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ABSTRACT
We design a fast ray tracing technique to simulate the response of  
seismic sources located at depth such as passive data due to fluid 
injection, hydraulic fracturing, volcanic tremors or earthquakes, 
with receivers located at the surface recording the displacement (and 
particle-velocity) field. The ray tracing is based on the Fibonacci 
search algorithm. We consider interfaces of  arbitrary geometry 
and homogeneous layers defined by the seismic velocity, the quality 
factor and the mass density. Amplitude losses consider geometri-
cal spreading, intrinsic attenuation (related to the quality factor) 
and transmission losses at the interfaces. The traces corresponding 
to time spikes are then convolved with a Ricker wavelet to obtain 
band-limited synthetic seismograms. We compare the results with 
full-wave seismograms computed with a direct algorithm based on 
the Fourier pseudospectral method. The ray tracing algorithm is 
much faster and from a practical point of  view can be used as a 
forward modeling algorithm for the location of  different sources of  
seismic energy. 

1. Introduction
Location algorithms of  different energy sources 

such as micro-seismicity due to fluid injection, hy-
draulic fracturing, volcanic tremors or earthquakes 
require a fast and practical forward modeling algori-
thm (e.g., Battaglia and Aki, 2003; Fischer et al., 2008, 
Kumagai et al., 2009; Shapiro, 2015]. In particular 
Battaglia and Aki [2003] use a very simple analytical 
equation to compute the amplitude decay from the 
source location (a volcanic tremor) to the receiver. 
This is due to the fact that the medium is assumed 
homogeneous. However, in more realistic situations, 
the medium is heterogeneous and a numerical algo-
rithm is required.

A ray tracing algorithm including the source ra-
diation pattern, attenuation and transmission losses 
is sufficiently efficient for this purpose.

We propose a ray tracing technique based on 
the Fibonacci search method. The modeling intends 
to simulate the response of  seismic sources located 
at depth and recorded at the surface. We model the 
source radiation pattern due to tensile sources, whi-
ch may approximate fairly well the energy released in 
cases of  micro-cracks due to fluid injection, fracking 
and magma flow inducing volcanic tremors. We fo-
cus on direct arrivals since multiple events have a 
lower amplitude and are difficult to pick and detect. 
We compare our results to fullwave synthetic seismo-
grams computed with the Fourier pseudospectral 
method [Carcione et al., 1988, Carcione, 2014].

2. Methodology
We compute synthetic seismograms of  a viscoa-

coustic 2D heterogeneous medium by using a ray tra-
cing method based on a Fibonacci search algorithm, 
where the geological model is described in terms of  
vertically stacked layers, each uniform and isotropic. 
We consider a single source, located at depth, and a 
set of  receivers on the surface.

2.1 Definition of  the model
Each layer is isotropic, anelastic and homogene-

ous, and characterized by its acoustic velocity, quality 
factor and density. The interfaces can have any geo-
metrical shape provided that they do not cross each 
other (e.g., pinchouts are not allowed) and extend 
from one side of  the model to the other. They are de-
fined by a small number (∼50) of  equi-spaced points 
along the horizontal direction (x-variable). Spline in-
terpolation between the starting points is performed 
at a more densely sampled set of  equi-spaced points 
(∼5000). The larger set of  points is connected by line 
segments. Receivers are located on the surface.
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2.2 Initial value problem 
For a given source point and starting ray angle, 

the determination of  the ray path constitutes an initial 
value problem. Proper ray tracing requires the solution 
of  a two-point problem, to find the ray (defined by its 
starting angle) going from the source location to a re-
ceiver. We find such rays by performing a Fibonacci se-
arch on the starting angle, which requires to iteratively 
solve the initial value problem as follows.

With the geological model defined in the (x, z)-pla-
ne, we consider a ray departing from source point S, 
making an angle θ with the vertical z-axis. Because each 
layer is isotropic and homogeneous, the ray follows a 
straight path until it intersects an interface. Each inter-
face is composed of  a large number of  straight segmen-
ts. To determine where an intersection between the ray 
and an interface occurs, the algorithm loops over all the 
segments of  an interface to the left of  the source point 
if  θ < 0, and to the right of  the source point if  θ > 
0, checking if  an intersection exists. If  the loop ends 
without positive results then there is no intersection 
within the model boundaries. 

Starting in the layer where the source is located, 
the algorithm performs three tests: First, that no inter-
section with the underlying interfaces exists. Second, 
that an intersection with the overlying interface exists 
within the model boundaries. And third, that no total 
internal reflection occurs. If  any of  these checks fails, 
no ray path is computed. If  all three tests are successful, 
the intersection point and transmission angle are saved, 
and the three tests are run again on the upper layer, 
considering the new ray starting point and direction. 
This procedure continues until an intersection with the 
surface layer is found, or until one of  the tests fails.

2.3 Source-receiver ray tracing
We define fs,i (θ) as the distance between the i-th 

receiver and the ray’s intersection point with the surfa-
ce measured along the x-axis. In order to find the sour-
ce-receiver ray paths, a Fibonacci search (outlined in 
Appendix A) is carried out on θ to minimize fs,i (θ) for 
each receiver. The method requires the specification of  
an initial angular interval [a1 , b1] for each receiver, and 
the desired final interval length l. It then prescribes a 
fixed number (q) of  fs,i (θ) evaluations at sequentially 
determined θ values. The integer q is chosen in accor-
dance with equation (12), so that bq − aq < l. All fs,i (θ) 
evaluations are carried out by solving the initial value 
problem as described in the preceding section.

The starting interval for each receiver is obtained 
by shooting a large number of  rays with starting angles 

uniformly distributed in every direction and selecting 
the pair of  angles which produce the closest arrivals 
on each side. While keeping the source point fxed, the 
computational cost of  this procedure becomes relati-
vely smaller as the number of  receivers increases, becau-
se the same set of  bracketing intervals is used for each 
receiver.

The method is only feasible if  fs,i (θ) is unimodal in 
the starting angular interval. This is clearly not the ge-
neral case. For instance, if  the receiver lies in a shadow 
zone, the prescribed bracketing intervals could contain 
the shadow zone limits on both sides, which would cor-
respond to two different minima. Additionally, even if  
the receiver is not in a shadow zone, it can occur that 
more than one ray reaches it. In these cases the algori-
thm will likely fail to converge to the receiver positions.

If  the starting interval is adequate, the Fibonacci 
method reduces the starting interval length for each re-
ceiver by a factor 2Fq , where Fq is the q -th Fibonacci 
number. Let θ*

i be the central value of  the final interval 
corresponding to the i-th receiver. Rather than having 
accuracy in the angle parameter we are interested in ac-
curate surface arrival positions. Thus, for each receiver 
we check that fs,i (θ

*
i) < d with d the arrival distance to-

lerance.
The complete ray tracing results are the ray paths, 

as defined by the intersection points and the incidence/
transmission angles across each interface, for all recei-
vers where acceptable rays are found. Receivers for whi-
ch the tolerance condition is not satisfied, and those for 
which a premature termination condition is triggered at 
any point during the ray tracing procedure are comple-
tely discarded from additional computations.

2.4 Amplitude losses and travel time
Once we have determined the ray path from the 

source to a given receiver, we can compute the ampli-
tude. The intrinsic (physical) attenuation along the ray 
is described by

(1)

where r is the distance, a is the attenuation factor, f  is 
the frequency of  the signal, c is the wave velocity and Q 
is the quality factor. This equation holds for Q >> 1 
[Carcione, 2014; eq. (2.123)]. Velocity dispersion is ne-
glected.

Energy is also lost at interfaces, where tran-
smission rays do not reach the critical angle. We ne-
glect intrinsic attenuation effects on the transmission 
coefficient, assumed as a 2nd-order effect. Let’s assume 
that we record the vertical displacement at the surface.

A1(r)= exp(−αr),       α =
π f
cQ

,
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The displacement transmission coeffi cient is

(2)

where Z = ρc is the impedance, ρ is the mass density 
and θ is the ray angle with respect to the line perpendi-
cular to the interface. Primed quantities correspond to 
the transmission medium. Equation (2) is complemen-
ted with Snell’s law: sin θ/c = sin θʹ/cʹ.

The loss by transmission involves the energy fl ux 
and is given by

(3)

[Carcione, 2014]. Equations (2) and (3) are demonstra-
ted in Appendix B.

Moreover, the signal decays by geometrical spreading. 
In 2D media, the decay is proportional to √r, i.e., a pulse 
with amplitude 1 at the source location will decay to 1/√r 
at a distance r from the source.

The total amplitude loss from the source to the sur-
face is given by

(4)

where N is the number of  interfaces and ri is the len-
gth of  the ray in medium i.
In addition to the amplitude loss, we compute the 
travel times of  the ray inside each layer as ri/ci and 
add them over all the traversed layers to obtain the 
total travel time t*. A pulse at time t*, with amplitude 
A given by equation (4), represents the system impul-
se response if  the source has amplitude 1 at time t = 
0. Only fi rst arrivals are considered.

2.5 Source spectrum and radiation pattern
To obtain a more realistic seismogram, we per-

form a convolution between the impulse response and 
a wavelet representing the source time history. We con-
sider a Ricker wavelet of  the form

(5)

 where T is the period of  the wave and we take ts = 1.4T. 
The peak frequency is fp = 1/T. The frequency involved 
in equation (1) is f = fp. The frequency spectrum is

(6)

 The source has a radiation pattern, i.e., it does 
not emit the same amplitude at every angle. Let us de-

note with δ, λ and φ the dip, rake and strike angles, re-
spectively, and ϕ is the slope angle describing the tensili-
ty of  the source, such that ϕ = 90° for pure extensive 
sources, ϕ = 0° for pure shear sources and ϕ = − 90° for 
pure compressive sources. According to Carcione et al. 
[2015], a tensile source in 2D space is obtained for ϕ = λ 
= φ = 90° , while shear sources are described by ϕ = 0 
and λ = φ = 90° . Then, using equation (1) of  Kwiatek 
and Ben-Zion [2013] we get the radiation pattern for P 
waves due to a tensile source:

(7)

[see also Ou, 2008], where θ is the angle between the 
ray and the vertical direction and ν is the Poisson ratio 
of  the medium. The source strength versus θ is A0 R(θ), 
where A0 is a constant.

3. Examples
Figure 1 shows a 3-layer subsoil model, and the ray 

paths traced from a source at (1.5,−1) km to a set of  
equi-spaced receivers at the surface, in the 0.5-2.5 km 
range, separated by 50 m. Interfaces where initially de-
fi ned by 61 points with 50 m spacing, and then inter-
polated with 1 m spacing, defi ning 3000 line segments. 
The initial bracketing angles were equi-spaced with 
π/20 radians, and a fi nal interval length shorter than 
10−5 radians was required. From equation (12) it fol-
lows that the total number of  evaluations per traced 
ray is 20. The largest ray-source arrival distance is less 
than 3 cm. Having completed the ray tracing from the 
source point to the receivers, we compute the amplitu-
de recorded at each receiver. Figure 2 shows the results 
with the surface receivers now separated by 10 m. We 
consider the radiation pattern of  a pure tensile source, 
as given by equation (7), and compute the amplitudes 

T = 2 ʹZ  cosθ
ʹZ  cosθ  + Z  cos ʹθ

,

A2 =
Z  cos  ʹθ
ʹZ  cos θ  

T

A=
Πi=1

N+1  A1iΠj=1
N  A2 j

Πk=1
N+1   rk

,       A1i = exp(αiri )

h(t)= u− 1
2

⎛
⎝
⎜

⎞
⎠
⎟exp(−u),u =

π(t −ts )
T

⎡
⎣⎢

⎤
⎦⎥

2

H(ω)= T
π

⎛

⎝
⎜

⎞

⎠
⎟aexp(−a− iωts ),a =

ω
ω p

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

,ω p =
2π
T

RP =
2v

1−2v
+sin2θ sin2δ+2(sin2δ sin2θ +cos2δ cos2θ)

Figure 1. Ray paths traced from the source point S to a set of  surfa-
ce receivers, represented by circles. The smooth horizontal curves 
indicate the layer interfaces, Q is the quality factor, c is the acoustic 
velocity and ρ is the density.
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for different values of  the source dip angle δ (ϕ = λ = φ 
= 90°). The Poisson ratio of  the lower medium is 0.25. 
Figure 3 shows the seismograms for three different dip 
angles. The source time history is a Ricker wavelet gi-
ven by equation (5) with fp = 30 Hz. As can be seen in 
Figures 2 and 3, the dip angle highly affects the ampli-
tude distribution.

Figures 4, 5 and 6 compare the results of  the ray 
tracing with full-wave simulations (vertical compo-
nent of  the particle velocity) for horizontal and dip-
ping layers. In all the three cases we consider isotropic 
sources, with fp = 30 Hz. For the ray tracing, the ini-
tial bracketing angles, the number of  points defi ning 
each interface, and the fi nal angular interval length 
were confi gured as in the example given in Figure 1. 
A velocity inversion is considered in Figure 5.

For the full-wave simulations, the peak frequency 
of  the relaxation mechanism coincided with fp. The 
dipping interfaces of  Figures 4 and 5 require a smaller 
spacing between the grid points of  the full-wave simu-

Figure 2. Surface amplitudes corresponding to the geological model 
of  Figure 1 and a pure tensile source with amplitude 1 at S. Each 
curve corresponds to a different source dip angle δ.

Figure 3. Synthetic seismograms corresponding to the geological 
model of  Figure 1. The source time history is a Ricker wavelet gi-
ven by equation (5) with fp =30 Hz. The source dip angle δ is diffe-
rent for each example. (a) δ = 0°, (b) δ = 45° and (c) δ = 90°.

Figure 4. (a) Geological model and ray paths determined from sour-
ce S at (1.498,−1.204) km to geophones on the surface indicated by 
circles. Actual ray tracing is performed from S to 200 geophones 
equispaced in the 0.5-2.5 km range. (b) Ray-tracing amplitudes com-
pared to full-wave simulations (vertical component of  the particle 
velocity) corresponding to the model in (a). The amplitude values 
are scaled with respect the maximum ones. The full-wave simulation 
uses a 429×221 mesh with 7 m spacing, and 0.4 ms as time step.

Figure 5. (a) Geological model and ray paths determined from sour-
ce S at (2.1,−1.204) km to geophones on the surface indicated by cir-
cles. Actual ray tracing is performed from S to 200 geophones equi-
spaced in the 0.5-2.5 km range. (b) Ray-tracing amplitudes compared 
to full-wave simulations (vertical component of  the particle velocity) 
corresponding to the model in (a). The amplitude values are scaled 
with respect the maximum ones. The full-wave simulation uses a 
429×221 mesh with 7 m spacing, and 0.3 ms as time step.
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lation than those of  the horizontal layers of  Figure 6.
In turn, an smaller time step is needed in the Run-
ge-Kutta method to satisfy the stability condition 
[Carcione, 2014; eq. 9.12]. As a consequence, the run 
time of  the full-wave simulations of  Figures 4 and 5 
is nearly 10 minutes, while the full-wave modelling 
of  Figure 6 requires 140 s. The ray tracing is in good 
agreement with the full-wave simulations, requiring 
less than 2 s. The reported times correspond to an 
Intel Core i5 4590 CPU.

4. Conclusions
We have developed a seismic ray tracing algorithm 

based on Fibonacci search. The method is fast enou-
gh to be applied as a forward modeling kernel to be 
used in inversion algorithms to locate seismic energy 
sources and model their seismic responses as well. 
The algorithm considers the effects of  geometrical 
spreading, transmission losses, intrinsic attenuation 
and the source radiation pattern, and shows a good 
agreement with full-wave numerical simulations.
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Appendix A: Fibonacci search algorithm

The Fibonacci search method [Kiefer, 1953] is a se-
quential search algorithm for minimizing an unimodal 
function over a closed interval, based on the Fibonacci 
numbers Fn defi ned as:

(8)

Unlike other sequential search methods (i.e. uni-
form, dichotomous, or the closely related golden section 
search method) Fibonacci search requires a predetermi-
ned number of  iterations. Its main advantage is that for 
the same starting uncertainty interval and number of  
iterations no other sequential search technique can re-

F0 = F1 =1,Fn = Fn−1+Fn−2 ,n≥ 2

Figure 6. (a) Geological model and ray paths determined from sour-
ce S at (1.5,−1.2) km to geophones on the surface indicated by cir-
cles. Actual ray tracing is performed from S to 200 geophones equi-
spaced in the 0.5-2.5 km range. (b) Ray-tracing amplitudes compared 
to full-wave simulations (vertical component of  the particle velocity) 
corresponding to the model in (a). The amplitude values are scaled 
with respect the maximum ones. The full-wave simulation uses a 
221×221 mesh with 10 m spacing, and 0.8 ms as time step.
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sult in a smaller final uncertainty interval.
Let f(x) be the function to minimize, q the total 

number of  iterations and [am, bm] the uncertainty 
interval after the m-th iteration. The algorithm pre- 
scribes the evaluation of  the function at two interior 
points, cm and dm given by

(9)

If  f(cm) > f(dm) the uncertainty interval at the next 
iteration, [am+1, bm+1], will we [cm, bm], otherwise if  f(cm) 
≤ f(dm), it is [am, dm]. This is due to the function’s unimo-
dality. In both cases, it follows from equation (9) that the 
new interval length is

(10)

Additionally, it can be shown (e.g., Bazaraa et al., 
2006) that for the next iteration, either cm+1 = dm or dm+1 
= cm. Thus every iteration after the first requires only 
one function evaluation. After q − 1 iterations (and q 
function evaluations) the interval length is

(11)

For the very last evaluation, equation (9) yields 
cq−1 = dq−1, both in the center of  interval [aq−1, bq−1]. 
In order to distinguish them one of  them is slightly di-
splaced. Taking dq−1 = cq−1 + ε, with ε very small, it is 
possible to reduce final interval length by approximately 
1/2, obtaining

(12)

The total number of  iterations must be selected a 
priori, taking equation (12) into account to achieve the 
desired accuracy level.

Appendix B: Transmission losses

To prove equations (2) and (3), we perform a ma-
thematical analogy between SH and P waves. The SH 
wave equation is

(13)

where µ is the rigidity, ρ is the mass density, σ is stress, v 

is particle velocity, a dot above a variable denotes time 
derivative and ∂i is a spatial derivative with respect to 
the variable xi. The indices 1, 2 and 3 correspond to the 
spatial variables x, y and z, respectively.

On the other hand, the P-wave equation is

(14)

The analogy is v2 → σ, σ12 → v1, σ23 → v3, µ
−1 → ρ and 

ρ−1 → ρc2. This implies ZS = √ρµ → Z−1, where ZS is the she-
ar impedance. Then, equations (2) and (3) results from Eqs. 
(8.158) and (8.184) in Carcione (2014) (note the following 
errata: Eq. (8.158): Remove the primes in the numerator; 
Eq. (8.815): Move the primes to the denominator).

Appendix C: Full-wave modeling method

The full-wave synthetic seismograms are compu-
ted with a modeling code based on the viscoacoustic 
stress-strain relation corresponding to a single relaxa-
tion mechanism, based on the Zener mechanical model. 
The equations are given in Section 2.10.4 of  Carcione 
[2014]. The 2D particle velocity-stress formulation is

(15)

where v is particle velocity, σ is stress, fi are directional 
forces, s is the source (explosion), e is a memory variable, 
and τ denotes relaxation times. These are given by

and                                         (16)

where Q0 is the minimum quality factor and τ0 is defined 
as follows. If  fp is the central frequency of  the source wa-
velet, we assume that the relaxation peak is located at ω0 
= 1/τ0 = 2πfp. The velocity c in these equations corre-
sponds to the unrelaxed or high-frequency limit velocity.

The numerical algorithm is based on the Fourier 
pseudospectral method for computing the spatial de-
rivatives and a 4th-order Runge-Kutta technique for 
calculating the wavefield recursively in time [e.g., Car-
cione, 2014].

cm = am +
Fq−m−1
Fq−m+1

(bm −am)

dm = am +
Fq−m
Fq−m+1

(bm −am)

bm+1 −am+1 =
Fq−m
Fq−m+1

(bm −am)

bq−1 −aq−1 =
b1 −a1
Fq

bq −aq =
b1 −a1
2Fq

ρ !v1 =∂1σ ,
ρ !v3 =∂3σ ,

ρc2(∂1v1 +∂3v3)= !σ ,

!v1 =
1
ρ
∂1σ + f1,

!v3 =
1
ρ
∂3σ + f2 ,

!σ = ρc2(ϑ +e)+ s,

!e = 1
τε
−
1
τσ

⎛

⎝
⎜

⎞

⎠
⎟ϑ −

e
τσ

,

ϑ =∂xvx +∂zvz

τε =
τ0

Q0

Q0
2 +1+1( )

m=1,...,q−1

τσ =
τ0

Q0

Q0
2 +1−1( ),

µ−1 !σ12 =∂1v2 ,
µ−1 !σ 23 =∂3v2 ,
ρ−1(∂1σ12 +∂3σ 23)= !v2 ,
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