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Weak elastic anisotropy by perturbation theory

Vigen Ohanian', Thomas M. Snyder?, and José M. Carcione®

ABSTRACT

We demonstrate the advantages of adopting a wave-vector-
based coordinate system (WCS) for the application of perturba-
tion theory to derive and display approximate expressions for
gP- and gS-wave polarization vectors, phase velocities, and
group velocities in general weakly anisotropic media. The ad-
vantages stem from two important properties of the Christoftel
equation when expressed in the WCS: (1) Each element of the
Christoffel matrix is identical to a specific stiffness component
in the WCS, and (2) the Christoffel matrix of an isotropic me-
dium is diagonal in the WCS.

Using these properties, one can easily identify the small
components of the Christoffel matrix in the WCS for a weakly
anisotropic medium. Approximate solutions to the Christoftel
equation are then obtained by straightforward algebraic ma-
nipulations, which make our perturbation theory solution con-

siderably simpler than previously published methods. We com-
pare and contrast our solutions with those discussed by other
workers. Numerical comparisons between the exact, first-order,
and zero-order qS-wave polarization vectors illustrate the accu-
racy of our approximate formulas. The form of the WCS phase-
velocity expressions facilitates the derivation of closed-form,
first-order expressions for qP- and qS-wave group-velocity vec-
tors, providing explicit formulas for the direction of propaga-
tion of seismic energy in general weakly anisotropic media. Nu-
merical evaluation of our group-velocity expressions demon-
strates their accuracy.

We discuss problems with the approximate qS-wave group
velocities and polarizations in neighboring directions of singu-
larities. Standard methods are used to transform our solutions
from the WCS to the acquisition coordinates, as illustrated by
application to orthorhombic symmetry.

INTRODUCTION

The physical properties of elastic waves propagating in linear
nondissipative elastic media are characterized by P- and S-wave
polarization vectors, phase velocities, and group velocities. These
wave attributes arise from the solutions of the Christoffel equation.
Numerical modeling of elastic waves propagating in anisotropic
media of arbitrary symmetry (triclinic) can be computer intensive
(Igel et al., 1991). In view of the ubiquity of weak anisotropy in the
earth’s crust and robust applicability of first-order solutions to the
Christoffel equation, there has been longstanding interest in devel-
oping approximate solutions for weak elastic anisotropy problems
(Thomsen, 1986; Mensch and Rasolofosaon, 1997; PSencik and
Gajewski, 1998). Closed-form approximate wave-attribute expres-
sions also provide physical insight into elastic anisotropy that is
otherwise not afforded by numerical solutions.

Several authors have obtained approximate solutions to the

Christoffel equation by linearizing its exact solutions. Thomsen
(1986), using Taylor series expansions of the exact vertical trans-
verse isotropy (VTI) formulas, obtains first-order expressions for
gP- and gS-waves in weak VTI media. Rommel (1994) uses a simi-
lar approach to derive first-order expressions for polarization vec-
tors for weak VTI systems. Ohanian et al. (2002) use a set of coor-
dinate transformation rules to derive first-order qP- and qS-wave
attribute expressions for weak horizontal transversely isotropic
(HTI) media directly from the corresponding VTI expressions.
Sayers (1994) uses an expansion into spherical harmonics to obtain
approximate relations for phase velocity of qP-waves in arbitrary
weakly anisotropic media. Tsvankin (1997) develops the approxi-
mate phase-velocity equation for qP-waves in orthorhombic media
by linearizing the corresponding exact equations.

Perturbation theory offers a different approach for computing
approximate solutions of the Christoffel equation, in that it makes
no reference to the exact solutions of the equation. Backus (1965),
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in dealing with refraction shooting in nearly isotropic media, uses
perturbation theory to obtain information about the azimuthal de-
pendence of qP- and gS-wave phase velocities for horizontal
propagation. Jech and PSencik (1989) use first-order perturbation
theory to obtain expressions for phase velocities and polarization
directions for qP- and qS-waves in general weakly anisotropic me-
dia. Corrections to their qS-wave polarization expressions are
given by Thomson et al. (1992). Gajewski and PSencik (1996) and
PSencik and Gajewski (1998) use perturbation theory to obtain
first-order expressions for qP-wave phase velocities and polariza-
tions in weakly anisotropic media with applications to media with
VTI, HTI, and orthorhombic symmetry. Ohanian (1996) uses per-
turbation theory to investigate phase velocities and polarization
vectors for waves in weak VTI systems. Mensch and Rasolofosaon
(1997) apply the perturbation approach to obtain approximate qP-
and qS-wave phase-velocity expressions for arbitrary anisotropy.

The analysis of the Christoffel equation is simplified substan-
tially when it is transformed to a wave-vector coordinate system
(WCS). This Cartesian coordinate system has one of its axes in the
direction of the wave vector. For a given wave-propagation direc-
tion, we demonstrate that the general solutions of the Christoffel
equation are expressible in terms of only six independent stiffness
components of the WCS. Moreover, for an isotropic medium, the
Christoffel matrix in the WCS is strictly diagonal. These simplifi-
cations make the WCS a convenient coordinate system for the ap-
plication of perturbation theory to the weak anisotropy problem.
Mensch and Rasolofosaon (1997) obtain their qP- and gS-wave
phase velocity expressions in the WCS.

In continuation of previously cited works, we do three things.
First, we extend the work of Mensch and Rasolofosaon (1997) by
seeking perturbation-theory solutions of the Christoffel equation in
the WCS that include qP- and qS-wave polarization expressions in
addition to phase velocities. We compare and contrast our polariza-
tion expressions with those discussed by others. Second, we de-
velop first-order gP- and qS-wave group-velocity expressions that
provide the direction of propagation of seismic energy in weak but
arbitrarily anisotropic media. Despite their physical significance,
gP- and gS-wave group-velocity expressions for waves propagat-
ing in weakly anisotropic elastic media have not been studied in
sufficient generality. Our first-order group-velocity expressions,
which are also developed with respect to the WCS, complement
the suite of wave-attribute expressions already discussed in the lit-
erature. Finally, we use orthorhombic symmetry to illustrate how
our general expressions can be used to derive explicit wave-
attribute expressions for media with any given symmetry. Numeri-
cally, we examine the domain of applicability of the approximate
polarization and group-velocity expressions and address problems
associated with qS-wave expressions near the singularity direc-
tions.

CHRISTOFFEL EQUATION AND
COORDINATE SYSTEM CONSIDERATIONS

It is well known (Auld, 1973; Carcione, 2001) that the Christof-
fel equation may be written as an eigenvector system of equations:

Hu; = Au; (i =1, 2, 3; sum over j from 1 to 3). (1)

Here and throughout this paper we adopt the usual summation con-
vention for repeated indices. Roman subscripts denote components

of vectors or tensors relative to some Cartesian coordinate system.
The eigenvector u determines the wave polarization, and the corre-
sponding eigenvalue A determines the wave phase velocity v ac-

cording to
A
= \/j . (2)
p

where p is the mass density of the medium. The symmetric 3 X 3
matrix H, called the Christoffel matrix (Auld, 1973), has compo-
nents related to the components of the elastic (stiffness) tensor Cj,
of the medium and to the direction of the wave vector k of the
wave. Explicitly,

H;; = Cirxje(rS)eS)’ (3)
where e is a unit vector in the direction of k. The reason for the
superscript 3 is explained below. Components of the stiffness ten-
sor Cyy in a given coordinate system are referred to as stiffness
components for that coordinate system.

Our goal is to obtain first-order solutions to the eigenvalue prob-
lem posed by the Christoffel equation for weak but arbitrarily
anisotropic media. Based on important structural simplifications
of the Christoffel equation in the WCS, we will seek a perturbation
theory solution of the equation directly in the WCS. Figure 1
shows the orientation of the WCS relative to the acquisition coor-
dinate system. The acquisition coordinate system, otherwise
known as the field coordinates, is the system with respect to which
data are acquired and physical measurements are made. In a labo-
ratory setting, the acquisition coordinate system is the same as the
laboratory coordinate system. The acquisition coordinate system,
with its z-axis oriented perpendicular to the earth’s surface and in-
creasing downward, is represented by {x, y, z}. The basis vectors
for this coordinate system are the unit vectors X, y, and z.

In Figure 1 the WCS is represented by the primed system
{x',y’,z'}, with the z’-axis oriented in the direction of the wave-
vector k and the y’-axis oriented horizontally. For the unit basis
vectors in the WCS, we use the superscript notation e, ¢®, and
e (rather than the notation x’, y’, and z’) to facilitate writing and
manipulating certain tensor expressions associated with the WCS.

The spherical coordinates 6 and ¢ shown in Figure 1 denote the
polar and azimuthal angles of k relative to the acquisition coordi-
nate system. The unit basis vectors of the two coordinate systems

Figure 1. Orientations of the acquisition coordinate system
{x, v, z} and the WCS {x’, y’, z'}. The two systems are connected
through the spherical coordinates ( 8, ¢). The z-axis of the acquisi-
tion system is in the vertical direction, and the z’-axis of the WCS
is in the wave-vector direction k = e®.
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are related via these angles according to the well-known relations
(Symon, 1971)

e!) = cos 6 cos ¢x + cos sin ¢y — sin bz,

e? = — sin ¢x + cos ¢y,

e®) = sin fcos ¢x + sin O sin py + cos bz. 4)

The components of any vector v relative to the WCS are denoted
with primes as v{, v}, and vj. Relative to the acquisition coordi-
nates, the components of the same vector are denoted without
primes as vy, v,, and v;. The components of v in the WCS may be
expressed in terms of its components in the acquisition coordinates
according to

"=v-e@=ve? (a=1,2,3), (5)

where e!® with i = 1, 2, 3 are the acquisition-system components

of the unit vector e@. These components may be read directly from
equation 4, for example, €5 = cos @sin ¢. Likewise, for tensors
such as H;; and Cyj, we have

b
H;b = H,Jefa)e;- ) (6)
and
Ct;bcd = C,,kze(”)eﬁb)e(‘)e(‘” (7)

The relationship in equation 7 shows how the components of the
fourth-rank stiffness tensor in the WCS can be expressed in terms
of its components with respect to the acquisition coordinates. A
more tractable method of relating stiffness components in the two
coordinate systems is offered by the Bond matrix method (Auld,
1973). The advantage of the Bond transformation matrix is that it is
applied directly to the Voigt indices of the tensor. (Voigt notation
abbreviates the indices by replacing the first and last pair of indices
of C;;, by single integers according to 11 — 1,22 — 2,33 — 3,
230r32 — 4,13 0r31 — 5,12 or 21 — 6). The stiffness compo-
nents are then denoted C;; in the acquisition coordinate system and
C}; in the WCS, with i and j running from 1 to 6.) Equation 7 may
then be replaced by the highly efficient transformation equation

Cly=M,MCy, (8)

where the explicit form of the 6 X 6 Bond matrix M is given in
Appendix A. Through equation 8 each C}, in the WCS may be in-
terpreted as an abbreviation for a specific linear combination of C;;
in the acquisition coordinate system with coefficients that are func-
tions of the propagation angles 6 and ¢. This means that an expres-
sion (such as a velocity or polarization formula) written in terms of
WCS stiffness components may be interpreted via equation 8 as an
abbreviated form of the expression in the acquisition coordinates.

CHRISTOFFEL EQUATION IN THE
WAVE-VECTOR COORDINATE SYSTEM

In this section we write the Christoffel equation explicitly in the
WCS and cast it in a form conducive to the application of first-
order perturbation theory. We begin by using equations 3, 6, and 7
to obtain

Hi’sza,,e(’)e(’ CorapeVePeeld) = Ciss;- )

This shows the important fact that the components of the Christof-
fel matrix in the WCS are certain stiffness components in the
WCS. In Voigt notation, the identity in equation 9 may be written
concisely as

Hj; = Clo_is-))- (10)

where i and j range from 1 to 3. Equation 10 holds only in the
WCS (and in coordinate systems obtained from the WCS by rota-
tion about e®).
Since the Christoffel equation 1 is a tensor equation, it must
have the same form in the WCS. Thus,
Hijuj = Au; . (11)

l

Now, using equation 10 to write out equation 11 explicitly as

! ! ! ! !

Css Cys Cis ||y uy
! ! ! ! !

Cis Cuy Gy ||uy | =A|uy |, (12)
! ! ! ! !

Cis Gy C3 ]l Uz

we arrive at the Christoffel equation in the WCS. Mensch and Ra-
solofosaon (1997) obtain this representation for the Christoffel ma-
trix through two coordinate rotations.

Equation 12 displays the six conspicuous stiffness compo-
nents — C}3, Cly, Cis, Chy, Cis, and Cjs — that make up the ele-
ments of the Christoffel matrix H’ in the WCS. Evidently, for a
given wave-propagation direction, the exact solutions of the
Christoffel equation for media with arbitrary anisotropy are ex-
pressible in terms of these six WCS stiffness components. As
stated earlier, through equation 8 the WCS solutions of the Christ-
offel equation also exhibit the explicit form of the solutions with
respect to the acquisition coordinates. Thus, the full complement of
the stiffness components with respect to the acquisition coordi-
nates, which is generally 21, would be revealed. The economy in
the number of independent stiffness components entering the WCS
Christoffel matrix substantially simplifies the bookkeeping in the
analytic treatment of the problem as well as the presentation of the
results. It is also important to recognize that the solutions in the
WCS have no less physical significance than in the acquisition co-
ordinate system. The physical meaning of C};, the elements of the
Christoffel matrix in the WCS, is clear: They are the stiffness com-
ponents of the medium as one would measure by squeezing and
shearing the medium in directions defined by the axes of the WCS.

For isotropic media, the Christoffel matrix in the WCS is simpli-
fied even further: It is strictly diagonal. This follows from the fact
that for isotropic media, irrespective of the choice of the coordinate
system, the stiffness components C;;; with an odd number of re-
peated indices must vanish (Auld, 1973).
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PERTURBATION-THEORY SOLUTION
OF THE CHRISTOFFEL EQUATION

The economy in the number of independent stiffness compo-
nents in the WCS Christoffel matrix H’ for general anisotropy and
the strict diagonal form of H’ for isotropy make the WCS a natural
coordinate system for the application of perturbation theory to the
weak anisotropy problem. Perturbation theory has been discussed
extensively in the quantum mechanical literature (Landau and Lif-
schitz, 1977). It provides a method of finding approximate eigen-
values and eigenvectors of a symmetric matrix H if we know the
eigenvalues and eigenvectors of another symmetric matrix H that
approximates H. We now use the methodology of perturbation
theory to obtain approximate eigenvalues and eigenvectors for H’
corresponding to weak anisotropy.

For weak anisotropy we can approximate H’, the Christoffel
matrix of the weakly anisotropic medium in the WCS by the
Christoffel matrix H? of a suitably chosen isotropic medium. Be-
cause H" is also represented with respect to the WCS, it is diago-
nal and may be written

¢, o0 o0
H”=| 0 ¢} 0 |, (13)
0o 0

where the elements C% and CY} determine the elastic properties of
the isotropic medium (Auld, 1973).

The values of C3} and CY} appearing in equation 13 may be cho-
sen in any manner that makes H" a good approximation to H' for
the weakly anisotropic medium of interest. In this paper, we take
CY%5 and CY; to be the values of Cj; and C), of H' for the particular
choice of the WCS corresponding to vertical wave propagation.
For vertically propagating waves, except for a possible rotation
about the vertical axis, the WCS coincides with the acquisition co-
ordinate system. Thus, our choice amounts to setting C%5 = Cs;,
where Cj; is the stiffness component as measured in the acquisition
coordinate system for the weakly anisotropic medium. As for C%;,
any of the choices C9; = Cyy, CY = Css, or C3 = (Cyy + Css5)/2
would be suitable since Cy, = Css for any weakly anisotropic me-
dium. In this paper we choose CY; = C,4. Numerical estimates for
C3; and Cyy can be obtained from the near-vertical propagating qP-
and gS-wave phase velocities (Mensch and Rasolofosaon, 1997).

Since equation 13 with CY = Cs; and CY; = Cy, approximates
H'’ for weak anisotropy, we conclude that H' is approximately di-
agonal and its off-diagonal elements Cjy, Cjs, and Cjs are small
compared to Cs; and Cy. Likewise, the differences Ci; — Ci3, Ciy
— Cy, and Cis — Cyy are small compared to C;; and Cyy. We adopt
the conventional terminology of perturbation theory when using
the descriptions zero order, first order, etc. (Landau and Lifschitz,
1977). Thus, we say that Cs; is the zero-order approximation to Cj;
and that Cy, is the zero-order approximation for both Cj, and Cjs.
Expressions such as C44/Css, (Ci; — Cs3)/Css, and (Cls — Cly)/Cay
are small, first-order quantities. The product of two first-order
quantities is a second-order quantity, and so forth. These order-of-
magnitude relationships between the C}; of the WCS and the com-
ponents C;; and Cy, of the acquisition coordinate system facilitate
the algebraic manipulations involved in the perturbation-theory so-
lution of the weak anisotropy problem discussed next.

gP-wave phase velocities and polarization
vectors for general weak anisotropy

To obtain first-order solutions to equation 12 corresponding to
(quasi-) longitudinal waves (qP-waves), we note that in a weakly
anisotropic medium, the longitudinal component u} of the polariza-
tion will be much larger than either transverse component u{ or u5
(u} and uj would be zero in an isotropic medium). Thus, for qP-
waves we may consider u{ and u5 as small, first-order quantities
compared to 5.

Writing equation 12 to the first order for a gP-wave yields

! ! ! ! !
Cssup + Casus = Auy
Ciuy + Chuly = Auy . (14)

Claus = Auj
These lead directly to
A= Cy (15)

and

!
r_ C35 ' r_
U 3 Uy =

C!
=5y ] (16)
C33 - CSS

’ r A3
C33 - C44

Here, u is a first-order unit vector if we take u4 = 1. The denomina-
tors in equation 16 may be replaced by their zero-order approxima-
tions, and the overall expressions will still be accurate to first order.
Thus, the first-order gP-wave unit polarization vector is

C; C;
u,p = B 4 B @ 4 e (17)
Cy3 = Cy Cy3— Cy

This expression agrees with the gP-wave polarization formula dis-
cussed by PSenéik and Gajewski (1998).

The qP-wave phase velocity is obtained by substituting equation
15 into equation 2:

c!
qu = ﬁ (18)
p

Equation 18 gives a compact, approximate expression for the qP-
wave phase velocity in any weakly anisotropic medium. Equation
18 may be linearized to first-order accuracy as follows:

qP p
\/@(1 . Céa—csa)
p Css

Cy-C
v%(l n 33—33>’ (18a)

where v} = VCs3/p. Equation 18a displays the qP-wave phase ve-
locity as a zero-order approximation v$ plus a first-order correc-
tion. We note that for vertical propagation in the acquisition coor-
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dinate system, Cj; = Cs;. Therefore, equation 18a shows that v} is
equal to the vertical qP-wave phase velocity to first-order accuracy.

The qP-wave polarization and phase-velocity expressions (equa-
tions 17 and 18), along with those for the gS-waves to be discussed
next and the qP- and qS-wave group-velocity expressions to be dis-
cussed later, demonstrate the compactness and physical interpret-
ability of solutions to the Christoffel equation in the WCS. We dis-
play these wave attributes in terms of the WCS stiffness
components C}; and the WCS basis vectors e”. Each Cj; appearing
in our formulas has the physical meaning of being a stiffness com-
ponent of the medium as measured directly in the WCS. For sur-
face seismic exploration, these wave attributes need to be written
with respect to the acquisition coordinate system. For this purpose,
through equation 8, each C}; appearing in our expressions can be
expanded in terms of Cy, the stiffness components of the medium
with respect to the acquisition coordinate system. Equation 4 pro-
vides the rule for transforming the WCS basis vectors e to the ac-
quisition system {£,7,%}.

As an illustration, consider the qP-wave phase-velocity expres-
sion 18a. It can be written with respect to the acquisition coordi-
nate system by using equation 8 to express Cj; as

Ci3 = M3M;5,C (19)

ij>

with M as given in Appendix A. Equation 18a then becomes iden-
tical to equation 8 of Gajewski and PSencik (1996). As expected,
when written out explicitly with respect to the acquisition coordi-
nate system, v, becomes fairly lengthy and complex.

qS-wave phase velocities and polarization
vectors for general weak anisotropy

For qS-waves, u} is a small, first-order quantity compared with
ui or uj. Keeping only terms up to the first order in equation 12
yields

! ! ! ! !

Cssuy + Cysuty = Au,

Cysuy + Cluuy = du) (20)
! ! ! ! ! I _ !

Cisuy + Cyuuy + Cyzuz = Aus .

The first two equations have nontrivial solutions only if

Css—A  Cys

=0. 21
Cis  ClaA 2D

Thus, as expected, we generally have two values for A correspond-
ing to two distinct gS-wave modes:

A= [Cly + Cls £ \(Cly — Cho)* +4CL7. (22)

1
2
The plus sign corresponds to the faster qS-wave. Note that the two
gS-wave phase velocities are equal to one another (degenerate) to
the first-order only if Ci, = C%s and Cjs = 0. Equation 22 agrees
with equation 34 of Mensch and Rasolofosaon (1997). A density-

normalized version of equation 22 is also developed by Jech and
PSencik (1989) and Farra and Pencik (2003).

For convenience in writing the results for the qS-wave polariza-
tion directions, we introduce an angle «, lying between — /2 and
/2, defined by

1 ! ! !
a=7 arctan[Css — Cyy,2Chs], (23)

where arctan[x,y] is defined to be the angle 6 lying between —ar
and 7 such that x = rcos 6, y = rsin 6, and r = Vx*> + y2. (Thus,
the range of our arctangent function is not restricted to principal
values.)

Substituting equation 22 into the first equation of equation 20
yields

(u—%) = tan o and (u_?) =—cota. (24)
+ -

u U

The plus and minus subscripts correspond to the faster and slower
(quasi-) gS-waves, respectively. Thus, for the faster wave we take
uj = cos a and uj = sin «, while for the slower wave we take u|
= —sin a and u} = cos a. In the language of degenerate perturba-
tion theory (Landau and Lifshitz, 1977), these results give us the
zero-order approximation for the unit polarization vectors corre-
sponding to the faster and slower qS-waves:

u, = cos ae'!) + sin ae'?, (25)

uy, = — sin ae! + cos ae?. (25a)
Proceeding to the first-order approximations, after some algebra,

we find that we can express the qS-wave polarization vectors in the
following form:

u;s = cos(a + Aa)eV) + sin(a + Aa)e®

Ciscos a + Chysin
4 ( 35 34 )0(3), (26)
Cy — C33
u g =— sin(e + Aa)eV + cos(a + Aa)e®
Ci,cos a — Che sin
4 ( 34 35 )e(S)’ (26&)
Cyy— Cy3

where « is given by equation 23 and

Aa =

1 |:C4;5(C.;42 - Cész) + C34C35(Css — Cfm)}
Cy— C33 (C4s — Chp)* + 4Cy5°
(27)

There is an important restriction on the validity of our expres-
sions for the qS-wave polarization vectors. Generally, in an aniso-
tropic medium there exist certain isolated directions of wave
propagation for which the qS-wave polarization angle « is indeter-
minate because of degeneracy of the two qS-wave phase velocities.
As previously noted, these degenerate directions occur in our first-
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order treatment whenever both Cis = Cj, and Cjs = 0. Equations
23 and 27 thus show that both a and A« are undefined at the de-
generate directions. In the immediate neighborhood of a degener-
ate direction, @ and A« tend to be unstable with regard to small
variations in the elastic properties of the medium. Therefore, equa-
tions 23 and 27 are not reliable in the vicinity of S-wave degen-
eracy. Moreover, inspection of equation 27 shows that A« actually
diverges when approaching a degenerate direction because the de-
nominator in equation 27 approaches zero faster than the numera-
tor as both (Cis — Ci,) and C}s approach zero. Thus, in the neigh-
boring directions of degeneracy, A« is not a valid first-order
correction to the zero-order angle «. In fact, near degenerate direc-
tions, the first-order approximation « + A« can be less accurate
than the zero-order approximation «. This behavior is illustrated
later with numerical evaluations.

Jech and PSencik (1989) use perturbation theory to derive ex-
pressions for both zero-order and first-order approximations for
qS-wave polarizations in an arbitrary weakly anisotropic medium.
Except for the zero-order expressions, our results are equivalent to
theirs. Our zero-order qS-wave polarization expressions agree with
formulas discussed by Thomson et al. (1992) and Farra and
Psencik (2003).

The introduction of the qS-wave polarization angle «, together
with the use of the WCS basis vectors (e),e®,e®), allows us to
express our qS-wave polarization expressions in a form that clearly
displays the geometry of the polarization directions. As equations
25 and 25a show, to the lowest (zero) order of approximation, the
gS-wave polarization vectors uj, and ug, are obtained by rotating
eV and e®? about e® by the angle . Equations 26 and 26a explic-
itly give the gS-wave polarizations relative to the WCS in terms of
the polarization angles defined in equations 23 and 27. They show
that the effect of the first-order correction is to introduce a small
component along the wave vector €® and to add a small angular
correction A« to a. Transformation to the acquisition coordinate
system may be accomplished using equations 4 and 8.

The faster and slower qS-wave phase velocities are found by
substituting the qS-wave eigenvalues of equation 22 into equation
2. After performing manipulations similar to those indicated in
equation 18a, we obtain

vi=vg| 1+ (CgS + Chy = 2Cyu = N(Cls - Cp)* + 4C§52>
qS N 4C44 ’
(28)

where v$ = Gm. Here, v} is associated with the plus sign in
front of the square root in equation 28 and denotes the phase veloc-
ity for the faster gS-wave. Similarly, vy corresponds to the slower
gS-wave. Equation 28 agrees with Jech and PSen¢ik (1989) and
Mensch and Rasolofosaon (1997).

GROUP VELOCITIES IN GENERAL
WEAKLY ANISOTROPIC MEDIA

Phase velocity characterizes the speed of propagation of a fixed
value of phase of an infinitely extended plane (harmonic) wave. In
practice, we do not deal with an ideal plane wave, but rather, with a
wave that is limited in both spatial extent and duration. If the spa-
tial and time limitations are not too extreme, then the wave may be
considered to be a superposition of plane waves covering a rather

narrow range of wave vectors centered around some average wave
vector k. The spread in wave vectors includes a variation in direc-
tion as well as magnitude. Although a specific value of phase of the
wave group propagates essentially at the phase velocity corre-
sponding to K, the wave group as a whole and the energy carried
by the wave propagate at a group velocity (ray velocity) that gen-
erally differs from the phase velocity in both direction and magni-
tude. For a graphic demonstration of group velocity arising from
the superposition of two plane waves of the same frequency but
slightly different wave-vector directions, see Wolfe and Hauser
(1995). Ohanian et al. (1997) investigate acoustic wavefronts and
group velocities as superposition of plane harmonic waves in
anisotropic geologic sediments.

Letting w(k) = kv(k) denote the angular frequency of the har-
monic component with wave vector k, the group velocity vector w
may be expressed as

J d Jd
w = Vio(k) = (e(l)— +ed—m 4 e(3)—>w(k),
kdo k sin 6d¢ ok

(29)

where the k-space gradient operator V, is written out explicitly in
terms of spherical coordinates of the acquisition coordinate sys-
tem. [For a formal discussion of group velocities, see Auld (1973)
and Wolfe and Hauser (1995).] These derivatives in equation 29
are to be evaluated at the average wave vector k. Since the basis
vectors of the spherical coordinates of the acquisition system are
identical to the basis vectors of the WCS, equation 29 conveniently
expresses the group velocity relative to the WCS.

The phase-velocity expressions derived earlier show that in an
anisotropic medium, the phase velocity v(k) depends explicitly on
the direction of k. However, since dispersion is largely absent for
the long wavelengths used in seismic exploration, v(k) has negli-
gible dependence on the magnitude of k. Thus, we may write
(k) = kv (6, ¢) and reduce equation 29 to an expression relating
the group velocity to derivatives of the phase velocity:

_ w9 (), w(6.9) o 3
w = PP e +sin0c7¢e +v(6,¢)e".  (30)

Denoting the group-velocity vector by its components w = wiel)
+ wie® + wie®, we have

L
sin 0 d¢’

v
wi= ", w)= wh =v. (31)
a0 ;

Inspection of equations 18a and 28 shows that the P- and S-wave
phase velocities depend on # and ¢ only via the WCS stiffness
components Cj3, Cly, Cis, and Cis (whose functional dependence on
0 and ¢ is given by equation 8). Therefore, the P- and S-wave
group velocities involve derivatives of these stiffness components
with respect to 6 and ¢. These derivatives can be shown to be ex-
pressible as linear functions of other WCS stiffness components.
As a result, we obtain the following vector expression for the first-
order qP-wave group velocity:
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C; C;
W,p = ng(ﬁe“) + ﬁe(2)> +ue?,  (32)
C33 C33

where v, is given by equation 18a. Similarly, for the qS-wave
group velocities, we find

+ r= (1 r= (2 +* (3
W5 = Wi el + wite® + vqse< ), (33)
where v is given in equation 28 and

0
I+ v

S ’ ’ ’
wT = Cis+Cyu—C
1 2C44[ 15 46 35

% (Cls — Cjg — Ci5)cos 2a
+ (Cjy + Cig — Ciy)sin 2a], (33a)

0
1%
r+ _ S ' ’ '
wy = [Coy + C56— Cy
2Cy

+ (Cjy + Cig — Chy)cos 2

+ (Cls + Cig — Cis)sin 2a]. (33b)

The upper-lower sign (*) in the above expressions for w{* and wj*
corresponds to taking the upper/lower sign () in equation 28, and
a is the polarization angle defined by equation 23.

The appearance of the polarization angle « in the first-order gqS-
wave group-velocity expressions is interesting. As stated earlier,
whenever the phase velocities of the two qS-waves coincide, « be-
comes indeterminate. Therefore, like the first-order qS-wave polar-
ization expressions, the derived first-order qS-wave group veloci-
ties are unreliable near the directions of S-wave degeneracy. This
behavior is illustrated later with numerical evaluations of the
group-velocity expressions.

Inspection of expressions 32 and 33 shows that the deviations of
the directions of the qP- and qS-wave group velocities from the di-
rection of the wave vector are linear functions of C4,, Cjs, Ci4, Cis,
Cly, C3s, Clg, and Cis. For weak anisotropy, the magnitude of these
stiffness components is, at most, first-order compared with Cs; and
Cy,. This implies that |w| = v up to and including first-order accu-
racy. However, we see explicitly that weak anisotropy generates
first-order deviations in the qP- and gS-wave group-velocity direc-
tions from the wave-vector direction. Later we present numerical
tests that quantitatively illustrate the influence of anisotropy on
these deviations.

Byun and Corrigan (1990) discuss an iterative model-based ray-
tracing scheme to invert the traveltimes from field VSP data for the
VTI stiffness components. For the purposes of computing first-
arrival traveltimes in VTI media used in Kirchhoff migration, Faria
and Stoffa (1994) incorporate Thomsen’s group-velocity expres-
sions to calculate ray directions. Cheadle et al. (1991) use group-
velocity measurements taken directly along the symmetry planes
and in 45° propagation directions of a phenolic cube to compute
the stiffness components of an orthorhombic specimen. Our group-
velocity expressions can facilitate the extension of similar algo-
rithms to media with arbitrary symmetry.

APPLICATION TO WEAK
ORTHORHOMBIC SYMMETRY

To illustrate the use of our general results, we focus on media
possessing orthorhombic symmetry, which has direct practical ap-
plications in exploration (Schoenberg and Helbig, 1997). Tsvankin
(1997) shows that in the symmetry planes of an orthorhombic me-
dium, solutions to the Christoffel equation reduce to equivalent
VTI expressions. PSencik and Gajewski (1998) derive first-order
phase velocity and polarization relations for qP-waves in weak
orthorhombic media. Farra and PSencik (2003) investigate addi-
tional wave attributes in orthorhombic media. We rederive some of
these results and additionally obtain useful approximate qS-wave
polarization and group-velocity expressions.

Instead of dealing explicitly with individual stiffness compo-
nents, Thomsen (1986) simplifies the weak VTI problem by intro-
ducing his parameters &, &, and 7. Several authors extend his work
to include media with arbitrary symmetry [Sayers (1994), PSencik
and Gajewski (1998), Mensch and Rasolofosaon (1997)]. We pro-
ceed along similar lines to define weak-anisotropy parameters for
use in our wave-attribute expressions.

The stiffness tensor C§i" of the standard orthorhombic medium
(with its axes of symmetry coincident with the acquisition coordi-
nate axes) has nine independent components (Tsvankin, 1997),
whereas the isotropic stiffness tensor Cii has only two: Cs; and Cyy
(Thomsen, 1986). Since for weak anisotropy, the difference be-
tween Cyf™ and Ci° is small, it is natural to define the weak-
anisotropy parameters g; by considering some dimensionless
scaled version of (Cy™ — Ci). The degree of anisotropy for an
orthorhombic medium may be characterized by the following
seven weak anisotropy parameters:

. _ G- G p _Cn -G
R TON N Yot
4o m Css — Cyy 2o = Co = Cuy
55 2C44 s 66 2C44 s
= Cip+2Ce — C33 o= Ci3+2Css — Cy
12 — 5 13 — 5
Cs; Cs;
Cos +2Cyy — C
- u=Cy (34)

C33

For weak anisotropy, all g;; are small compared to one and reduce
to zero for the isotropic case. These parameters are identical to
those of PSencik and Gajewski (1998), except that we introduce
two additional parameters, gss and gg.

First-order phase velocities for
weak orthorhombic media

Working with equations 18a and 28, after expanding each of the
stiffness components C}; appearing in these expressions in terms of

the C;; and using equation 34 to eliminate C;; in favor of g;;, we ob-
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tain the following first-order qP- and qS-wave phase-velocity ex-
pressions for waves propagating in weakly orthorhombic media:

vgp = vap(l + P(6,9)), (35)

vig =3[l + S(6.4) = VM(6,$)* + N(6.¢)°].
(35a)

The explicit dependence of these phase-velocity expressions (as
well as the polarization and group-velocity expressions discussed
next) on the weak-anisotropy parameters g;; and the propagation
directions 6 and ¢ can be seen through the full form of the abbre-
viations P( 6, ), S(0,$), M(6, ), etc., provided in Appendix B.

First-order polarization vectors for
weak orthorhombic media

After transforming the general weak-anisotropy polarization ex-
pressions 17, 26, and 26a to the acquisition coordinates and ex-
pressing them in terms of the weak orthorhombic parameters, we
obtain the following first-order unit polarization vectors for qP-
and gS-waves in weak orthorhombic media (see Appendix B):

u,p = A6, ¢)e) + B(6, p)e® + e, (36)

ul = cos ae") + sin ae®

— [A(6, p)cos a + B(6,¢)sin ale®,  (36a)

u g = —sin ae') + cos ae®

— [B(6, p)cos a — A(6, p)sin afe®.  (36b)

The polarization angle «, via the general expression 23, is

a= %arctan[M(G,qb),N(ﬁ, ¢)] and - g <a< %T
(37)

For propagation in the symmetry planes of the orthorhombic
medium, these expressions simplify. For example, using the ex-
plicit forms of M(6, ) and N(6, ) given in Appendix B, we can
show that for each symmetry plane of the orthorhombic medium,
equation 37 yields @ = 0 or 7/2. This result is consistent with the
polarization angle for a VTI system and provides an example of a
general property discussed by Tsvankin (1997).

Inspection of equation 27 shows that the first-order correction to
the polarization angle (Aa) can become very complicated when it
is written in terms of the stiffness components of the acquisition
coordinate system. Numerical results of the next section provide
insight into the accuracy of the zero-order and first-order expres-
sions for the qS-wave polarization angles. There we show that the
zero-order approximation for the polarization angle as given in
equation 37 provides sufficient accuracy without including the
first-order correction A« for a wide range of propagation directions
in a weak orthorhombic medium. For this reason, we set Aa = 0 in

the qS-wave polarization vector expressions 36a and 36b to keep
them simple in form and without a significant loss in accuracy. To
make these expressions truly accurate to first order, a should be re-
placed by @ + A« in the coefficients of eV and e, as in equations
26 and 26a.

Equations 35 and 36 for the qP-wave phase velocity and polar-
ization vector agree with formulas discussed by PSencik and Ga-
jewski (1998). For additional discussions on gS-wave phase ve-
locities, see Mensch and Rasolofosaon (1997).

First-order group velocities for
weak orthorhombic media

From the general weak-anisotropy group-velocity expressions
32 and 33, we obtain the corresponding group-velocity formulas
valid for weak orthorhombic media. With reference to the abbre-
viations in Appendix B, these group velocities can be written in the
following convenient forms:

C
Wp = 2(1 - C—““)J}[A(a, eV + B(0,p)e?] + v, e,
33

(38)

+ !

wog = wifel) + wiel® + 12 el (38a)
where

wi™ = F(0,¢) = [G(0,p)cos 2a + H, (6, ¢)sin 2a],
(38b)

whE = F,(60, ) + [G,(6, p)cos 2a + Hy(0, p)sin 2a].
(38¢)

The terms v, and v associated with the e® components of group
velocity expressions 38 and 38a denote the qP- and qS-wave phase
velocities defined in equations 35 and 35a. An examination of the
accuracy of equations 38 and 38a is provided in our later discus-
sion on numerical evaluations of group velocities.

The approximate wave-attribute expressions for orthorhombic
media discussed here can be shown to be exact for vertically
propagating waves. Therefore, they are more accurate for waves
propagating in directions that are closer to the vertical. Symmetry-
plane projections of the derived approximate orthorhombic expres-
sions reduce to equivalent VTI expressions.

NUMERICAL COMPARISON OF S-WAVE
POLARIZATION EXPRESSIONS

In this section, we investigate the accuracy of the zero-order and
first-order qS-wave polarization expressions 25, 25a, 26, and 26a
by applying them to the orthorhombic model investigated by
Schoenberg and Helbig (1997). The density-normalized elastic
stiffness matrix of this model relative to the acquisition coordinate
system is
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9.00 3.60 225 O 0 0

3.60 984 240 O 0 0

225 240 594 0 0 0
(Cij)=

0 0 0 200 O 0

0 0 0 0 160 O

0 0 0 0 0 2.18

(39)

The anisotropy represented by this model is not weak. For ex-
ample, Cj; differs from C,, by about 65%, and the value of the as-
sociated weak anisotropy parameter g,, is about 0.33. The rela-
tively strong anisotropy of this model provides a robust test of our
polarization expressions. (For the same reason, we also use it next
to evaluate group velocities.) Numerical studies of approximate
formulas for qS-wave polarization directions for this model are
given in Farra and PSencik (2003). Our purpose here is to evaluate
and compare the accuracy of our WCS expressions for the zero-
order and first-order qS-wave polarization angles and to illustrate
their behavior near directions of S-wave degeneracy.

As predicted, the derived approximate polarization expressions
are inaccurate for qS-waves propagating in directions close to sin-
gular directions. Figure 2 shows a contour map that displays the
percent difference between the first-order faster and slower qS-
wave phase velocities. Four dots mark the points where the faster
and slower phase velocities are equal. These singular directions ob-
tained from our first-order phase velocity expressions are at
(6,¢) = (50.5°,42.2°), (20.1°, 0°), (66.1°, 0°), and (76.6°, 90°).
The corresponding numerically computed exact directions are at

\_/ Y
80 /
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2 40
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20
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: I AR
0 20 40 60 80
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Figure 2. Contour map showing the percent difference between the
faster and slower gS-wave phase velocities generated for the
Schoenberg and Helbig orthorhombic model using the first-order
approximation formulas. The percent difference is plotted as a
function of the propagation direction angles 6 and ¢. Four dots
mark the singular points where the faster and slower phase veloci-
ties are equal.

(6,¢) = (46.5°,44.9°), (20.1°, 0°), (59.8°, 0°), and (72.5°, 90°).

Figure 3 displays plots of the exact, first-order, and zero-order
polarization angles of the faster qS-wave as a function of wave-
vector direction. We plot the angle between e'" and the projection
of the faster gS-wave polarization vector onto the eV — e plane.
To zero-order approximation, this is a given in equation 23. To
first-order approximation, the polarization angle is given by «
+ Aa, where A« is given in equation 27. Exact polarization angles
are obtained by a numerical solution of the Christoffel equation.
The graphs cover one octant of space specified by the domain 0
< 6<90° 0 < ¢ <90° Each graph plots polarization angle
versus 6 for a fixed value of ¢. Angular deviations between the ap-
proximate and exact polarization directions are interpreted as the
error in the polarization angle.

Figure 3 shows that both zero-order and first-order approxima-
tions are quite accurate for 6, less than about 40° for all values of
¢. For this restricted but rather large domain, the polarization error
in the zero-order approximation remains less than 5°, while the er-
ror in the first-order approximation is less than 3°. In this domain,
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Figure 3. Comparison of the exact, first-order, and zero-order po-
larization angles for the faster qS-wave computed for the Schoen-
berg and Helbig model. The plots are generated as functions of 6
for fixed values of the wave-vector azimuth angles ¢ (¢, = 10°,
b = 20°, ¢y = 30°,...).
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there is no significant advantage in including the first-order correc-
tion Aa. In Figure 3, we also note that for the domain 40° < 6
< 60°, the first-order correction provides noticeable improvement
for most values of ¢. However, near qS-wave degeneracy (¢ near
40° and @ near 50°) the first-order approximation clearly breaks
down and even gives poorer results than the zero-order approxima-
tion. As discussed earlier, this behavior is because of the diver-
gence of the expression for A« in equation 27 near the degenerate
directions. We also notice that for the plots corresponding to ¢
= 10° and ¢ = 80°, the first-order curves display inaccurate blips
for @ near 65° and 75°, respectively. Again, this is because the qS-
waves are nearly degenerate for these propagation directions.

In summary, the zero-order approximation for the qS-wave po-
larization is generally quite stable and accurate away from the sin-
gular directions. Although the first-order correction gives notice-
able improvement in certain limited domains of propagation
direction, it is more complicated in form than the zero-order ap-
proximation. For this particular model, the first-order approxima-
tion can give poorer results than the zero-order approximation near
directions of qS-wave degeneracy. Very near the degenerate direc-
tions, neither the zero-order nor the first-order expressions can be
expected to yield accurate results.

NUMERICAL EVALUATION OF
GROUP-VELOCITY EXPRESSIONS

We now provide numerical evaluation of the accuracy of our
first-order qP- and qS-wave group-velocity expressions. For this
purpose, we again use the Schoenberg and Helbig (1997) ortho-
rhombic model described by the elastic stiffness matrix (equation
39).

Since to the first order, in weak anisotropy, the magnitude of the
group velocity is equal to the phase velocity, we consider only
group-velocity directions. To describe the direction of the group-
velocity vectors, we use polar and azimuthal angles (0, ®) to
specify deviations of the group velocity w from the wave vector k.
Figure 4 shows the orientation of w with respect to the WCS
(eM,e?,e®) through the polar and azimuthal angles. Note that
(O, ) are distinct from the polar angles ( 6, ), which specify the
orientation of k with respect to the acquisition coordinate system

e®

Figure 4. Illustration of the direction of group velocity w with re-
spect to the WCS basis vectors (e"),e?,e®) through the polar and

azimuthal angles (0, ®). Equations 40 give (0, ®) as functions of
the wave-vector direction angles # and ¢, illustrated in Figure 1.

(x,y,z) illustrated in Figure 1. The polar angle @ denotes the angle
between k and w. This angle determines a cone on which the group
velocity must lie. The azimuthal angle @ locates the group velocity
on the cone. It denotes the angle between eV and the projection of
w onto the e — e® plane. Recalling the notation used earlier to
describe the group-velocity vector by its components, w = wie)
+ wie® + wie®, the polar and azimuthal group-velocity angular
deviations from the direction of the wave vector are given by:

0(6,9) = tar-! Vw)? + (w))?

' k]

B(0,) = tan”!| 2 |. (40)
Wi

For weak media, @ is always small. However, @ can be any angle.
Figures 5-7 compare the first-order and exact qP- and qS-wave
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Figure 5. Comparison of the exact and first-order group-velocity
directions for qP-waves for the Schoenberg and Helbig orthorhom-
bic model. Shown are plots of the functions (left) @(6,¢p,) and
(right) @(6,¢,) versus 6 for fixed values of ¢ (¢ = 20°, ¢,
=40°, ¢, =60°, and ¢, = 80°). The first-order qP-wave results
are computed using equation 38.
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group-velocity directions for the Schoenberg and Helbig model.
Figure 5 corresponds to gP-waves, Figure 6 corresponds to slow
gS-waves, and Figure 7 corresponds to fast qS-waves. For each
mode, for fixed values of ¢ (¢, = 20°, ¢, = 40°, ¢, = 60°, and
¢ = 80°), we use equation 40 to generate plots of O(6,,) and
D( 6, py) versus 6. We obtain the exact directions by numerical so-
lution of the Christoffel equation. Although we display results for
fixed values of ¢ (in 20° intervals), these plots illustrate the sub-
stance of our general conclusions, based on our investigation of the
entire domain 0 < 6 < 90°,0 < ¢ < 90°. The deviation between
the first-order and the exact results is called the error in the first-
order group-velocity direction.

Referring to Figure 5, we first consider the qP-wave group-
velocity polar direction plots @( 6, ¢,) (left column). As the graphs
for all ¢ values show, in the domain 0 < € < 50°, the angular de-
viation of the group velocity from the wave vector can be as large
as 16°. In the same domain, as can be confirmed by inspection, the
first-order curves underestimate the exact curves by less than 3°.
Beyond 6= 50° up to 6=90°, the first-order @(0, ¢, graphs
closely follow the trend of the exact curves and overestimate them

by less than 5°. Considering the qP-wave group-velocity azimuthal
direction plots @( 6, ¢,) (right column), we note that for all propa-
gation directions (0 < 6 < 90°) and for all ¢, values, the errors in
the first-order azimuthal angle remain less than 5°, even though the
azimuthal angle itself undergoes large changes.

Figure 6 shows group-velocity direction plots for the slow gS-
waves. Here, inspection of the polar direction graphs O(6, ¢,)
shows that the first-order approximation is quite accurate for 6 less
than 40° and for all ¢ values. For this near-vertical sector, the an-
gular deviation of the group velocity from the wave-vector direc-
tion can be as large as 30°, while the error in the first-order results
remains less than 2°. Within the same range of near-vertical propa-
gation directions (0 < 6 < 40°), the errors in the slow qS-wave
azimuthal direction graphs @(6,¢,) are hardly observable. For
propagation directions away from the vertical (40° < 6 < 90°),
the first-order polar and azimuthal direction graphs (for all ¢ val-
ues) closely follow the trends of the corresponding exact results.
However, the first-order graphs for both @(6, ¢,) and P( 6, ¢,) are
shifted laterally with respect to the exact results, making the first-
order results less reliable for 6 > 40°.
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Figure 6. Comparison of the exact and first-order group-velocity
directions for slow gS-waves for the Schoenberg and Helbig
orthorhombic model. Shown are plots of the functions (left)
O(6,¢,) and (right) D(6,¢p,) versus 0 for fixed values of ¢ (¢
=20°, ¢ = 40°, ¢, = 60°, and ¢, = 80°). The first-order results
are obtained from equation 38a.
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Figure 7. Comparison of the exact and first-order group-velocity
directions for fast qS-waves for the Schoenberg and Helbig ortho-
rhombic model. Shown are plots of the functions (left) O(8, ¢)
and (right) @(6,¢,) versus 6 for fixed values of ¢ (¢ = 20°, ¢y
=40°, ¢, = 60°, and ¢, = 80°). The first-order results were ob-
tained from equation 38a.
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Finally, we consider the results for the fast qS-waves shown in
Figure 7. Inspecting the O(0, ¢,) plots, we note that in the domain
0 < 6 < 25°, the deviation between the direction of the fast qS-
wave group velocity and the wave vector can be as large as 20°,
while the corresponding error never exceeds 3°. Moreover, refer-
ring to the azimuthal graphs @(6, ¢,), we note that for the same
propagation directions 0 < 6 << 25°, the differences between first-
order and exact results are negligible for all ¢ values. Thus, the
first-order fast qS-wave group-velocity expression gives very accu-
rate results for prevailingly vertical propagation directions. For
propagation directions away from the vertical (30° < 6 < 90°),
first-order fast S-wave results are shifted with respect to exact re-
sults and are less reliable.

As the analytic form of the approximate qS-wave group-velocity
expressions predicts, these expressions are inaccurate for propaga-
tion near singular S-wave directions. This is evident in the fast qS-
wave group-velocity azimuthal direction plot corresponding to ¢
= 40° (Figure 7). We see that in the domain 40° < 6 < 50°, the
exact graph for @(6,40°) undergoes a change of nearly 125° while
going through a minimum. Here, the first-order approximation
completely breaks down. This domain is near the qS-wave degen-
erate direction, located at (6, @) exoer = (46.5°,44.9°).

In summary, the derived first-order group-velocity expressions
provide very good results for propagation directions tending to-
ward the vertical. The numerical results from the Schoenberg and
Helbig model show that the accuracy of our approximate group-
velocity expressions is mode dependent. Letting 6,,,, denote the
upper bound for the near-vertical propagation directions (0 < 6
< Opay) for which the errors in the first-order group-velocity polar
and azimuthal directions do not exceed 3°, we can summarize our
findings for each mode: For qP-waves, 6,,,, = 50°; for slow gS-
waves, O,.x = 40°; and for fast gS-waves, 6,,,, = 25°. We have also
observed that near qS-wave degenerate directions, first-order qS-
wave group-velocity expressions cannot be expected to yield accu-
rate results.

DISCUSSION AND CONCLUSIONS

The WCS has distinct advantages for deriving and expressing
perturbation-theory formulas for qP and qS-wave phase velocities,
group-velocity vectors, and polarization vectors. For a specified
wave-propagation direction in an arbitrarily anisotropic medium,
exact solutions of the Christoffel equation depend on only six
WCS stiffness components. Based on this simplification of the
Christoffel equation in the WCS and that for an isotropic medium
the Christoffel matrix in the WCS is strictly diagonal, we conclude
that the WCS is a natural coordinate system for the application of
perturbation theory and the study of weak anisotropy.

For weakly anisotropic media, the off-diagonal components of
the Christoffel matrix in the WCS are small (first-order) terms
compared to the diagonal components. Moreover, in weakly aniso-
tropic media, qP- and qS-waves may be treated, approximately, as
longitudinal and transverse waves, respectively. These observa-
tions facilitate the order-of-magnitude analysis involved in our
treatment of the perturbation-theory solution to the Christoffel
equation, reducing it to simple algebraic manipulations. We treat
the zero-order and first-order qS-wave polarization corrections un-
der the same footing as angles by which the polarization directions
are rotated about the wave vector. This facilitates the visualization
of polarization orientations.

The economy in the number of independent stiffness compo-
nents involved in the Christoffel matrix in the WCS, contributes to
the conciseness of our general approximate wave-attribute expres-
sions. They are displayed as linear functions of the stiffness com-
ponents in the WCS, making the physical meaning of the terms of
our expressions transparent. Using the example of orthorhombic
symmetry, we illustrate how to transform the general wave-
attribute expressions from the WCS to the acquisition coordinate
system. We present these results as linear functions of the weak-
anisotropy (orthorhombic) parameters; thus, the dependence of the
presented expressions on the degree of anisotropy is apparent.

Using the Schoenberg and Helbig orthorhombic model, we illus-
trate the accuracy of the zero-order and first-order polarization ex-
pressions. Test results show that the precision of the derived ap-
proximate qS-wave polarization expressions increases as the
propagation direction approaches the vertical. In the domain 0
< 0 < 40° and for all azimuth angles, the error in the zero-order
approximation of the qS-wave polarization direction remains less
than 5°, whereas the error in the first-order approximation is less
than 3°. As expected, the first-order qS-wave polarization expres-
sions are generally more accurate than the zero-order expressions.
However, in light of its simplicity, the zero-order expressions may
still be useful in processing data from weakly anisotropic geologic
regions. The approximate qS-wave polarization expressions are
unreliable near degenerate propagation directions.

The gP- and gS-wave group-velocity expressions developed in
this paper for the general weakly anisotropic media complement
previously published theoretical work on weak anisotropy. They
can be incorporated into computer programs for forward and in-
verse modeling in weakly anisotropic elastic media and can be use-
ful for computing traveltime tables in Kirchhoff migration that re-
quire ray tracing. As our group-velocity expressions show, while
for weak anisotropy the difference between the magnitudes of
phase velocity and group velocity can at most be a second-order
quantity, the direction of the group velocity differs from the direc-
tion of the wave vector by a first-order amount. To illustrate the ef-
fect of anisotropy on group velocity directions, we use the Schoe-
nberg and Helbig orthorhombic model, to generate plots of the
polar and azimuthal angular deviations of the group-velocity direc-
tions from the wave-vector direction. The polar angle O gives the
angle between the group-velocity vector and the wave vector, and
it sufficiently describes the deviation angle in a homogeneous
anisotropic medium. Numerical results show that the angular de-
viation for qP-waves can be as large as 0,,,, = 16°. For the slow
gS-waves, the corresponding maximum deviation angle is @,
=~ 30° and for the fast gS-wave O,,, = 20°. In light of these num-
bers, it is evident that when rays are traced across anisotropic inter-
faces and over large distances, their trajectories can diverge signifi-
cantly from the direction of the wave vector.

Differences between the first-order and exact group-velocity
plots provide a measure of the errors in the derived approximate
expressions. Test results from the Schoenberg and Helbig model
show that, for near-vertical propagations, the range of propagation
directions (wave-vector direction 6) for which the errors do not ex-
ceed 3° depends on the particular wave mode. For qP-waves, slow
gS-waves, and fast qS-waves, these ranges are 0 < 6 < 50°, 0
< 6 <40° and 0 < 0 < 25°, respectively. The numerical results
also confirm our prediction that the first-order qS-wave group-
velocity expressions are unreliable in the vicinity of S-wave degen-
eracy.
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The Schoenberg and Helbig orthorhombic model, with greater
than 30% anisotropy, provides a robust test of the perturbation-
theory results discussed in this paper. Numerical results show that
the precision of the derived approximate expressions is high, even
when anisotropy is strong. We have tested the derived approximate
expressions against weaker models, generated by uniformly reduc-
ing the weak-anisotropy parameters of the Schoenberg and Helbig
model. As expected, we find that when the anisotropy is weakened,
the agreement between the first-order and the exact results im-
proves.
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APPENDIX A

TRANSFORMATION OF STIFFNESS
COMPONENTS FROM WCS TO
ACQUISITION COORDINATE SYSTEM

Using Voigt notation, any stiffness component CJ, in the WCS
may be expressed in terms of the stiffness components C; in the
acquisition coordinate system and the wave-vector direction angles
0 and ¢ by the relation

C), = M,M C;; (sum over i and j from 1 to 6),

(A-1)
where the 6 X 6 Bond matrix M is explicitly given by
GO S S - SuSs -SuCs O
2 2
Sy Cy 0 0 0 =S8
S4C 555% Co 525y SuCs  SiSa
1 1
M=|" ESGSM 539524; 0 C0C¢ - C0g¢ SaC2¢
1 , 1 > 1 1
Eszec(/) 5520543 - 5520 Czasqs C20C¢ Eszagzda
1 1
- Ecaszqa ECOSZQS 0 —SCy  SoSy CyCay
(A-2)

Here, we use the abbreviations C,=cos 6, S,,=sin2¢, S}
= sin? 6, etc.

For a discussion of the general form of the Bond matrix M for
transforming stiffness components between any two Cartesian co-
ordinate systems, see section 3.D of Auld (1973).

APPENDIX B

ABREVIATIONS USED IN
ORTHORHOMBIC EXPRESSIONS

Following are the explicit expressions for the abbreviations used
in the derived first-order formulas for weak orthorhombic media.
Only terms linear in the weak-anisotropy parameters g; are re-
tained.

P(6,¢) = sin” §[sin” 6(g,; cos* ¢ + g4, sin* ¢
+ g15 cos® ¢ sin® @) + cos® B(gy; sin® ¢

+ 813 cos” B)], (B-1)

Css
2Cy

sin? 6{g,, cos® ¢(cos® ¢ cos’ @ + sin’ ¢)

5(6,¢) =

+ g9, sin® ¢(sin® ¢ cos® 6 + cos’ ¢)
— c05” B(go3 sin® ¢ + g5 cos® @)

— g1p sin? @sin’ ¢ cos® ¢}
1
+ (5)[855(1 — sin? ¢ sin? 6) + g sin® ).
(B-2)
33 .

C
M(6,¢) = Y sin? #g,; cos® ¢(cos> ¢ cos’ 6 — sin® )
44

+ gy, sin® ¢(sin® ¢ cos® 6 — cos® ¢)

— cos” (g3 sin* ¢ + g3 cos” ¢)
+ g1o(1 + cos? H)sin® ¢ cos® ¢}
1
+ (5)[855(%82 ¢ — sin® ¢ cos’ 6)
— geg Sin® 6], (B-3)

sin® (- 2g,, cos®> ¢

NO.¢) = sin 2¢ cos 0{%

4 C44
+ 285, Sin” ¢ — o3 + g13 + 812 COS 2¢p) — 255 |,
(B-4)
sin 260
A(6,¢) = —{2 sin® 0(g;, cos* ¢ + g4, sin* )
2(1 - C““)
C

33

+ c0s 26(gy; sin® ¢ + g3 cos’ )

1
+ 580 sin 2¢ sin’ 0], (B-5)
sin 2¢ sin 6
B(6,¢) = L[Z sin” (- g1, cos® ¢ + gy, sin® )
Cuy
Css

+ cos” 0(gx; — g13) + g12 cos 2¢psin” 6], (B-6)
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sin 26 C
Fi(6.¢) = v)——1 - ﬁ{gn cos’ (2 cos? ¢ sin”
S 2 Ca
— 1) + g5, sin? ¢(2 sin® psin® 6 — 1)

+ cos 26(gy; sin® ¢ + g3 cos” )

1 ‘2 s 29| _ 2
+ 2g12 sin”“ 2¢ sin” 0| — gs58in” @ + geg [ »

(B-7)
sin26) C
G,(6,¢) = ng C—B[g“ cos® (2 cos® ¢ cos> 6 — 1)
44
+ gy, sin® (2 sin® ¢ cos® 6 — 1)
— c0s 26(gy3 sin® ¢ + g3 cos® @)
1 . 2 2 . 2
+ Eglz Sin“ 2¢ cos” 6| + gsssin” ¢ — ges (>
(B-8)
sin2¢sin 0 C
H(0,¢) = v?—l Pl 23052 - 1)
‘ 4 Cuy
X[—2g; cos® ¢ + 2g5 sin® ¢ — ga3 + g3
+ g12c08 2] + 2gs5 (B-9)
sin2¢sin 0 C
F,(6,¢) = U?L —Bg, (2 cos? ¢ sin® 0 — 1)
2 Cyy
- g»(2sin® ¢sin® 6 - 1) + (g3 - g23)0032 0
— g1pcos 2¢psin® 0] — gss ( (B-10)
sin 2¢ sin 6
Gy(0,¢) = v'———
2(6,¢) = vy 5
Cs
X cos 2¢(g12 = g11 — &) — &ss |» (B-11)
Cuy
sin26) C
Hy(0.¢) = v)—— ﬁ|:2811 cos® (2 sin” ¢
4 (Cy

— cos® ¢ sin® 6) + 2g,, sin® p(2 cos’ ¢

— sin® ¢ sin ) + gy3(2 sin? ¢ sin® 6 — 1)

+ g13(2 cos® psin® 6 — 1)
2 L., 2
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