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Hybrid Modeling of P-SV Seismic Motion at Inhomogeneous 

Viscoelastic Topographic Structures 

by Peter Moczo,  Erik Bystrick~¢, Jozef  Kristek, Jos6 M. Carcione, and Michel  Bouchon 

Abstract A new hybrid two-step method for computation of P - S V  seismic motion 
at inhomogeneous viscoelastic topographic structure is presented. The method is 
based on a combination of the discrete-wavenumber (DW), finite-difference (FD), 
and finite-element (FE) methods. In the first step, the DW method is used to calculate 
the source radiation and wave propagation in the background 1D medium. In the 
second step, the FD-FE algorithm is used to compute the wave propagation along the 
topographic structure. 

The accuracy of the method has been separately tested for inclusion of the atten- 
uation and for inclusion of the free-surface topography through numerical compari- 
sons with analytical and independent numerical methods. 

The method is a generalization of the hybrid DW-FD method of Zahradn~ and 
Moczo (1996) for localized structures with a flat free surface. 

Numerical computations for a ridge, sediment valley, and the ridge neighboring 
the sediment valley show that a ridge can considerably influence the response of the 
neighboring sediment valley. This means that the neighboring topographic feature 
should be taken into account even when we are only interested in the valley response. 

Introduction 

Combination of different computational methods results 
in hybrid methods that offer advantages not provided by a 
single method on its own. This is clear from numerous stud- 
ies presenting a variety of hybrid methods--e.g., Alekseev 
and Mikhailenko (1980), Ohtsuld and Harumi (1983), Mik- 
hailenko and Komeev (1984), Van den Berg (1984), Kum- 
mer et aL (1987), Kawase (1988), Gaffet and Bouchon 
(1989), Emmerich (1989, 1992), FSh (1992), F~h et al. 

(1993), Rovelli et al. (1994), Bouchon and Coutant (1994), 
and Zahradn~ and Moczo (1996). 

Zahradn~ (1995a) and Zahradnl'k and Moczo (1996) 
developed a hybrid discrete wavenumber-finite-difference 
method to compute the seismic wave fields at localized 2D 
near-surface structures embedded in a 1D background me- 
dium excited by a point source with arbitrary focal mecha- 
nism. The method represents an innovating alternative to the 
method by FS.h (1992) and Fah et al. (1993). The source 
radiation and wave propagation in the background medium 
is calculated by the discrete-wavennmber (DW) method of 
Bouchon (1981). The wave propagation in and around the 
localized near-surface structure is calculated by the finite- 
difference (FD) method. The two-step algorithm is schemat- 
ically depicted in Figure la. 

In the article by Zahradnfk and Moczo (1996), only a 
flat free surface is considered. In this study, we apply the 
method to a more general case that includes a free-surface 

topography and present a hybrid discrete wavenumber- 
finite-difference-finite-element (DW-FD-FE) method to com- 
pute the seismic wave field at localized 2D near-surface an- 
elastic structures with a free-surface topography. Our 
algorithm is schematically depicted in Figure lb. 

Taking free-surface topography into account can be as 
important as considering geometry of the sediment-rock in- 
terface in the evaluation of site effects for earthquakes and 
seismic ground-motion modeling. Influence of topography 
on seismic ground motion has been studied in numerous 
articles comprehensive list of which can be found in Bou- 
chon et al. (1996). 

The FD method is widely accepted for modeling seismic 
wave propagation because, despite its relative simplicity, it 
is applicable to complex realistic media and, at the same 
time, it is easy to implement in the computer codes. It is well 
known, however, that the FD method may have problems 
with implementing conditions on boundaries of complex 
geometric shapes. Obviously, the implementation of the 
boundary conditions is not equally difficult in all specific 
cases and for all FD schemes. 

For example, modeling a staircase free surface in the 
case of SH wave poses no serious problem. An efficient ap- 
proach for heterogeneous displacement formulations was 
suggested by Boore (1972)--setting Lam6 elastic parame- 
ters and density to zero in the grid points above the free 
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Figure 1. Schemes of the hybrid DW-FD (discrete wavenumber-finite difference) 
method by Zahradnl"k and Moczo (1996) and the DW-FD-FE (discrete wavenumber- 
finite difference-finite element) method presented in this study. 

surface and using the same scheme for both internal grid 
points and grid points at the free surface. The approach ap- 
proximates the traction-free condition reasonably well, and 
it can be called a vacuum formalism (e.g., Zahradn~ et al., 

1993). 
The implementation of the traction-free condition at a 

nonplanar surface becomes a much more difficult task in the 
P-SV case. This is clear from several studies addressing the 
problem in the displacement formulation, e.g., Alterman and 
Rotenberg (1969), Alterman and Loewenthal (1970, 1972), 

Munasinghe and Farnell (1973), Alterman and Nathaniel 
(1975), Ilan et al. (1975), Ilan and Loewenthal (1976), Ilan 
(1977, 1978), Fuyuki and Matsumoto (1980), and Jill et al. 

(1988). All articles, except those by Ilan (1977) and Jill et 

aL (1988), treat simple types of the free-surface topogra- 
phy--a  quarter and three-quarter planes (i.e., 90 ° and 270 ° 
corners), a (0, 180)-degree wedge, a downward vertical step 
discontinuity, a valley with a vertical border, and a valley 
with a steplike border. Nevertheless, the free-surface ap- 
proximations developed in those studies allowed useful nu- 
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merical investigations of wave scattering by the FD method, 
for example, Ilan et al. (1979), Ilan and Bond (1981), Boore 
et al. (1981), Fuyuki and Nakano (1984), and Hong and 
Bond (1986). 

Ilan's (1977) treatment of an arbitrary polygonal free 
surface did not address the transition points between the seg- 
ments of various slopes and, moreover, required a non- 
uniform grid that, as noted by Jih et aL (1988), decreased 
accuracy. An improved representation of the arbitrary 
polygonal free surface was developed by Jih et al. (1988). 
They implemented a traction-free condition using a local 
rotated coordinate system either parallel to the inclined 
boundary or aligned with the bisector of the corner. Their 
approach thus requires a special treatment for each type of 
line segment and transition point between the sloping seg- 
ments. Compared to the flat free surface, the accuracy of the 
approximation is lower and also the range of stable Poisson's 
ratio is more limited. The technique was used by Mc- 
Laughlin and Jih (1988) to examine the effect of a near- 
source topography on short-period seismograms. 

An interesting approach to model a free surface of a 
complicated shape was suggested by John Vidale and used 
by Frankel and Leith (1992). In order to avoid the tedious 
explicit implementation of the free-surface condition, they 
used a density taper above the free surface. Keeping veloc- 
ities constant and decreasing density to zero when approach- 
ing the surface approximates the free-surface condition. The 
tapering has to be slow enough to prevent instabilities. As 
Ohminato and Chouet (in press) noted on the tapering tech- 
nique, putting 2 and/z to zero does not always properly sim- 
ulate a free-surface condition. 

Generally, an implementation of free-surface topogra- 
phy in the displacement formulation is not a trivial problem. 
The more complex geometry, the lower the accuracy and 
more limitations on the physical parameters of the medium 
in order to keep the free-surface approximation stable. 

The implementation of the traction-free condition is eas- 
ier and more natural in the velocity-stress FD formulation 
(Madariaga, 1976; Virieux, 1986; Bayliss et al., 1986). This 
was pointed out by Bayliss et aL (1986) and Levander 
(1988). Since it is the explicit presence of the stress tensor 
components in the equations that makes the implementation 
of the traction-free condition more natural, compared to the 
displacement formulation, the advantage obviously is not 
restricted just to the velocity-stress formulation. This is dem- 
onstrated by Ohminato and Chouet (in press), who employed 
the parsimonious staggered grid method of Luo and Schuster 
(1990) in which the displacement-stress formulation is used 
instead of the velocity-stress one. Ohminato and Chouet sug- 
gested a new way of simply implementing the stress-free 
condition for a three-dimensional topography. Though much 
easier than in the displacement formulation, they model to- 
pography in a staircase shape. 

The noticeable artificial diffraction is generated at the 
grid-related steps of internal boundaries as was demonstrated 
by Muir et al. (1992). Obviously, steps of the staircase free 

surface can produce ° even more pronounced undesired arti- 
ficial diffraction. This diffraction may not be negligible, es- 
pecially if the uppermost layer is relatively very soft. The 
diffraction may consist of a physical diffraction and also, 
depending on a particular FD scheme, of a numerical dif- 
fraction at relatively low frequencies. We observed a non- 
negligible diffraction in our FD computations of the SH re- 
sponse of the Ashigara Valley and Shidian basin [see 
Sawada (1992) and Yuan et aL (1992), respectively, for the 
structure characterization]. In our FD computations, the stair- 
case free surface is modeled using the vacuum formalism 
applied to the heterogeneous, displacement-formulation FD 
scheme presented in Moczo and Bard (1993). We observe 
an artificial diffraction at wavelengths up to about 30 times 
larger than the height of the vertical step of the free surface 
(equal to the grid spacing). The step-related diffraction may 
not be obvious in the case of relatively complex wave fields, 
for example, when the free surface of the ridge is modeled 
in a staircase shape and no step is isolated from others. We 
recognized the step-related diffraction on the differential 
seismograms and also because the steps of the free surface 
in investigated structures were isolated well enough. An ob- 
vious way to lower the diffraction at artificial grid-related 
steps is to use a relatively small grid spacing, which, of 
course, may lead to a considerable increase of the total num- 
ber of the grid points. Using a rectangular grid with varying 
grid spacings can help to model a staircase free surface that 
is more conformable to the actual shape, but the efficiency 
of such a grid, compared to a regular one, is lost as soon as 
the topographic feature (ridge, hill, or canyon) is covered 
with a soft surface layer. 

The free-surface topography that is not easy to treat in 
an accurate and stable manner for the FD method is easy and 
natural for the finite-element (FE) method. When properly 
employed, the FE method allows using irregular grids with 
elements of different size, geometry, and even order of ap- 
proximation. These advantageous features make it possible 
to treat a traction-free condition on the surface of a complex 
geometry sufficiently accurately and naturally. 

One way to keep advantages of the FD method and, at 
the same time, to avoid a problematic treatment of the free- 
surface topography is to combine the FD method with the 
FE method. This idea is, in fact, not a new one. Ohtsuki and 
Harumi (1983) and Ohtsuki et aL (1984) combined the par- 
ticle model with the FE method to simulate the P-SV wave 
propagation in a perfectly elastic heterogenous medium with 
the free-surface topography. In fact, their particle model 
yields the FD scheme that only differs little from the standard 
FD scheme for a homogeneous elastic medium in the dis- 
placement formulation. Ohtsuki et aL (1984) applied the FE 
method to irregular zones (nonplanar parts of the free surface 
and internal boundaries) while they used the particle model 
for the internal homogeneous parts of the medium and ho- 
mogeneous parts with the horizontal free surface. 

In this article, we combine the FE method with the FD 
method to compute the P-SV wave propagation in a visco- 
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elastic heterogeneous medium with a flee-surface topogra- 
phy. We use the FE method to cover fully or partially (e.g., 
in a narrow strip along the free surface) the topographic fea- 
ture and the FD method for a major part of the computational 
region. This means that we use the FD method also for het- 
erogeneous parts of the medium that include material dis- 
continuities. 

In the following sections, we first present the equations 
of motion that govern the P-SV wave propagation in the vis- 
coelastic heterogeneous medium. Then we continue with the 
FD and FE algorithms that solve the above equations of mo- 
tion. We outline the link between the FD and FE algorithms. 
In order to test the developed hybrid method, we compare 
our numerical solutions with those by independent methods. 
First, we test the incorporation of attenuation in our method 
using viscoelastic models of an unbounded medium and a 
half-space. Then, we test the inclusion of free-surface to- 
pography using the canyon and ridge models. In the last 
numerical example, we demonstrate the two-step hybrid 
computation of the wave field in models including a ridge 
and a soft valley due to a localized source. 

Before we get into the next section, let us note that in 
this article, we consider only pure 2D problems. Possible 
extensions to 3D seismic sources are discussed in detail in 
the article by Zahradn~ and Moczo (1996). We do not ex- 
pect any theoretical problem with extending our method to 
a 3D medium. In a 3D case, however, an efficiency of the 
computer code becomes a crucial question. The 3D exten- 
sion of the present method will be addressed elsewhere. Let 
us point out then that even if we restrict ourselves to a 2D 
excitation and 2D propagation, it is still advantageous to 
calculate the source radiation by the DW method because of 
completeness of the radiated wave field, simplicity and ef- 
ficiency of the computational scheme, and possibility to sim- 
ulate complex extended seismic sources. 

Equations of Motion 

We consider two-dimensional P-SV wave propagation 
in two-dimensionally inhomogeneous viscoelastic medium. 
Viscoelasticity of the medium allows for the attenuation of 
waves. Emmerich and Korn (1987) suggested a generalized 
Maxwell body as a theological model of the viscoelastic 
medium suitable to describe realistic attenuation laws in the 
time-domain computations of wave propagation. In their ar- 
ticle, Emmerich and Korn (1987) gave a detailed explanation 
of the approach as applied to the SH-wave propagation. 
Later, independently, Emmerich (1992) and F~h (1992) ap- 
plied the approach to the P-SV case. Since we use the time- 
domain finite-difference and finite-element methods to solve 
the equations of motion, we adopt the same approach. 

Let us note that we applied Emmerich and Korn's 
method in our previous studies on seismic response of local 
sedimentary structures--e.g., Zahradn~ et al. (1990), 
Moczo and Hron (1992), Moczo and Bard (1993), Zahradnl"k 

et al. (1994), Moczo et al. (1995), Zahradm'k and Moczo 
(1996), and Moczo et al. (1996). 

Let the computational region be an xz  plane and the 
density p and Lain6 elastic coefficients 2 and/2 be dependent 
on both x and z coordinates. Then the displacement vector 
-~ (u[x, z, t], O, w[x, z, t]) obeys the equations 

pa = (xu~L + (FU~)z + (2WOx + CUWx)z - 2 ~Y, 
j = l  

pro = CuwxL + (xw~)~ + (uuOx + (,tu.)z - ~ ~7, 
j=l 

(1) 

+ + 

+ (2Y~'Ux)z], j = 1 . . . . .  n. 

(2) 

Here 

= 2 + 2/2, ( 3 )  

and coj (j = 1 . . . . .  n) are the angular relaxation frequencies. 
The coefficients lff and ~ (j = 1 . . . . .  n) are obtained, 
respectively, from the systems of equations 

n 0 3 2 - _  °gffSk + '/Q~ 1(05k) ~ = Qd-l(cbk), 

j = l  (4) 
k =  1 . . . .  , 2 n -  1, 

and 

k =  1 . . . .  , 2 n -  1. 

( 5 )  

Q~(obk) and (~/~(e3 k) (k = 1 . . . . .  2n - 1) are desired values 
of the quality factors for P and S waves, respectively, at the 
specified frequencies o3 k. It is reasonable that both the COg and 
o5 k frequencies cover the frequency range of interest loga- 
rithmically equidistantly, and c~ 1 = co I and 052n_ 1 = o9~. 
The coefficients ~ (j = 1 . . . . .  n) are obtained from the 
relation 

= - 2/2  
2 (6) 

The rheology of the medium is represented by two gen- 
eralized Maxwell bodies. Each of them consists of n classical 
Maxwell bodies (i.e., n relaxation mechanisms) and a single 
spring, all connected in parallel. In the generalized Maxwell 
body , /2~  is the elastic modulus and/2~/coj is the viscosity 
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of the jth classical Maxwell body, and/z(1 - ~ =  1Yj~) is 

the elastic modulus of the single spring. Analogously, 2Y~, 

2 1 - = ~ , and ZY~/coj are the elastic moduli and vis- 

cosities, respectively, in the other generalized Maxwell 
body. The viscoelastic modulus of the generalized Maxwell 
body is 

j = l  io9 + ~j 

M~(og) and M u  stand for f l n ( ( . O )  and/z, respectively, in one 
generalized Maxwell body and for 2~(o) and 2 in the other. 
The subscript U means unrelaxed. Then, in one generalized 
Maxwell body, for example,/2 represents the unrelaxed mod- 
ulus, while the elastic modulus of the single spring, that is, 

/t(1 - ~]j~ 1 Fj~), represents the relaxed modulus Mn. 

In practice, we usually know phase velocities of P and/ 
or S waves at certain reference frequency co r (not necessarily 
the same for both types of waves). Thus, we need a relation 
between the phase velocities and the corresponding unre- 
laxed moduli that specify the computational model of the 
medium. The phase velocity c(co) is given by the relation 

c(co) = Re . (8) 

Then we get from equations (7) and (8) 

M y  = pc2(Or) R + 0 1  
2R 2 (9) 

Here, R = (O12 + 0 2 )  1/2 and 

0 , =  1 _  ~ jEyt. . 1 
j = l  1 + ((Dr/f ,  Oj) 2 '  

j=l  1 + ((Dr]O)j)  2 

(10) 

If we know the phase velocity for S waves, Cs(CO~), then we 
insert YJ' (j = 1 . . . . .  n) into equations (10) and get/z from 
equation (9). If we know the phase velocity for P-waves, 
ce(COr), then we insert Vjfj = 1 . . . . .  n) into equations (10) 
and get x from equation (9); 2 is then obtained from equation 
(3). 

Numerical Solution 

A major part of the computational region is covered by 
a rectangular grid on which the FD method is used. Topo- 
graphic irregularities of the free surface are fully or partially 
covered by, generally, an irregular mesh of finite elements. 

Both parts of the computational region may include material 
inhomogeneity. 

Finite-Difference Algorithm 

Equations (1) and (2) can be solved using the explicit 
heterogeneous FD scheme suggested recently for perfectly 
elastic media by Zahradn~ (1995b) and tested by Zahradn~ 
and Priolo (1995). Let u~ and w~l be discrete approximations 
of the displacement components U(Xi,Zl,tm) and W(Xi,Zvtm), 

~)",~7' and ~ ,~  discrete approximations of the functions 
~](Xi,Zl,tm) and ~y(x i , zJ , , ) ,  Pil an effective density at a grid 
point il, At a time step, and Ax, Az spatial grid spacings. 
Then we replace differential equations (1) and (2) by their 
FD approximations: 

m - 1  u~ +1 = 2u~ - Uil 

A2t 
+ --[L~(x,u) + Lz~(u,u) + L~(Lw) + Lxz~,w) 

Pit 

1 
"2 j ~ l  [,,gu, m + 1/2 ,~u ,m-  1/2~]. 

• = ~ j ,  il + ~:,iz :J, (11) 

m+l = 2w7]/l - w,"7 -1 Wil 

A2t 
+ --[L~q~,w) + Lzz(X,w) + Lz~,u)  + L~z(~,u) 

Pit 

1 n 

-Z E (,~w,m + 1/2 :.w,m-- 1/2-t]. 
- -  2 j'--l'= k~j, il "~ %j, il ) J '  (12) 

~ju, m+ 1/2 ___ 2 - -  co:At xu, m--ll2 _~. 2~/At 
,il 2 + co,At W, il 2 + coyAt × 

[L~(K~,u) + L~z~U~',u) + L z X ~ , w )  

+ Lxz(lzYj~,w)], j = 1 . . . . .  n; 

(13) 

~w~/n + 1/2 = 2 - co:At :~,,.- 1/2 2~iAt 
2 + cojAt w.~t + 2 + co:At × 

[L~x~.,w) + L~z(~,w) + Lz~U~",u) 

+ Lxz(~,u)], j = 1 . . . . .  n .  

(14) 

If a grid point il is an internal point, the Lxx, Lzz, Lz~, and Lxz 
operators have the form 

1 
- -  H m 

L=c(a, f )  = A2 x [ail(fii+ u - f '~)  

n m - ai_u(f i l  - fire_U)], (15) 

1 V m 
Lzz(a' f )  = - ~ z  [ait(fa+ l - f .?)  

V m 
- -  a i l _ l ( f i i l  - -  f /~n_l ) ]  , (16) 
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1 
Lz~(a' f )  - 4AxAz [all ~ +  1 

+ f / ~ l / + l  - -  f /~n-1 - -  f / r ~ l ; - 1 )  - -  a H - l l  ~ / m l l + l  

"~- f i~n+l  - -  f / m _ l l _  1 - -  f / ~ n _ l ) ]  , 

(17) 

1 __ _ _  V m 
L = ( a , f )  4 A x A z  [ai; ~i+ l; 

+ f / + l l + l  - -  f / r o l l  f / m - - l l + l )  V m m - -  - -  a l l - 1  ( f l + l ; - - 1  

+ fI~lz - f/~-l;-~ - f/m )1, 

(18) 

H and v where a~; a~; are the horizontal and vertical effective 
parameters 

* i + l  ZI+I 

(f  dx) -1 (f dzl-1 ai ff = A x  ~ , a ivl = AZ ~ ]  . 

x i  Zl 

(19) 

If the grid point il is at t h e f l a t  free surface, the L** operator 
has the same form as in equation (15), but only half-values 

H and a~_ 1; in the medium without the of the parameters a a 
free surface have to be considered. The other operators have 
the form 

1 V m m 
L z z ( a ' f )  = - ~ z  ai;O~i,+ , - fi; ), ( 2 0 )  

1 _ H 
Lzx(a' f )  4AxAz [ai; + 1/2 (f/}n+ 1 

+ - f /7  - f f : l ; )  ( 2 1 )  

H m m 
- -  a i - l l + l l 2  (f/~n+ 1 + f / - 1 / + 1  - -  f i~  n - -  f / - l l ) ] ,  

the frequency up to which we want to have our computation 
sufficiently accurate. 

If the FD scheme is used in combination with the FE 
algorithm described below, a more restrictive condition for 
At has to be used. 

Finite-Element Algorithm 

In the FE method (e.g., Zienkiewicz and Taylor, 1989; 
Smith, 1975; Ser6n et  al., 1989, 1990, Ser6n and Badal, 
1992), in the case of a perfectly elastic medium, we solve 
the system of the second-order, linear, ordinary differential 
equations 

M~i + Kd = f (24) 

instead of the second-order, linear partial differential equa- 
tion of motion 

pii  i = % j  + J~. (25) 

In equation (24), M is the mass matrix determined by the 
density distribution in the medium, K is the stiffness matrix 
determined by the elastic properties of the medium, d is the 
displacement vector consisting of discretized displacements 
in the nodes, and f is the load vector determined from the 
source and boundary conditions. Therefore, the vector f is 
present in the system of equations (24) even if the body force 
term f / i s  not considered in equation (25) (as in the case of 
equations 1). a;j,i stands for the partial spatial derivatives of 
the stress tensor. 

It is obvious that in a general case, a solution of equation 
(24) may be inconsistent with a solution of equation (25): 
the solution of equation (24) may not be as smooth as the 
solution of equation (25) if certain conditions for the right- 

1 
Lxz(a' f )  - 4AxA~z lay- 1121 (f//~n _}_ f/~n+ 1 - -  f / rn  1l - -  f / m  1l+  1) 

v ~ m m (22) + ai+112~ ( f / + l /  q-  f / + l l + l  - -  fi~ n - -  f / / + l ) ] "  

The operators for the fiat free surface follow from the ap- 
plication of the vacuum formalism to the full-form FD 
scheme of Zahradnfk (1995b). 

Since the above schemes for the displacement compo- 
nents are second-order accurate both in space and time, the 
number of grid points per minimum wavelength and time 
step are controlled by the standard dispersion and stability 
relations. In all numerical computations, we used 

As _-< flmi~ and At = 0.9As~n (23) 
12f~c (O~2max + fl2max)l/2' 

where As stands for Ax and Az, fl and a are, respectively, 
the S-wave and P-wave velocities in a medium, and fac is 

FE 

iHiiiliill 
FD A B 

FE and FD regions overlap in the zone 
bounded by A and B lines 

Figure 2. Contact between the regions covered by 
the finite-difference and finite-element grids. 

SURFACE 
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UNBOUNDED HOMOGENEOUS MEDIUM (UHM) 

~=2000 m/s ,0=1155 m/s p=1000 kg/ra a 
q~,@~)--30 q#@~)=20 ~, = 2r:- 11 

S (0m, 0m) 
Rl(0m,500m) R2(500m. 0m) R3(500m, 500m) 

HOMOGENEOUS HALFSPACE (HH) 
7 R1 , V R2 ..... • ..... FREE S,URF, ACE 

c~=20OO m./s #=1155 m/s p=lO00 kg/m ~ 

S ( 0m, 1.Slim) 
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WELDED QUARTERSPACES (WQ) 

S (0m,4m)  
Rl(480m, 0m) R2(1380m, 0m) R3(920m, 348rn) 

Figure 3. Three models used to test the in- 
clusion of the attenuation. The dashed lines in- 
dicate the area covered by the finite elements 
in the FD-FE modeling. 

hand side of equation (24) and a border of the solution do- 
main are not satisfied. Consistency of both solutions is prin- 
cipally guaranteed if the border of the solution domain is 
sufficiently smooth and if the domain itself can be suffi- 
ciently well approximated by a convex polygon. As it fol- 
lows from the numerical experiments, however, good results 
can be obtained even in the case when the above condition 
is not satisfied see, for example, the case of the trapezoidal 
ridge in the section on test computations. 

Since we want to combine the FE method with the FD 
method, we have to use the same attenuation in both the 
FE and FD--computational regions. Referring to equations 
(1), we add the additional term to the load vector f in equa- 
tion (24) 

M/i + Kd  = ~"-  ]~ ~./, (26)  
j= l  

where ~j is the vector consisting of discretized functions ~j 
in the nodes. It satisfies equations (compare with equations 
2) 

L 
~j + coj~j = -cojK)'d, j = 1 . . . . .  n, (27) 

where K f  is the modified stiffness matrix. The K)" matrix is 
defined in the same way as the stiffness matrix except that 
the elasticity matrix (relating the stress and strain in the ma- 
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Figure 4. Comparison of three solutions for the models shown in Figure 3. (a) u 
and w components of the displacements in the three receivers R1 to R3 in the model 
of an unbounded homogeneous medium (UHM). FD solution, solid line; analytical 
solution, dashed line. (b) u and w components of the displacements in the three receivers 
R1 to R3 in the models of the homogeneous half-space (HH) and welded quarter-spaces 
(WQ). FD solution, solid line; FD-FE solution, long-dash line; the pseudospectral tech- 
nique (Carcione, 1992), short-dash line. In all cases, the u and w components are scaled 
separately of each other. 

trix formulation of  Hooke'  s law) is replaced by the modified 
elasticity matrix 

[~ r)~ ) 
~ x  

00 
0 g v  

Several different time integration schemes can be used 
to integrate equation (26), see Ser6n et  al. (1989, 1990). We 
use the central difference scheme because we need to link 
the calculations by the FE method with that by the FD 
method at the contact of  the two corresponding computa- 
tional regions during the process of time integration. In the 
central difference scheme, as applied to equation (26), we 
solve a sparse symmetric system of linear equations 

t 
_ _  M d  m+ 1 = b,  ( 2 8 )  
A2t 

where 

b = t m - ( K  - M ) d  m --  ~ - ~  M d  m - 1  

1 ~ ^ ~2-"% 
_ 2 .= ( { 7 + 1 a  + ( 2 9 )  

The time step At has to satisfy the stability condition (Bam- 
berger et  al., 1980) 

Asmin (30) At < = [3(o~L= + ,~max.n2 ~11/2" 
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a SEMICIRCULAR CANYON U 

subjected to a plane P-wave 
impinging vertically from below 

2oo~sEavArloN ~ 2ooBSERvAr,O. 
Po,ms PO,NrS 

3~ OBSeRVATiON 
POINTS 

Ricker wavelet with a characteristic frequency fe 

f , =  1 and 

r=tA 

o~=2fl  --~ ~ / ' = 2 a  lc 

nondimensional time 

w nondimensional frequency 

Figure 5. Model of a semi-circular canyon. (a) Geometry and receiver positions. (b) 
Part of the spatial grid. The shaded area is a transition zone between the finite elements 
and finite-difference grid as in Figure 2. 

As mentioned earlier, this condition is more restrictive than 
the one (equation 23) for the FD scheme. As in the FD grid, 
we use 12 elements per minimum waveleng.th. 

We approximate the time derivative of ~j and the func- 

tion ~i itself in equations (27) in the same way as ~j and ffj 

in equations (2). This leads to equations 

~jm + 1/2 = 2 -- ~sAt ~jm-- 1/2 
2 + cojAt 

2co,At r 
- 2 + ¢cojAt K i d ' '  j = l , . . . , n .  

Link between the Finite-Difference 
and Finite-Element Algorithms 

The FD and FE algorithms have to communicate at the 
contact of the two corresponding computational regions dur- 
ing the entire process of time integration. We describe the 
link using the example of a portion of the computational grid 
around the free surface of the semicircular canyon shown in 
Figure 5. The portion of the grid is shown in Figure 2. Nodes 
on line A are internal for the FD algorithm. At the same time, 
they are Dirichlet-boundary nodes for the FE region. There- 
fore, the FE algorithm requires the displacement values cal- 
culated by the FD algorithm at these nodes as well as the 
acceleration values. The accelerations have to be calculated 
from the displacements with the second-order accuracy. 
Therefore, we approximate the acceleration in a node at the 

ruth time level for which we use a central difference formula 
and displacements at the time levels m - 1, m, and m + 1 
in the same node. This implies the use of the above-men- 
tioned central difference scheme for the time integration. 
The time integration procedure can be then summarized in 
the following steps: 

1. calculation of displacements at time level m + 1 from 
those at time levels m - 1 and m in the FD region; 

2. calculation of accelerations at the ruth time level in the 
nodes on line A; 

3. calculation of displacements in the FE region at time level 
m + 1 from the displacements at time levels m - 1 and 
m and from boundary conditions at the ruth time level; 
and 

4. prescribing displacements at time level m + 1 in the 
nodes on line B as a boundary condition for the FD re- 
gion. 

It is obvious that covering certain parts of the computational 
region by finite elements instead of a finite-difference grid 
implies some additional costs--increase in computational 
time and memory requirements. Let us consider M points in 
the FD grid. Consider then that we replace N grid points by 
N nodes of finite elements. Restrict ourselves to perfectly 
elastic medium since, in principle, the attenuation may be 
introduced in different ways--not  necessarily using the The- 
ology of the generalized Maxwell body. In our FD scheme, 
each grid point is assigned seven values (effective density, 
three horizontal and three vertical harmonic averages ofelas- 
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Figure 6. Comparison of the DW-BE (discrete wavenumber-boundary element)so- 
lution by Kawase (1988, Fig. 12) and our FD-FE solution for the model of the semi- 
circular canyon shown in Figure 5. 

tic moduli) describing medium properties. For N finite-ele- 
ment nodes, we construct mass and stiffness matrices. Then 
the lumped mass matrix consists of 2N nonzero values. The 
maximum number of nonzero values in the stiffness ma- 
trix--2N × 18--gives the upper estimate of number of val- 
ues that have to be stored in core memory. Depending on 
the medium and finite-element mesh, the number of nonzero 
values in the stiffness matrix may be lower--usually by 
10%. Thus, an increase in memory requirement is controlled 
by the number of finite-element nodes and the finite-element 
mesh (shapes of elements and their configuration). Based on 
our computational experience, we can approximately esti- 
mate the ratio of memory requirements in the combined FD- 
FE grid to those in an equivalent FD grid as 

M +  4N 

M 

Similarly, we estimate the ratio of the computational times 
as 

M + 6N AtvD 

M AtvE' 

where At~v and AtFE are time steps according to equations 
(23) and (30). We conclude that it is desirable to use finite 
elements only for a small portion of the entire computational 
region. 

Test Computations 

In order to test the accuracy of the developed method, 
we compare numerical results for selected problems with 
results obtained by independent methods of calculation. 

Inclusion of Attenuation 

First we consider a model of an unbounded homoge- 
neous medium and two half-space models--a homogeneous 
and a welded quarter-space models. The elastic parameters 
and wave-field excitation in the half-space models are taken 
from the article by Zahradnik and Priolo (1995). All the 
models are shown in Figure 3. In all cases, the wave field is 
excited by a line source. The source is a vertical body force. 
Its time dependence in the case of the unbounded medium 
is given by a zero-phase Ricker wavelet 

f~(t) = exp[-0.5fff(t - to) z] cos[rcfo(t - to)], 

wherefo = 22 Hz and to = 0.136 sec. In both half-space 
models, the source is applied near the surface. Its time func- 
tion is given by the first derivative of the above Ricker 
wavelet 

fw(t) = -exp(b)fo[f o cos(c)(t - to) + ~ sin(c)], 

b = -0 .5fo2( t -  to) z, c = ~ f o ( t -  to), 

withf  o = 22 Hz and to = 0.136 sec. 
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TRAPEZOIDAL RIDGE 

subjected to a plane SV-wave 
impinging vertically from below 

1 0 0  m 

Gabor wavelet with a dominant frequency fe = 5Hz 

/3 = l O 0 0 m / s  

a = 2 0 0 0 m / s  

;~c = 200m 

A~ = 400m 

Figure 7. Model of a trapezoidal ridge--geometry 
and receiver positions. The shaded area indicates the 
strip covered with the finite elements. 

For an unbounded medium, we compare the FD solution 
with the corresponding analytical solution (e.g., Carcione et  
al., 1988). The comparison is shown in Figure 4a. Both so- 
lutions are in very good agreement. 

In the case of the viscoelastic Lamb's  problem and quar- 
ter-space model, we compare the FD and FD-FE solutions 
with that obtained by Carcione (1992). In the FD-FE mod- 
eling, we covered a part of the half-space by the finite ele- 
ments as indicated by dashed lines in Figure 3. Carcione 
(1992) uses a Zener rheological model and a pseudospectral 
technique to compute the spatial derivatives. Assuming one 
relaxation mechanism (n = 1 in equations 2 and 27) for 
each wave type, we can strictly solve the same problem with 
both algorithms. 

The agreement of all three solutions is very good in the 
case of the homogeneous half-space (HH, the upper part of 
Fig. 4b). In the case of the welded quarter-spaces (WQ, the 
lower part of Fig. 4b), we observe a small discrepancy in 
the amplitude of the reflected Rayleigh wave arriving at 
about 1.35 sec in the R1 receiver. We performed additional 

0.0 0.2 0.4 0.6 0.8 

I t I ~ I L I I - 

DWBIE  
~ : : : : FDFE 

. . . .  IBE 

I I I I I I I I 

0.0 0.2 0.4 0.6 0.8 

Figure 8. Comparison of the DW-BIE (discrete wavenumber-boundary integral 
equation) and IBE (indirect boundary element; computed by H. A. Pedersen) solutions 
with our FD-FE solution for the model of the trapezoidal ridge shown in Figure 7. 
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computations for the purely elastic medium to find out 
whether the incorporation of the attenuation or the modeling 
of  the internal discontinuity is responsible for the small dis- 
crepancy. Based on the comparison with the finite-difference 
(PS1) and spectral element (SPEM) methods in Zahradnik 
and Priolo (1995), we suspect that the discrepancy is due to 
the uncertainty in the vertical interface position (one grid 
point) present in the pseudospectral method and not due to 
the incorporation of the attenuation. All three solutions agree 
very well in the R2 receiver and satisfactorily in the R3 
receiver (realizing the small amplitudes in R3 compared  with 
those in R1 and R2). 

Inclusion of Topography 

We consider two basic types of  topographic irregulari- 
ties: a canyon and a ridge. For the first comparison, we take 
a model of  a semicircular canyon first studied by Trifunac 
(1971). The model is shown in Figure 5. Since we want to 
compare in the time domain, we take a solution obtained by 
Kawase (1988) who used the discrete wavenumber-bound-  
ary element method. Kawase demonstrated the accuracy of 
his method by comparing his solution in the SH case with 
Trifunac's  analytical solution. 

The canyon is subjected to a plane P-wave impinging 
vertically from below. The time function of the incident 
wave is given by a Ricker wavelet defined as 

Ws('C ) ----- (27~2f2"t "2 - -  1 ) e x p ( -  n2f~zr2), 

where f¢ is the characteristic frequency of the wavelet and 
z = tilth is the nondimensional time (which in the frequency 
domain corresponds to the nondimensional frequency f~ = 
fa/fl), a being the radius of  curvature of  the canyon and fl 
the S-wave velocity. Setting f~ = 1 and fl (ndsec) equal to 
a (m), we get the wavelength of S wave at the characteristic 
frequency equal to the canyon radius. The P-wave velocity 
is set to be 2ft. Based on the grid used in our computation, 
our solution should be theoretically accurate up to 4f~. Both 
solutions are shown in Figure 6. It is clear that they are in 
very good agreement. The only slight difference is in the 
velocity of  the Rayleigh waves propagating away from the 
canyon. 

The second topographic geometry that we consider is a 
ridge of trapezoidal shape (Fig. 7). The base of  the ridge is 
400 m wide, and its elevation is 150 m. The flanks of  the 
ridge are steeply inclined at 45 ° from the vertical, while the 
summital platform is flat and 100 m wide. The S-wave and 
P-wave velocities of  the medium are 1000 and 2000 m/sec, 
respectively. The incident seismic wave field is a vertically 
impinging plane SV wave having the time dependence of a 
Gabor wavelet 

u~(t) = e x p { -  [co(t - t s ) / 7 ]  2 } cos[co(t - t~) + q/] 

with co = 2nfp, fe  = 5 Hz, t~ = 0.36 sec, 7 = 4, and ~u = 
hi2. Receivers are arranged in a linear profile extending from 

* SOURCE 

b 

SOURCE 

~iiiiiiithiththi7 

C 

SOURCE 

~iiii!i~thiiththJ 

d 

SOURCE 
i.:,'.. ........................... Jl 

Figure 9. Three models of local structures: (a) 
trapezoidal ridge, (b) sediment valley, and (c) com- 
bined topographic-sedimentary structure. (d) The 
source radiation and wave propagation in the back- 
ground medium (i.e., homogeneous half-space) is 
computed only once. The wave field recorded along 
the excitation lines (dashed lines) is then used in re- 
sponse computation for each of the structures. 
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Figure 10. The combined h X h and 2h X 2h 
spatial grid. The finite elements are used as a transi- 
tion zone between the two grids. The shadowed area 
has the same meaning as that in Figure 2. 
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Figure 11. The horizontal (u) and vertical (w) components of the displacements at 
the receivers along the free surface of the combined topographic-sedimentary structure. 

the center of  the summital platform to a distance of 200 m 
from the foot of the ridge. They are equally spaced at 25-m 
intervals along the horizontal direction. The resulting hori- 
zontal and vertical displacement seismograms are presented 
in Figure 8. We compare our solution with two independent 
ones: a discrete wavenumber-boundary integral equation 
method (Gaffet and Bouchon, 1989) and an indirect bound- 
ary element method (Pedersen et aL, 1994). 

The agreement between our solution and the one cal- 
culated by the indirect boundary element method is excel- 
lent. The results obtained by the discrete wavenumber- 
boundary integral equation method, although in good gen- 
eral agreement with the other two solutions, slightly under- 
estimate the strength of the diffracted waves. This small dis- 
crepancy is attributed to the presence of sharp corners in the 
topography that are smoothed out in the boundary integral 
equation formulation. 

Based on these numerical tests, we conclude the follow- 
ing: (1) The presented FD scheme and the FD-FE algorithm 
accurately model anelastic attenuation. (2) The FD-FE al- 
gorithm accurately models free-surface topography. 

Hybr id  Model ing  

As shown in Figure lb, our hybrid modeling consists of 
two steps. In the first step, the source radiation and wave 
propagation in the background medium is calculated by the 
DW method, and the computed wave field U k is recorded 
along lines a and b. In the second step, the wave field Uk is 
applied on lines a and b to excite the wave field in the lo- 
calized structure and link the total wave field U with the 
residual wave field Ur. 

We have shown in the previous sections that the devel- 
oped FD scheme and FD-FE algorithm can be used to cal- 
culate wave propagation in the U r and U regions (see Fig. 
lb), respectively. Zahradn~ and Moczo (1996) have dem- 
onstrated the validity of the DW-FD coupling algorithm. This 
is the same method used here for the DW-FD-FE coupling. 
With respect to the coupling algorithm, the free-surface to- 
pography does not mean any change compared to a sedi- 
mentary structure with the flat free surface: they both scatter 
the incident wave field. 

In the next numerical example, we want to compute the 
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Figure 12. The horizontal (u) and vertical (w) components of the displacements at 
the receivers along the free surface of the half-space with sediment valley. 

response of three localized structures--a ridge, sediment 
valley, and the ridge neighboring the sediment valley--to 
the same source radiation (see Figs. 9a through 9c). We can 
avoid computing the source radiation and background wave 
propagation three times (i.e., for each of the three structures) 
by making use of the coupling algorithm. Thus, we first com- 
pute the source radiation and background propagation in the 
absence of both irregularities (i.e., in the homogeneous half- 
space) and record the wave field along two excitation lines 
(see Fig. 9d). Second, we apply the recorded wave field on 
the excitation lines in each of the three computations (one 
computation for each of the three structures) without includ- 
ing the physical localized source in the computations. 

Before we show the numerical results, let us explain one 
other possible use of the FD-FE combination. In order to 
make the second-step computation more efficient, we use a 
2h × 2h spatial grid for the U r region (i.e., outside the ex- 
citation rectangle), while we use an h × h spatial grid inside 
the excitation rectangle. The link between the h × h and 2h 
× 2h grids is accomplished using a strip of finite elements 
(see Fig. 10). We have checked the performance and accu- 

racy of such a combined grid by comparing it with the reg- 
ular h × h grid covering both regions. The use of finite 
elements between the two FD grids is required because we 
have not found a stable FD algorithm to link the two grids 
as in the SH case (see Moczo et al., 1996). 

In the numerical simulations, we considered the follow- 
ing model and source parameters. The topographic feature 
is the same trapezoidal ridge as in Figure 7. The sediment 
valley is 275 and 175 m wide at the surface and at the bot- 
tom, respectively. The valley is 55 m deep. The P- and S- 
wave velocities and the density inside the valley are 900 rrd 
sec, 400 m/sec, and 1500 kg/m 3. The P- and S-wave quality 
factors are 60 and 40 at a frequency of 6 Hz, and the Fut- 
terman Q(og) law is assumed. It is approximated using three 
relaxation mechanisms (n = 3) and o93 = 2n6 rad/sec. The 
wave field is due to the downward vertical force acting along 
the line source that is in 300 m depth and 610 m to the left 
of the ridge. The time function of the force is given by Gabor 
wavelet with a dominant frequencyfp = 2.5 Hz, t s = 0.72 
sec, y = 4, and ~u = n/2. The spatial grid spacing is h = 
5 m in the U region and 10 in in the Ur region. The time 
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Figure 13. The difference seismograms (seismograms in Fig. 11 minus seismo- 
grams in Fig. 12). 

step is 0.001 sec. The receivers are equally spaced at 20- 
and 10-m intervals in the horizontal direction. 

Figure 11 shows seismograms at the free surface of the 
combined topographic-sediment structure. Figure 12 shows 
seismograms at the free surface of the half-space with sed- 
iment valley. Comparison of seismograms in both figures 
suggests that there are certain differences in the responses 
of the sediment valleys with and without neighboring ridge. 
Differences in the waveforms are clearly visible mainly in 
the horizontal (u) component. Difference seismograms (i,e., 
seismograms in Fig. 11 minus seismograms in Fig. 12) in 
Figure 13 exhibit amplitudes and durations that are compa- 
rable to those in Figures 11 and 12. Further, we computed 
the Fourier transfer functions (FLY) by dividing the Fourier 
spectra of the local responses by the Fourier spectrum of the 
input signal. In Figure 14, we show the FTF only for the 
horizontal components since there is practically no differ- 
ence between the FTF for the vertical components in the 
valleys with and without neighboring ridge. Both the dif- 
ference seismograms and FTF confirm that there is a con- 

siderable difference in the horizontal components in the 
responses of the sediment valleys with and without neigh- 
boring ridge while the vertical components are very close in 
both cases (the latter means that the vertical component of 
the difference seismograms is mainly due to phase shift of 
very close signals). Thus, we have a strong indication that 
taking the free-surface topography neighboring the valley 
can be (depending on the specific structure) important even 
in the case when we are only interested in the valley re- 
sponse. We do not show the seismograms for purely topo- 
graphic irregularity and corresponding difference seismo- 
grams since in this example the presence of the valley does 
not change the response of the ridge considerably. 

Conclusions 

We have developed a new hybrid method to compute 
the P-SV seismic motion at inhomogeneous viscoelastic to- 
pograplfic structures. The method combines the DW (dis- 
crete-wavenumber), FD (finite-difference), and FE (finite- 
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Figure 14. Fourier transfer functions at sites 1 
through 28 along the free surface of the sediment val- 
ley in the model with neighboring ridge (thick line) 
and in the model without the ridge (thin line). 

element) methods. It represents a generalization of the 
hybrid DW-FD method suggested recently by ZahradnN 
(1995a) and ZahradnN and Moczo (1996) for modeling 
near-surface structures along with free-surface topography. 
While the source radiation and wave propagation in the 
background medium are solved using the DW method, as in 
the DW-FD method, the inclusion of a free-surface topog- 
raphy is solved by a combined FD-FE algorithm. 

In developing the FD-FE algorithm for viscoelastic me- 
dia, we 

• applied the explicit heterogeneous elastic FD scheme of 
Zahradn~ (1995b) to the viscoelastic medium whose the- 
ology is represented by two generalized Maxwell bodies, 

• checked the accuracy of the FD scheme in the viscoelastic 
medium through numerical comparisons with analytical 
and independent numerical solutions, 

• suggested a way of including the attenuation correspond- 
ing to rheology of two generalized Maxwell bodies into 
the standard FE formulation, 

• suggested a time-integration scheme for the FD-FE algo- 
rithm, 

• have shown that a strip of finite elements can be used as 
a transition zone between the h x h and 2h X 2h FD 
spatial grids in the combined grid, and 

• checked the accuracy of the FD-FE algorithm through nu- 
merical comparisons with analytical and independent nu- 
merical methods for viscoelastic models with a flat free 
surface and perfectly elastic models with free-surface to- 
pography. 

Numerical comparisons with independent methods 
showed that our method is sufficiently accurate. 

Using numerical computations, we have shown that ac- 
counting for the free-surface topography neighboring a sed- 
iment valley can be important even in the case when we are 
only interested in the valley response. In other words, the 
ridge can considerably influence the response of the neigh- 
boring sediment valley. 
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