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S U M M A R Y
Seismic wave scattering dispersion and attenuation can be significant in cracked reservoirs.
Many scattering models have been proposed, and the fractal (self-similar) features of the
medium need to be further incorporated and analysed. We solve the P-wave scattering caused by
fluid-saturated aligned cracks of finite thickness embedded in fractal media. The model is based
on crack displacement discontinuities by using the Foldy approximation and representation
theorem. The frequency dependence of velocity and attenuation are analysed as a function of
the incidence angle and the crack and fluid properties. The results show that the crack density,
thickness and radius can have a significant influence on the wave properties, as well as the
fluid bulk modulus and saturation. The model requires three parameters to describe self-similar
cracked media, and can be relevant in seismology, oil exploration and non-destructive testing
of materials.

Key words: Fractals and multifractals; Acoustic properties; Seismic attenuation; Wave prop-
agation; Wave scattering and diffraction.

1 I N T RO D U C T I O N

Attenuation and velocity dispersion associated with scattering can be significant when the length of the heterogeneities (i.e. inclusions and
cracks) is comparable to or larger than the wavelength (e.g. Wu & Aki 1985a; Wu & Aki 1988; Sato et al. 2012). An analysis of the physics is
useful to infer lithological properties, such as porosity, permeability and fluid saturation and type (e.g. Carcione 2014; Ba et al. 2017, 2019;
Picotti et al. 2018; Zhang et al. 2020). The study has application in seismology, oil exploration and non-destructive testing of materials (e.g.
Pulli 1984; Yamashita 1990; Kawahara 1992; Guo et al. 2009; Takahashi et al. 2014; Ba et al. 2019; Pang et al. 2019; Ma & Ba 2020).

Elastic wave scattering by cracks has been extensively studied theoretically, specifically in the isotropic case by a single penny-shaped
crack (e.g. Mal 1970; Martin & Ursell 1981; Krenk et al. 1982; Keogh 1986). Scattering by a random distribution of dry cracks in an elastic
solid has been investigated by using the non-interaction approximation (Foldy 1945) (e.g. Zhang & Achenbach 1991; Zhang & Gross 1993a,b;
Murai et al. 1995; Murai 2007). Hudson (1981, 1986) studied the effect of aligned cracks in the long-wavelength limit and showed that the
velocity depends on the crack density and aspect ratio.

The presence of fluids has been considered in many works (e.g. Garbin & Knopoff 1975; Kawahara 1992; Kawahara & Yamashita 1992;
Gurevich et al. 1998; Fu et al. 2018, 2020; Guo et al. 2018, 2020; Song et al. 2019). Sabina et al. (1993) and Smyshlyaev et al. (1993) studied
the attenuation effects using a dynamic self-consistent approach, but neglecting the fluid viscosity. Kawahara & Yamashita (1992) and Guo et
al. (2018) considered aligned fluid-saturated slit cracks by taking into account the viscous friction between the fluid and crack surface, while
Song et al. (2019) incorporated the hydraulic conduction inside the crack. However, these models assume oriented cracks of the same size.
Thus, the crack size and distribution must be considered.

The crust and particularly hydrocarbon reservoirs contain cracks of different sizes. The pore or crack size distribution can be quantitatively
described by a fractal geometry. This distribution can be described by a fractal dimension obtained from SEM (Scanning Electron Microscope)
experiments (e.g. Katz & Thompson 1985; Krohn 1988a,b; Giri et al. 2013). Yu & Li (2001) assumed that the smallest pore diameter is at
least two orders of magnitude smaller than the biggest one. Wu & Aki (1985b) considered the fractal nature of crustal inhomogeneities and
found that scattering attenuation depends on their length scale. Yamashita (1990) found that the maximum crack radius ranges from 2 to 5 km
by assuming a power-law distribution of radii on the basis of SH waves. Carcione et al. (2012) investigated the viscoelastic dissipation of
an isotropic fractured medium by a finite-element method, considering fractal variations of the fracture compliances. Multiple scattering by
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P-wave scattering in self-similar cracked media 901

Figure 1. (a) Fluid-saturated medium with fractal (self-similar) crack sizes randomly and sparsely distributed along the X1-axis, where the crack radius is in
the range [amin, amax]. (b) The length and thickness of the cracks are 2ar and βr, respectively. A local coordinate system with origin at the centre (p1, p2) of
the ith crack is considered, in which the x1-axis is parallel to the crack strike. The incidence angle of the P wave is θ .

cracks and fractures with Gaussian or power-law distributions can be found in Lerche (1985), Ian Lerche & Petroy (1986) and Vlastos et al.
(2007). The results show that attenuation can be used to characterize the fracture spatial scale.

We model cracked media characterized by fractality, assuming that the crack surfaces undergo viscous friction, but the interaction
between different cracks (e.g. wave-induced fluid flow) is neglected by assuming a homogeneous and dilute distribution. We use the theories
of Kawahara (1992) and Guo et al. (2018). The scattering dispersion and attenuation caused by fluid-saturated cracks are analysed by a
specific example.

2 T H E O RY

2.1 Fractal (self-similar) cracked media

We assume that fluid-saturated cracks are randomly and sparsely distributed in isotropic elastic media, satisfying statistically self-similarity
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902 R. Ma et al.

Figure 2. P-wave velocity (a) and dissipation factor (b) as a function of frequency and different incidence angles.

as shown in Fig. 1(a). The cumulative number of cracks follows the scaling law (Yu & Li 2001):

N (L ≥ ar) =
(

amax

ar

)Df

, (1)

where ar and amax are the random and maximum crack radii, respectively, L is the length range of crack radii [ar, amax], Df is the fractal
dimension in the range of 1–2 (2-D space) or 2–3 (3-D space). Then, the crack number in the range [ar, ar + dar] is

− dN=Df

(
ar

amax

)−(Df +1)

d

(
ar

amax

)
, (2)

where the negative sign in the left-hand side denotes that the crack number decreases with the radius.
The total number Nt of cracks obtained from eq. (1) is

Nt (L ≥ amin) =
(

amax

amin

)Df

, (3)

where amin is the minimum crack radius.
The probability density function of the crack radius distribution can be obtained from eq. (2) divided by eq. (3) (Yu & Li 2001):

f (ar) =Df a
Df
minar

−(Df +1), (4)

where we have that (amin/amax)Df ∼= 0, namely, amin is much smaller than amax. In general, natural media satisfy amin/amax < 10−2 (Yu et al.
2001).

2.2 Fluid-saturated aligned cracked media

P-wave scattering by a random distribution of aligned cracks in an infinite elastic medium has been previously studied (Kawahara & Yamashita
1992; Guo et al. 2018). 2-D aligned rectangular cracks of the same length and direction are randomly and uniformly distributed as shown in
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P-wave scattering in self-similar cracked media 903

Figure 3. P-wave velocity (a) and dissipation factor (b) as a function of frequency for different crack densities ε at oblique incidence (θ = 45◦).

Fig. 1(b). Cracks with a specific length 2ar and thickness β r, have their directions coinciding with the X1-axis. The crack number density vr

is the number per unit area of cracks with radius ar, and plane P waves have an incidence angle θ .
For any incidence angle, the total displacement field is

uT = uI + u, (5)

where uI and u are the incident and scattered displacement field.
Since the cracks are randomly and sparsely distributed, the average displacement field can be obtained from the mean-wave formalism

(Hudson 1980) and Foldy approximation (Foldy 1945):

〈uA〉=u0
A+vr

∫
SA 〈ui〉 dri, (6)

where u0
A is the incident wavefield, SA〈ui〉 is the scattered wave induced by the ith crack, ri is the central location of the ith crack, and the

subscript A denotes the observation point.
The incident time-harmonic plane P wave, with angular frequency ω, is

u0
A = A0eikp X1 sin θ+ikp X2 cos θ (sin θ, cosθ ) , (7)

where A0 is the displacement amplitude and kp is the P wavenumber. The time dependence exp(-iωt) is omitted for brevity, and ω = 2π f,
where f is the frequency.

The ensemble average wavefield 〈uA〉 is given by Kawahara (1992):

〈uA〉 = A1eikp X1 sin θ+i(kp cos θ+κr)X2
(
sin θ, cosθ + κr/kp

)
, (8)

where A1 is the amplitude of the average wavefield, and κ r is the parameter that determines the average attenuation. A local coordinate system
(x1, x2) with origin (p1, p2) at the centre of the ith crack is considered (Fig. 1b). Thus, the average wavefield 〈ui〉 on the ith crack is

〈ui〉 = A1eikp(x1+p1) sin θ+i(kp cos θ+κ)(x2+p2)
(
sin θ, cosθ + κr/kp

)
. (9)

The scattering wavefield by the ith crack can be obtained by the representation theorem (e.g. Kawahara & Yamashita 1992):
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904 R. Ma et al.

Figure 4. P-wave velocity (a) and dissipation factor (b) as a function of frequency for different crack thicknesses βr at oblique incidence (θ = 45◦).

[Si 〈ui〉] j = −
∫ ar

−ar

[�ui (ζ1, p1, p2)]l
 jl (x1, x2|ζ1, 0) dζ1, j, l = 1, 2, (10)

where �ui is the displacement discontinuity across the ith crack, and the stress tensor 
 jl can be expressed as


 jl (x1, x2|ζ1, ζ2) = i

4

[
δ12

(
1 − 2k2

p/k2
s

) ∂

∂x j
H (1)

0

(
kp R

) +
(

δ jl
∂

∂x2
+ δ j2

∂

∂xl

)
H (1)

0 (ks R)

− 2

k2
s

∂3

∂x j∂xl∂x2

(
H (1)

0

(
kp R

) − H (1)
0 (ks R)

)]
, (11)

where ks is the S wavenumber, δ jl is the Kronecker delta, H (1)
0 (·) is the first kind zeroth-order Hankel function, and R2 = (x1 − ζ1)2 + (x2 − ζ2)2.

Then, the stress field σ E
jk and σ S

jk caused by 〈ui〉 and Si〈ui〉 can be obtained according to Hooke’s law (Timoshenko 1951) as (Kawahara
& Yamashita 1992)

σ E
jk = λδ jk

∂

∂xl
[〈ui〉]l + μ

(
∂

∂xk
[〈ui〉] j + ∂

∂x j
[〈ui〉]k

)
, j, k, l = 1, 2, (12)

σ S
jk = λδ jk

∂

∂xl
[Si 〈ui〉]l + μ

(
∂

∂xk
[Si 〈ui〉] j + ∂

∂x j
[Si 〈ui〉]k

)
, j, k, l = 1, 2, (13)

respectively, where λ and μ are the Lamé constants of the cracked media (Guo et al. 2018).
By substituting eqs (10) and (11) into eq. (13), we obtain

σ S
jk = −μ

∫ ar

−ar

[�ui (ζ1, p1, p2)]l Tjkl (x1, x2|ζ1, 0) dζ1, (14)

where the Tjkl is given in Appendix B.
There is viscous friction between the fluid and crack surfaces (Kawahara & Yamashita 1992). The crack volume compression or extension

and the viscous friction can cause normal and shear stresses, respectively. These are

σ E
12 + σ S

12 = −iωη
[�ui (x1, p1, p2)]1

βr
, |x1| < ar, x2=0, (15)
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P-wave scattering in self-similar cracked media 905

Figure 5. P-wave velocity (a) and dissipation factor (b) as a function of frequency for different fractal dimensions Df and crack radius ranges at oblique
incidence (θ = 45◦).

σ E
22 + σ S

22 = Kf
[�ui (x1, p1, p2)]2

βr
, |x1| < ar, x2=0, (16)

where Kf and η are the bulk modulus and viscosity of the saturating fluid, respectively (Guo et al. 2018).
Substituting eqs (9), (12) and (14) into eqs (15) and (16) yields∫ ar

−ar

D1 (ζ1) T121 (x1, 0|ζ1, 0) dζ1 − eikpx1 sin θ = iωη

μ

D1 (x1)

βr
, |x1| < ar, (17)∫ ar

−ar

D2 (ζ1) T222 (x1, 0|ζ1, 0) dζ1 − eikpx1 sin θ = − Kf

μ

D2 (x1)

βr
, |x1| < ar. (18)

The normalized shear displacement discontinuities (D1 and D2) across the crack are given in Appendix A. Then, κr is determined by
rewriting explicitly the right-hand side of eq. (6) through the representation theorem and the boundary conditions, and comparing it with the
right-hand side of eq. (8),

κr=εrφ̂1γ kp sin 2θ sin θ + εrφ̂2
kp

2γ cos θ

(
1 − 2γ sin2θ

)2
, (19)

where γ=V 2
S /V 2

P , Vp, Vs are the P- and S-wave velocities, respectively, εr=vra2
r is the crack density for cracks with radius ar, and φ̂1 and φ̂2

are given in Appendix A.
For cracks with radius range [amin, amax], the total coefficient κ is

κ=
∫ amax

amin

(
εrφ̂1 (ar) γ kp sin 2θ sin θ + εrφ̂2 (ar)

kp

2γ cos θ

(
1 − 2γ sin2θ

)2
)

dar, (20)

Thus, the P-wave phase velocity and attenuation can be obtained as (Kawahara & Yamashita 1992):

Vpe = Vp

(
1 − cos θ

kp
Reκ

)
, (21)
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906 R. Ma et al.

Figure 6. P-wave velocity (a) and dissipation factor (b) as a function of frequency for different fluid bulk moduli Kf at oblique incidence (θ = 45◦).

Q−1
p = 2

cos θ

kp
Imκ, (22)

respectively.

2.3 Partial saturation

Velocity dispersion and attenuation are affected by the pore fluid distribution, which has fractal characteristics evidenced from experiments
and computational simulations (Berkowitz & Hansen 2001; Helle et al. 2003), and generally it is not so clear how those anelastic properties
are related to the medium fractality. We assume that the cracks are saturated with two immiscible fluids, where one fluid saturates a crack
length 2arsw and the other a length 2ar(1 − sw), where sw is the saturation of the first fluid. The displacement discontinuities across cracks
saturated with different fluids can be calculated with the same derivations leading to eqs (17) and (18). Thus, coefficient κ can be obtained
from eq. (20) as

κ= ∫ amaxsw
aminsw

εrφ̂1 (ar1) γ kp sin 2θ sin θ + εrφ̂2 (ar1) kp

2γ cos θ

(
1 − 2γ sin2θ

)2
dar

+ ∫ amax(1−sw )
amin(1−sw ) εrφ̂1 (ar2) γ kp sin 2θ sin θ + εrφ̂2 (ar2) kp

2γ cos θ

(
1 − 2γ sin2θ

)2
dar

, (23)

where ar1=arsw and ar2=ar(1 − sw) are equivalent crack radii.
P-wave phase velocity and attenuation at partial saturation can be calculated by eqs. (21-23). The scattering at the fluid interfaces and

the effect of wave-induced fluid flow are not considered.

3 E X A M P L E

An example illustrates the scattering attenuation (Q−1
p ) and velocity dispersion in rocks with self-similar (fractal) cracks. Most of the properties

correspond to a carbonate reservoir with negligible stiff porosity (Guo et al. 2018). The bulk and shear moduli of the background medium
are 63.7 GPa and 31.7 GPa, respectively, and the density is 2.70 g cm−3, according to Mavko et al. (2009). Cracks with fractal dimension 1.5
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P-wave scattering in self-similar cracked media 907

Figure 7. P-wave velocity (a) and dissipation factor (b) as a function of the incidence angle. The frequency is 10 Hz. The subscripts 1 and 2 denote the
dispersion and attenuation related to the shear and normal crack displacement discontinuities, respectively.

and range [50 m, 5000 m] are assumed. The crack thickness is 0.2 m. The total crack density is 0.1 and that of each radius is determined
from the probability density function eq. (4). The bulk modulus and viscosity of the saturating fluid are 2.25 GPa and 0.1 Pa s, respectively.
The effects of the incidence angle, crack and fluid properties (i.e. crack thickness, crack density, and fluid bulk modulus) are analysed. When
investigating the effect of a property (e.g. the fractal dimension), the other parameters are fixed.

3.1 Effect of the incidence angle

The frequency-dependent dispersion and attenuation (dissipation factor) as a function of the incidence angle θ are shown in Fig. 2, where we
observe that the P-wave velocity increases with frequency (resonant or Mie scattering regime). The anelasticity is significant at intermediate
incidence angles, where the characteristic frequency of the relaxation peak shifts to low frequencies. Q−1

p at low and high frequencies is
approximately proportional to f 2 and f −1, respectively. Similar results are also observed by Yamashita (1990) and Guo et al. 2018).

3.2 Effects of crack density, thickness and fractal dimension

The results by varying one crack property are similar at different incidence angles. Thus, we only consider oblique incidence (θ = 45◦).
Fig. 3 illustrates the effect of crack density (ε). The dispersion and attenuation increase linearly with increasing crack density due to the
Foldy approximation, which can be deduced from eqs (20)–(22) at first order in ε. The scattering characteristic frequency is independent of ε

because the interaction between cracks is not considered due to the assumption of sparsely distributed cracks.
Fig. 4 shows the results as a function of frequency and different crack thicknesses (β r). The P-wave velocity is significantly affected by

β r in the low-frequency band, and it decreases with increasing thickness, while an opposite behaviour is observed at high frequencies. This
is because the dispersion increases more rapidly with crack thickness in the resonance scattering regime. Fig. 4(b) shows that Q−1

p increases
with thickness at high frequencies, due to the increasing normal crack displacement discontinuity. However, the effect of β r is weaker at
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908 R. Ma et al.

Figure 8. P-wave velocity (a) and dissipation factor (b) as a function of the smallest crack radius (amin) for different crack densities ε at θ = 45◦. The frequency
is 10 Hz and amax is 5 km.

low frequencies because the attenuation is mainly caused by the shear displacement discontinuity at the cracks. The scattering characteristic
frequency is almost the same.

Fig. 5 shows the effect of different fractal dimensions (Df). A large Df implies that the crack size distribution is more uniform (finely
textured). P-wave velocity decreases when Df increases in the resonance scattering regime for the same crack radius range. Q−1

p decreases
and increases at low and high frequencies, respectively, with increasing fractal dimension. The characteristic frequency moves to higher
frequencies with Df, because there are smaller cracks when Df is higher. The effect of fractal dimension is weak when the interaction between
cracks is not considered. We observed that changing the crack radius ranges from [50 m, 5000 m] to [5 m, 5000 m] with the same fractal
dimension Df, the characteristic frequency shifts to higher frequencies by one order of magnitude and the attenuation maximum also increases.

3.3 Effects of fluid bulk modulus and viscosity

Fig. 6 shows the effect of the fluid bulk modulus on attenuation. The velocity increases and decreases at low and high frequencies, respectively,
with increasing Kf. Stronger velocity variations are observed for the case of a low bulk modulus, because the scattered field is enhanced by
the increasing stiffness contrast between the cracks and background medium. P-wave dispersion and attenuation increase with decreasing
Kf and have a maximum when Kf is zero (dry cracks). Moreover, the attenuation peak shifts toward lower frequencies when Kf decreases to
zero. Similar results were obtained by Sabina et al. (1993), Smyshlyaev et al. (1993), Guo et al. (2018) and Song et al. (2019). Finally, the
fluid viscosity (η) has no effect, because the shear displacement discontinuity is almost unaffected by η due to the small value of (ωη)/μ in
the right side of eq. (17). Similar results are also shown in Guo et al. (2018) and Song et al. (2019).

3.4 Effects of displacement discontinuity, crack radius range and fractal dimension

Fig. 7 shows the velocity and attenuation as a function of the incidence angle at 10 Hz. The scattering regime mainly regards 4–400 Hz. Q−1
p1

calculated from the shear discontinuity has a maximum at θ = 45◦ due to shear stress caused by the viscous friction between the fluid and the
crack surfaces. In contrast Q−1

p2 (normal discontinuity) decreases with θ because the normal stress induced by the crack volume compression
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P-wave scattering in self-similar cracked media 909

Figure 9. P-wave velocity (a) and dissipation factor (b) as a function of the fractal dimension Df for different crack densities ε at θ = 45◦. The frequency is
10 Hz.

decreases with θ . The total attenuation Q−1
p is mainly affected by Q−1

p1 . Fig. 8 shows the effect of the smallest crack radius (amin) at 10 Hz and
amax = 5 km. The P-wave velocity gradually increases with amin while Q−1

p is approximately proportional to amin for different crack densities.
Fig. 9 shows the results as a function of fractal dimension at 10 Hz. The P-wave velocity decreases approximately linearly when attenuation
first increases and slightly decreases with the fractal dimension. The variation of Q−1

p with Df is much less than that with amin when the
velocity changes are of the same order of magnitude.

3.5 Effect of partial saturation

We consider a medium saturated with liquid and gas, whose bulk moduli are 1 and 3 GPa (liquid) and 0.1 GPa, respectively, and the
corresponding viscosities are 1 cP and 0.03 cP, respectively. Fig. 10 shows the velocity and attenuation as a function of the liquid saturation
at 10 Hz. As expected, the P-wave velocity mainly increases with saturation and attenuation has a minimum at approximately sw = 80 per
cent. Maximum attenuation occurs when the cracks are filled with a highly compressible fluid, such as gas. The variations of Vp and Q−1

p with
saturation are non-monotonous. For a partial saturation case, the crack space saturated with liquid decreases in comparison to the full liquid
saturation case, resulting in the smaller radii of the effective liquid-saturated cracks. Thus, the variation of saturation may cause the shift
of relaxation peak to different frequencies so as to effect on Vp and Q−1

p . Whereas, the variation of the effective fluid bulk modulus, which
corresponds to the saturation change, may also affect Vp and Q−1

p . The variations of Vp and Q−1
p are related to the both factors.

4 D I S C U S S I O N

The frequency dependence of the S-wave attenuation in the Earth crust has been extensively studied from earthquakes at low frequencies
(e.g. Aki 1980; Shapiro & Faizullin 1992; Sato et al. 2012), showing that the peak occurs at approximately 0.5 Hz (Matsunami 1988). This
dependence can be used to determine the crack length distribution. For example, Yamashita (1990) estimated a maximum crack radius within
the range [2.4, 4.4] km and a minimum one at [1.2, 1.8] km by assuming a shear wave velocity of 4 km s−1. By considering the phase velocities
and attenuation for an incident S wave, which can be derived in a similar manner to those of an incident P wave, the equations are

κ=
∫ amax

amin

(
εrφ̂1 (ar)

ks

2 cos θ
(cos 2ψ)2 + εrφ̂2 (ar) ks sin 2ψ sin ψ

)
dar, (24)
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910 R. Ma et al.

Figure 10. P-wave velocity (a) and dissipation factor (b) as a function of saturation for different fluid bulk moduli at θ = 45◦. The frequency is 10 Hz.

Figure 11. Simulated S-wave attenuation (solid line) as a function of frequency for a crack-radius range of [1.2, 4] km and attenuation values (symbols) from
local earthquakes. The fractal dimension is 2.

Vse = Vs

(
1 − cos ψ

ks
Reκ

)
, (25)

Q−1
s = 2

cos ψ

ks
Imκ, (26)

where ψ is given by Snell’s law, ks sin ψ = kp sin θ .
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P-wave scattering in self-similar cracked media 911

Fig. 11 shows the simulated frequency-dependent S-wave attenuation for Df = 2 when the crack radius range is [1.2, 4] km and attenuation
values (symbols) corresponding to local earthquakes obtained from their coda waves. The result shows that the frequency of the relaxation
peak is 0.5 Hz, which well agrees with the seismological observations in different areas (Matsunami 1988). The crack sizes can be estimated
when the fractal dimension has been determined.

5 C O N C LU S I O N S

We have studied P-wave scattering dispersion and attenuation in isotropic elastic media with a fractal (self-similar) size distribution of
fluid-saturated aligned cracks. We assume that the cracks do not interact with each other. For each crack radii, the displacement discontinuities
across the cracks are obtained by the Foldy approximation and the representation theorem based on boundary conditions. We show phase
velocity and dissipation factor (reciprocal of the quality factor) as a function of the incidence angle, and crack and fluid properties. The
results show that P-wave velocity decrease approximately linearly when the fractal dimension increases in the resonance scattering regime,
and attenuation increases with crack density and thickness and decreases with the fluid bulk modulus. Attenuation is mainly caused by shear
displacement discontinuities at oblique incidence angles and decreases with incidence angle only at high frequencies. Attenuation mainly
increases when the crack is filled with a high-compressibility fluid. The location of the attenuation peak (or scattering characteristic frequency)
moves to low frequencies at an oblique incident angle, and to high frequencies with increasing fractal dimension and fluid bulk modulus. The
effect of fluid viscosity is negligible.
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S O LU T I O N O F E Q S ( 1 7 ) A N D ( 1 8 )

Eqs (17) and (18) can be first normalized by the method of Kawahara & Yamashita (1992):∫ 1

−1
D̂1

(
ζ̂1

)
T̂121

(
s, 0|ζ̂1, 0

)
dζ̂1 − ei k̂ps sin θ = iωηar

μ

D̂1 (s)

βr
, |s| < 1, (A1)

∫ 1

−1
D̂2

(
ζ̂1

)
T̂222

(
s, 0|ζ̂1, 0

)
dζ̂1 − ei k̂ps sin θ = Kf ar

μ

D̂2 (s)

βr
, |s| < 1, (A2)

where ζ̂1, s, k̂p, D̂1, D̂2, T̂121 and T̂222 are the normalized values by half of the crack length as

ζ̂1=ζ1/ar,

s = x1/ar,

k̂p = kp/ar,

D̂1 = D1/ar,

D̂2 = D2/ar,

T̂121 = a2
r T121,

T̂222 = a2
r T222,

(A3)

where

D1 = [�ui (x1, p1, p2)]1

2i
(
kpcosθ + κr

)
sin θ A1eikp p1 sin θ+i(kp cos θ+κr)p2

, (A4)
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D2 = [�ui (x1, p1, p2)]2

ikp A1eikp p1 sin θ+i(kp cos θ+κr)p2

[(
k2

s /k2
p − 2

)
sin2θ + k2

s /k2
p

(
cos θ+κr/kp

)2
] . (A5)

Thus, eqs (A1) and (A2) can be discretized as

M−1∑
n=1

(
T 121

mn − δmn
iωηar

μβr

)
D̂1n = ei k̂psm sin θ , m = 1, ..., M − 1, (A6)

M−1∑
n=1

(
T 222

mn + δmn
Kf ar

μβr

)
D̂2n = ei k̂psm sin θ , m = 1, ..., M − 1, (A7)

where

sm = −1 + m�s,
�s=2/M,

T 121
mn = ∫ sn+�s/2

sn−�s/2 T̂121

(
sm, 0|ζ̂1, 0

)
dζ̂1,

T 222
mn = ∫ sn+�s/2

sn−�s/2 T̂222

(
sm, 0|ζ̂1, 0

)
dζ̂1.

(A8)

The parameters T 121
mn and T 222

mn are given in Appendix B. Thus, D̂1 and D̂2 can be obtained from eqs (A6) and (A7). Then φ1 and φ2 can
be calculated by

φ j=ar
2φ̂ j , j = 1, 2, (A9)

where

φ̂ j =
M−1∑
m=1

D̂1me−i k̂psm sin θ�s, j = 1, 2. (A10)

E X P R E S S I O N S F O R T121
mn A N D T222

mn

Kawahara & Yamashita (1992) give the equations. When m = n,

T 121
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k̂2
s

4

π�s
− k̂4
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8
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p log
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s log
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s (C − 5/4)

]
, (B1)

T 222
nn = − k̂2
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p k̂2
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8
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s log
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(B2)

+k̂2
p k̂2

s (4C + 2) + k̂4
p (3C − 5/4) + k̂4

s (3C − 11/4)
]
,

T 122
nn = T 221

nn = 0. (B3)

When m�=n,
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mn = − i

4
k̂2

s �s H (1)
0

(
k̂ssmn

)
− i�s

k̂2
s

[
1

smn

{
k̂3

p H (1)
1

(
k̂psmn

)
− k̂3

s H (1)
1

(
k̂ssmn

)}

+ 3

s2
mn

{
k̂3

p H (1)
0

(
k̂psmn

)
− k̂3

s H (1)
0

(
k̂ssmn

)}
− 6

s3
mn

{
k̂p H (1)

1

(
k̂psmn

)
− k̂s H (1)

1

(
k̂ssmn

)}]

− k̂4
p + k̂4

s

4π k̂2
s

[
�s log smn −

∫ sn+�s/2

sn−�s/2
log

∣∣∣sm − ζ̂1

∣∣∣ dζ̂1

]
− k̂2

p − k̂2
s

π k̂2
s

⎡
⎢⎣ �s

s2
mn

−
∫ sn+�s/2

sn−�s/2

dζ̂1(
sm − ζ̂1

)2

⎤
⎥⎦, (B4)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/229/2/900/6414532 by Istituto N

azionale di O
ceanografia e G

eofisica Sperim
entale - O

G
S user on 06 June 2023



914 R. Ma et al.

T 222
mn = − i
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⎢⎣ �s
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T 122
mn = T 221

mn = 0, (B6)

where H (1)
1 (·) is the first kind first-order Hankel function, k̂s = ks/ar is the normalized S-wave wavenumber, C is Euler’s constant, smn =

|sm − sm | when sm = −1 + m�s and sn = −1 + n�s. Eqs (B3) and (B6) mean

T122 (x1, 0|ζ1, 0) = T221 (x1, 0|ζ1, 0) = 0. (B7)
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