported by Liu et al. (2020) for viscoelastic materials. This phenome-
non can also be easily explained by our limiting dissipation factor
Q−1

P1TðD ¼ ∞Þ ¼ −2ImðGÞ∕ReðGÞ (equation 49). The homo-
geneous P1-waves in the sample material are roughly three times
more dissipative than the homogeneous S-waves (see Figure 1c
and 1d). With increasing D, Q−1

P1T tends to go down to its limiting
dissipation factor −2 ImðGÞ∕ReðGÞ or is twice as dissipative as the
homogeneous S-waves.
Figure 7 shows the comparison between Q−1

V and Q−1
T for P1-

waves, denoted as Q−1
P1V and Q−1

P1T , respectively, for different values
of the wave inhomogeneity parameter D. The terms Q−1

P1V and Q−1
P1T

decrease with increasingD as depicted in Figure 6. The Biot peak of
the P1-wave is very small in this example. But the difference be-
tween Q−1

P1V and Q−1
P1T becomes significant with increasing D (see

Figure 7c and 7d) for strongly dissipative media (see the difference
around the dissipation factor peak). The reason is thatQ−1

P1V tends to
go down to its limiting dissipation factor −ImðGÞ∕ReðGÞ (equa-
tion 46) whereas Q−1

P1T tends to −2ImðGÞ∕ReðGÞ (equation 49).
In summary, the dissipation factors of P1-waves tend to change
from their homogeneous wave dissipation factor values and finally
satisfy their limiting dissipation factor values.

The dispersion curves and dissipation factors of inhomogeneous
P2-waves are depicted in Figure 8 for the effective Biot material
given in the Table 1. Phase velocities (Figure 8a) increase with in-
creasing frequency and decrease with increasing values of the wave

Figure 6. Dispersion curves and dissipation factors of inhomo-
geneous P1-waves for the effective Biot material given in Table 1.
(a) The phase velocities and (b) dissipation factors under the def-
inition of Q−1

T are given at different D values.

Figure 7. Comparison between Q−1
V and Q−1

T of P1-waves for the
effective Biot material given in Table 1 at different D values:
(a) D ¼ 0.15∕VP1u, (b) D ¼ 0.3∕VP1u, (c) D ¼ 0.5∕VP1u, and
(d) D ¼ 1.0∕VP1u.

Figure 8. Dispersion curves and dissipation factors of inhomo-
geneous P2-waves for the effective Biot material given in the Ta-
ble 1. (a) The phase velocities and (b) dissipation factors under the
definition of Q−1

T are given at different D values.
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inhomogeneity parameter D, as expected. The dissipation factor di-
agrams (Figure 8b) under the definition of Q−1

T change very slowly
with increasing D. By contrast, Q−1

P2T remains at or slightly above
the value 2 for the frequency range up to about 10E5 Hz. This high
dissipation factor means the P2-wave cannot be a propagative wave
(Berryman and Wang, 2000).
Figure 9 shows the comparison between Q−1

V and Q−1
T for the P2-

waves, denoted asQ−1
P2V andQ−1

P2T , at different inhomogeneity param-
eterD values. We find that even at small values of inhomogeneity, for
example, D ¼0.15/778 (s/m) in Figure 9a, the inadmissible case for
Q−1

P2V is avoided, unlike in Figure 2b. Similar to Figure 8b, Q−1
P2V and

Q−1
P2T change very slowly with increasing D. However, the Q−1

P2V and
Q−1

P2T curves seem to be disconnected with their limiting dissipation
factors (dependent on the complex shear modulus). This question will
be investigated in calculations which will be shown in the following
section for Figure 10.
Figure 10 presents a comparison of Q−1

P2V and Q−1
P2T at large D val-

ues of [1.0 E + 1 to 1.0 E + 5]/778 (s/m). Figure 10a shows the dia-
grams for D ¼ 10/778. There is a relatively narrow dissipation peak
(Biot flow-type peak) for each of the two dissipation curves at
frequencies slightly higher than 1.0 E + 4 Hz. Actually the peak also
occurs in theQ−1

P2V curve in Figure 9d at the Biot flow peak frequency
range of the homogeneous wave. The physical mechanism creating
this dissipation peak is not at all clear. However, in Figure 10b–10f,
with D increasing, this narrow dissipation peak shifts to lower fre-
quency values and gradually disappears whereas the dissipation
peaks of the limiting dissipation factors of Q−1

P2V and Q−1
P2T gradually

become more pronounced. In Figure 10f, we find that Q−1
P2T is

roughly two times larger than Q−1
P2V over the full frequency range,

satisfying the limiting dissipation factors equations 46 and 49. Some-

what surprisingly, the limiting dissipation factors only depend on the
complex shear modulus for all three Biot waves.

CONCLUSION

In this study, explicit expressions for the dissipation factors Q−1

of inhomogeneous S-waves, P1-waves, and P2-waves are derived in
isotropic poroviscoelastic media under the two differing definitions
of Q−1

V and Q−1
T . These Q−1 expressions are given as concise and

simple functions of the material parameters and the wave inhomo-
geneity parameter D. The explicit functions provide a direct way to
investigate the dependency of these dissipation factors on the degree
of wave inhomogeneity. We find that the limiting dissipation factors
only depend on the ratio of the imaginary part to the real part of the
shear modulus, −ImðGÞ∕ReðGÞ, for all three Biot waves: SV, fast P,
and slow P. These results are used successfully to explain and de-
scribe how these dissipation factors depend on the wave inhomo-
geneity D.
We reduce our explicit Q−1 formulas from the poroviscoelastic

model to the viscoelastic model as a special case. These reduced
viscoelastic formulas are the same as their counterparts of previ-
ously published results, although they are derived independently
and provide an extra check on the correctness of our results.
The limiting dissipation factors are defined as Q−1ðD ¼ ∞Þ for

which the condition D ¼ ∞ means the corresponding phase veloc-
ities are zero according to equations 8 and 9. It is difficult to imagine
these “propagative waves” exist in a physical sense. But, the Biot
flow type peaks occurring in Figure 10 and that shift toward lower
frequency with increasing D must have some physical explanation.
We leave this question for further investigation.

Figure 9. Comparison between Q−1
V and Q−1

T of P2-waves in the
effective Biot material given in Table 1 at different D values:
(a) D ¼ 0.15∕VP2u, (b) D ¼ 0.3∕VP2u, (c) D ¼ 0.5∕VP2u, and
(d)D ¼ 1.0∕VP2u.

Figure 10. Comparison between Q−1
V and Q−1

T of P2-waves in the
effective Biot material given in Table 1 at different D values:
(a) D ¼ 10∕VP2u, (b) D ¼ 100∕VP2u, (c) D ¼ 1000∕VP2u, (d) D ¼
104∕VP2u, (e) D ¼ 2.0 × 104∕VP2u, and (f) D ¼ 105∕VP2u.
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APPENDIX A

ELASTICITY MATRIX AND GENERALIZED DEN-
SITY MATRIX FOR ISOTROPIC POROUS MEDIA

For an inhomogeneous wave propagating in the x-z plane, the
extended strain vector is written as

e ¼ ðe1; 0; e3; 0; e5; 0;−ζÞT: (A-1)

Based on the elasticity matrix of the undrained porous medium in
Carcione (2014), we write the elasticity matrix P for the isotropic
poroviscoelastic media in terms of the Biot elastic moduli as

P¼

0
BBBBBBBBB@

H λ λ 0 0 0 C
λ H λ 0 0 0 C
λ λ H 0 0 0 C
0 0 0 G 0 0 0

0 0 0 0 G 0 0

0 0 0 0 0 G 0

C C C 0 0 0 M

1
CCCCCCCCCA
;

8>><
>>:
H¼Ksatþ4G∕3
Ksat ¼Kdþα2M
C¼ αM
λ¼H−2G

:

(A-2)

The general density matrix R and extended stress matrix
P

(with
entries of averaged stress sij i; j ¼ 1;2; 3 and pore pressure pf)
(Carcione, 2014) are written as

R¼

0
BBBBBB@

ρ 0 0 ρf 0 0

0 ρ 0 0 ρf 0

0 0 ρ 0 0 ρf
ρf 0 0 ~ρðωÞ0 0

0 ρf 0 0 ~ρðωÞ 0
0 0 ρf 0 0 ~ρðωÞ

1
CCCCCCA
;
X

¼−
1

2

0
BBBBBB@

s11 s12 s13
s12 s22 s23
s13 s23 s33
−pf 0 0

0 pf 0

0 0 pf

1
CCCCCCA

T

:

(A-3)

The complex strain energy density Vc (or eT · P · e� in
equations 25 or 27) can be written as

Vc ¼ eT · P · e� ¼
e1½He�1 þ λe�3 þCðdivwÞ�� þ e3½λe�1 þHe�3 þCðdivwÞ�� þ e5Ge�5
þ ðdivwÞ½Ce�1 þCe�3 þMðdivwÞ��: (A-4)

The complex kinetic energy density Tc (or vT� · R · v in equa-
tions 26 or 28) can be written as

Tc ¼ vT� · R · v ¼

ω2

�
ρu�1u1 þ ρfu�1w1 þ ρu�3u3 þ ρfu�3w3

þρfw�
1u1 þ ~ρðωÞw�

1w1 þ ρfw�
3u3 þ ~ρðωÞw�

3w3

�
:

(A-5)

APPENDIX B

STRAIN AND KINETIC ENERGY DENSITIES OF
THE S-WAVE

The complex amplitude vector of S-waves is orthogonal to the
complex slowness (see equation 16). Using equations 31 and 32, the
solid particle displacement components of S-waves are rewritten as

u1 ¼ σAexp½−ωðDxþ ImðσÞzÞ�exp½iωðReðσÞz− tÞ�
u3 ¼−iDA exp½−ωðDxþ ImðσÞzÞ�exp½iωðReðσÞz− tÞ�:

(B-1)

S-wave strain energy density

The components of strain array e for the S-wave are obtained
from the equations 23 and 24:

e1 ¼ ∂1u1 ¼−ωDσA exp½−ωðDxþ ImðσÞzÞ�exp½iωðReðσÞz− tÞ�
e3 ¼ ∂3u3 ¼ωDσA exp½−ωðDxþ ImðσÞzÞ�exp½iωðReðσÞz− tÞ�
e5 ¼ ∂1u3þ∂3u1 ¼ iωðD2þσ2ÞA exp½−ωðDxþ ImðσÞzÞ�exp½iωðReðσÞz− tÞ�
∇ ·w¼ 0

:

(B-2)

To avoid redundancy, the quadratic terms in equation A-4 are
written in the form of a matrix defined as EMES:

EMES ¼

2
664
e1He�1 e1λe�3 e1Cð∇ · wÞ�
e3λe�1 e3He�3 e3Cð∇ · wÞ�
e5Ge�5 0 0

ð∇ · wÞCe�1 ð∇ · wÞCe�3 ð∇ · wÞMð∇ · wÞ�

3
775:

(B-3)
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Substituting equation B-2 into equation B-3, we have

EMES ¼ ω2jAj2

2
6664
D2jp2 þD2jH −D2jp2 þD2jλ 0

−D2jp2 þD2jλ D2jp2 þD2jH 0

jp2 þ 2D2j2G 0 0

0 0 0

3
7775

× exp½−2ωðDxþ ImðσÞzÞ�: (B-4)

Noting H ¼ λþ 2G (see equation A-2), the complex strain en-
ergy density of S-wave Vc

S is written as

Vc
1¼

X
i;j

EMESij¼

ω2jAj2ð4D2jp2þD2jþjp2þ2D2j2ÞGexp½−2ωðDxþσIzÞ�:
(B-5)

S-wave kinetic energy density

In a manner similar to EMES, the quadratic terms in equation A-5
are written in the matrix defined as VRVS:

VRVS ¼

2
664

u�1ρu1 u�1ρfw1

u�3ρu3 u�3ρfw3

w�
1ρfu1 w�

1 ~ρðωÞw1

w�
3ρfu3 w�

3 ~ρðωÞw3

3
775: (B-6)

Substituting equations B-1 and 29 into equation B-6, we have

VRVS ¼ ω2jAj2

2
66664
ρjp2 þD2j ρfjp2 þD2jξ
ρD2 ρfD2ξ

ρfjp2 þD2jξ� jξj2jp2 þD2j ~ρðωÞ
ρfD2ξ� jξj2D2 ~ρðωÞ

3
77775

× exp½−2ωðDxþ ImðσÞzÞ�: (B-7)

Then, the complex kinetic energy density of S-wave Tc
S is written

as

Tc
1 ¼

X
i;j

VRVSij ¼

ω2jAj2½ρþ ρf2ReðξÞ þ jξj2 ~ρðωÞ�ðjp2 þD2j þD2Þ
× exp½−2ωðDxþ ImðσÞzÞ�: (B-8)

APPENDIX C

STRAIN AND KINETIC ENERGY DENSITIES OF
P-WAVES

The complex amplitude vector of P-waves is parallel to the com-
plex slowness (see equation 18). Using equations 31 and 33, the
solid particle displacement components are rewritten as

u1 ¼ iAD exp½−ωðDxþ ImðσÞzÞ� exp½iωðReðσÞz − tÞ�
u3 ¼ Aσ exp½−ωðDxþ ImðσÞzÞ� exp½iωðReðσÞz − tÞ� :

(C-1)

P-wave strain energy density

The components of strain array e for P-wave are obtained from
the definitions, that is, equations 23 and 24:

e1 ¼ ∂1u1 ¼−iωAD2 exp½−ωðDxþ ImðσÞzÞ�exp½iωðReðσÞz− tÞ�
e3 ¼ ∂3u3 ¼ iωAσ2 exp½−ωðDxþ ImðσÞzÞ�exp½iωðReðσÞz− tÞ�
e5 ¼ ∂1u3þ∂3u1 ¼ð−1þ iÞωADσ exp½−ωðDxþ ImðσÞzÞ�exp½iωðReðσÞz− tÞ�
divw¼ ξð∂1u1þ∂3u3Þ¼ iωAξp2 exp½−ωðDxþ ImðσÞzÞ�exp½iωðReðσÞz− tÞ�

:

(C-2)

To avoid redundancy, we define a matrix EMEP and write the
quadratic terms in equation A-4 in matrix form:

EMEP¼

2
664

e1He�1 e1λe�3 e1Cð∇ · wÞ�
e3λe�1 e3He�3 e3Cð∇ · wÞ�
e5Ge�5 0 0

ð∇ · wÞCe�1 ð∇ · wÞCe�3 ð∇ · wÞMð∇ · wÞ�

3
775:

(C-3)

Substituting equation C-2 into equation C-3, we have

EMEP¼ ω2jAj22
6664
D4H −D2ðp2� þD2Þλ −D2ξ�p2�C

−D2ðp2 þD2Þλ jp2 þD2j2H ξ�ðp2 þD2Þp2�C

4D2jp2 þD2jG 0 0

−D2ξp2C ξp2ðp2� þD2ÞC jξp2j2M

3
7775

× exp½−2ωðDxþ ImðσÞzÞ�: (C-4)

With equation 6, the values of σ2 have been replaced with
p2 þD2. Then, the complex P-wave strain energy density Vc

P1;P2
is written as

Vc
2;3 ¼

X
i;j

EMEPij ¼

ω2jAj2
	
4D2jp2þD2jGþ½D4þjp2þD2j2�H
−2D2½Reðp2ÞþD2�λþ2ReðξÞjp2j2Cþjξp2j2M




× exp½−2ωðDxþ ImðσÞzÞ�: (C-5)
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Here, the material slowness (of homogeneous waves) p will be
replaced with pð2Þ or pð3Þ and ξ will be replaced with ξð2Þ or ξð3Þ

corresponding to the subscripts, 2 and 3 of Vc
2;3, respectively. This

also holds true for the following kinetic energy density.

P-wave kinetic energy density

In a manner similar to EMEP, we define matrix VRVP, use equa-
tions C-1 and 29, and write the quadratic terms in equation A-5 in
matrix form:

VRVP¼

ω2

2
666664

u�1ρu1 u�1ρfw1

u�3ρu3 u�3ρfw3

w�
1ρfu1 w�

1 ~ρðωÞw1

w�
3ρfu3 w�

3 ~ρðωÞw3

3
777775¼ ω2jAj2

2
666664

ρD2 ρfD2ξ

ρjp2 þD2j ρfjp2 þD2jξ
ρfD2ξ� jξj2D2 ~ρðωÞ

ρfjp2 þD2jξ� jξj2jp2 þD2j ~ρðωÞ

3
777775

× exp½−2ωðDxþ ImðσÞzÞ�: (C-6)

Then, the complex P-wave kinetic energy density Tc
P1;P1 is writ-

ten as

Tc
2;3 ¼

X
i;j

VRVPij ¼

ω2jAj2ðjp2 þD2j þD2Þ½ρþ 2ρfReðξÞ þ jξj2 ~ρðωÞ�
× exp½−2ωðDxþ ImðσÞzÞ�: (C-7)

APPENDIX D

DISSIPATION FACTORS OF HOMOGENEOUS
DIFFUSION WAVES

The diffusion wave equation with the diffusivity ~D and without a
source term can be written as (e.g., Mandelis, 2000)

Δu −
1

~D
∂tu ¼ 0: (D-1)

The corresponding pseudowave equation with complex velocity
vc is

Δu −
1

ðvcÞ2 ∂
2
t u ¼ 0: (D-2)

Assuming a homogeneous wave with the complex wavenumber
κ þ iα, we have

uðt; xÞ ¼ u0 exp½iðκ þ iαÞx − iωt�; (D-3)

and substituting equation D-3 into equations D-1 and D-2 produces
the complex velocity

ðvcÞ2 ¼ −iω ~D or vc ¼ � 1ffiffiffi
2

p
�
−

ffiffiffiffiffiffiffi
ω ~D

p
þ i

ffiffiffiffiffiffiffi
ω ~D

p �
:

(D-4)

Thus, the complex wave number (taking positive result) is

κ þ iα ¼ ω

vc
¼

ffiffiffiffiffiffiffi
ω

2 ~D

r
þ i

ffiffiffiffiffiffiffi
ω

2 ~D

r
: (D-5)

Note that the imaginary part and real part of the complex wave
number are equal. The phase velocity is given as

vphs ¼ κ∕ω ¼
ffiffiffiffiffiffiffiffiffiffi
2ωD

p
: (D-6)

With the definition of Q−1
V for homogeneous waves, we have (us-

ing equation D-4)

Q−1
V ¼ −ImðvcÞ2∕ReðvcÞ2 ¼ −ð−iω ~DÞ∕0 → ∞. (D-7)

With the definition of Q−1
T for homogeneous waves, we have (us-

ing equations D-5 and D-6)

Q−1
T ¼ 2αvphs

ω
¼ 2

ω

ffiffiffiffiffiffiffi
ω

2 ~D

r ffiffiffiffiffiffiffiffiffiffi
2ω ~D

p
¼ 2. (D-8)
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