
Explicit imaging expressions for weak horizontal transverse isotropy 
Vigen Ohanian PGS, Thomas M. Snyder* LLCC, Jose M. Carcione OGS 

 
SUMMARY  
 
Despite the recognized prevalence of vertical parallel 
cracks in reservoir rocks, the necessary imaging 
expressions for the weak HTI (horizontal transverse 
isotropy) system have not been studied in sufficient 
generality.  With the exception of the P-wave phase 
velocity formula, the existing first-order HTI expressions 
are restricted to certain regimes of applicability.   
 
The HTI and VTI (vertical TI) systems are distinguished 
from one another merely by the way they are configured in 
relation to the acquisition coordinate system.  In this paper, 
using coordinate transformation rules connecting the two 
systems, we first map all the coordinate dependent physical 
quantities appearing in the imaging VTI expressions, to 
their HTI counterparts - the mapped quantities are accurate 
to first-order. Then, by a simple substitution into the VTI 
expressions, we develop a complete suite of imaging 
expressions for systems with weak HTI.  
 
Our P- and S-wave phase velocity, polarization, and group 
velocity expressions are entirely general, in that they 
account for wave propagation in arbitrary directions within 
the HTI media. Thus, they can be readily incorporated into 
the multi-component production processing algorithms. 
 
INTRODUCTION 
 
Closed form phase velocity, polarization vector and group 
velocity expressions, describing the propagation of elastic 
waves in isotropic and anisotropic media, are the basic 
ingredients of elastic imaging algorithms used in seismic 
exploration. Group velocity formulas allow the 
computations of converted wave travel-time tables used in 
the Kirchhoff migration algorithms. For anisotropic 
imaging purposes, the reflected energy must be constructed 
by superposition of plane waves – where each plane wave 
is characterized by its own anisotropic phase velocity and 
polarization vector (Ohanian, Snyder, and Carcione, 1997).   
The suite of expressions representing phase velocities, 
polarizations and group velocities for P- and S-waves, 
hereafter, will be referred to as the “imaging expressions”. 

 
The HTI system is commonly used for modeling parallel 
vertical cracks, which are replete in the earth’s crust.  
Shear-wave splitting technology is an effective tool for the 
determination of fracture orientations in reservoir rocks  
(Lynn et al 1995).  Ohanian et al (1992) developed a two 
step shear-wave splitting algorithm, consisting of a 
downward continuation step and a matrix diagonalization 
step, which was shown to unravel depth variant fracture 

orientations from vertical seismic profiling (VSP) data.  
This downward continuation algorithm was also shown to 
be formally equivalent to the layer-stripping algorithm of 
Winterstein et al (1991). 
 
While solutions to the problem of vertical propagation of 
elastic waves in the HTI system (used in VSP) are well 
understood, and have been successfully integrated into 
reservoir characterization algorithms, existing elastic 
imaging expressions capable of handling wave propagation 
in arbitrary directions within such media are incomplete 
and lack generality.  The only available HTI imaging 
expression that meets the extent of generality needed in 
surface seismic exploration is the first-order P-wave phase 
velocity formula derived by Gajewski et al (1996) – their 
expression indeed shows the explicit dependence on phase 
and polar angles. Tsvankin (1997) showed the equivalence 
between the VTI media and the symmetry-axis plane of the 
HTI media, and provided relations between the VTI and the 
HTI sets of Thomsen parameters.  
 
To be able to properly process finite-offset multi-
component surface-seismic data acquired over vertically 
fractured rocks, the basic imaging expressions must 
necessarily be able to account for propagation in arbitrary 
directions with respect to the acquisition coordinate system. 
 
The HTI and VTI systems are members of the same crystal 
symmetry class known as the hexagonal symmetry.  The 
two systems are distinguished from one another merely by 
the way they are configured in relation to the acquisition 
coordinate system. (Figure 2 illustrates each configuration).  
Therefore, all wave propagation expressions in HTI are 
related to their VTI counterparts through an appropriate 
coordinate transformation.  
 
Our strategy for deriving the first-order elastic imaging 
expressions for the HTI system, directly from the well-
known VTI expressions, is illustrated in Figure 2 where the 
VTI and the HTI coordinate systems are superimposed over 
the same medium with hexagonal symmetry. To derive the 
desired expressions we do three things: (a) we first 
establish the appropriate coordinate transformation rules 
between the two systems. (b) Then, we obtain first-order 
HTI representations for each of the coordinate-dependent 
physical quantities appearing in the VTI imaging 
expressions. (c) Finally, by substituting the HTI 
representations of these quantities into the VTI imaging 
expressions we arrive at the corresponding HTI formulas. 
Our P-wave phase velocity expression agrees with 
Gajewski et al (1996). 
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The standard geophysical acquisition coordinate system has 
its z-axis oriented perpendicularly to the earth’s surface and 
increases downward. For our analysis we find it convenient 
to choose the x-axis to be along the symmetry axis of the 
HTI system (Figure 2b).  A simple rotation about the z-axis 
will take an arbitrary surface-acquisition system to our 
(x,y,z) system. To facilitate the representation of 
polarization vectors and group velocities for waves with 
wave-vector k

r
, we introduce the spherical-coordinates 

)ˆ,ˆ,ˆ( kφθ  as shown in Figure 1. k̂  is a unit vector in the 

direction of k
r

. 
 
Weak anisotropy parameters 
 
For weak anisotropy, instead of dealing explicitly with 
individual elastic constants, it is convenient to work with 
some naturally defined “weak anisotropy parameters” 
(WAPs) that would apply uniformly to the VTI and HTI 
systems.   We now review the following widely used 
WAPs associated with TI systems. 
 
The VTI system: 
Figure 2a illustrates the VTI system, which is fully 
described by 4433 ,CC , and the following set of three 
WAPs: 
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where, ε and γ  are Thomsen parameters (1986).  The 
parameter δ  was discussed by Gajewski (1996) and by 
Ohanian (1996). 
 
The HTI system: 
Figure 2b illustrates the HTI system.  The HTI system is 
fully described by 4433 ,CC , and the following set of three 
WAPs: 
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where, ε  and γ  are the same as their VTI counterparts.  
The parameter *δ  was discussed by Gajewski et al (1996). 
 
Imaging expressions for weak VTI 
 
For reference, in what follows, we show the well-known 
VTI imaging expressions.  Throughout this paper, the 
subscripts, p, qS, and pS will correspond to quasi-P, quasi-S 
and pure-S modes, respectively. 

First-order polarization vectors for weak VTI: 
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With ε=11g , δ=13g , and γ=66g , the above 
polarization vectors agree with those of Rommel (1994) 
and Ohanian (1996). 
 
First-order phase velocities for weak VTI: 
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Here, ρ33
0 Cvp =  and ρ44

0 Cvs =  where ρ  is the 

mass density of the medium. Via ε=11g , δ=13g , and 
γ=66g , the above results agree with Thomsen (1986).   

 
First-order group velocities for weak VTI: 
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where, pv , pSv  and qSv  refer to the phase velocities 

given in (4).   
 
Rules for transforming VTI to HTI 
 
To derive first-order elastic imaging expressions for the 
HTI system, directly from the corresponding VTI 
expressions, we will need to transform each of the 
coordinate-dependent quantities appearing in equations  (3) 
through (5) into their HTI counterparts. These quantities 
are the polar and azimuth angles ),( φθ , the unit vectors 

)ˆ,ˆ( φθ , the stiffness coefficients ijC , the weak anisotropy 

parameters ijg , and the phase velocities ),( 00
sp vv . By 

substituting the HTI counterparts of these quantities into 
the VTI imaging expressions we will thus arrive at the 
corresponding HTI expressions.  In this section, all 
quantities denoted by tilde belong to the HTI system.   
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Transformation of the coordinate systems: 
In Figure 2c the VTI system is defined by the coordinate 
system )ˆ,ˆ,ˆ( zyx while the second coordinate system 

)~̂,~̂,~̂( zyx  defines the HTI medium. ),( φθ  will denote the 

polar and azimuth angles of k̂ with respect to the VTI 
coordinate system; whereas, )

~
,

~
( φθ are the polar and 

azimuth angles of k̂ with respect to the HTI coordinate 

system.  (θ~ is the angle between k̂  and the z~ -axis; φ~ is 

the azimuth angle of k̂ about the z~ -axis.)  Therefore, the 
two coordinate systems bear the following relationships:  
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Transformation rules for the polar and azimuth angles: 
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where, the explicit form of n~ , in terms of polar and 
azimuth angles )
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( φθ , is defined to be 
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Transformation rules for the unit vectors: 
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Transformation rules for elastic stiffness coefficients: 
Since, in this coordinate transformation we are 
interchanging the x and the z axes, the following changes in 
the Voigt indices are in order: 

465564132231 →→→→→→           (10) 
Therefore, the correspondences between the elastic moduli 
defined in the two systems are: 
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Transformation rules for WAPs  
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These parameter transformation rules agree, to first order, 
with those defined by Tsvankin (1997). 
 

Transformation rules for “isotropic” phase velocities: 
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Imaging expressions for weak HTI  

 
By substituting the VTI to HTI transformation formulas (6) 
through (13) into the VTI imaging expressions (3), (4) and 
(5), we obtain the following first-order HTI imaging 
expressions.  In these final HTI expressions we choose to 
drop the tilde notation.  Thus, all expressions below refer to 
HTI with coordinate system as shown in Figure 2b. 
  
First-order polarization vectors for weak HTI: 
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pSû   is perpendicular to both k
r

 and the axis of symmetry 
of the HTI medium (the x-axis).  
 
First-order phase velocities for weak HTI: 
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The first expression in (15) agrees with the P-wave phase 
velocity formula derived by Gajewski and Psencik (1996). 
 
First-order group velocities for weak HTI: 
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where, pv , pSv  and qSv  are the P- and S-wave phase 
velocities given in (15). 
 
Conclusions 
 
Making use of the fact that the HTI and the VTI systems 
are representations of the same crystal symmetry class, in 
two different coordinate systems, we developed a complete 
set of imaging expressions for weak HTI systems from 
their well-known VTI counterparts. Our HTI expressions 
account for propagation of waves in arbitrary directions 
with respect to the acquisition coordinate system. 
Therefore, they can be readily incorporated into the multi-
component seismic data processing algorithms.   
 
Figures 3 and 4 offer insights into the accuracy of the first-
order TI imaging expressions.  The figures were generated 
from the generic data discussed by Schoenberg and Helbig 
(1997).  The exact results were generated from numerical 
solutions of the Christoffel equation.   Since the Shoenberg-
Helbig data is not entirely “weak”, the excellent agreement 
between the approximate and exact results seen in our 
figures demonstrate the accuracy and robustness of the first 
order imaging expressions discussed here. 
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