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ABSTRACT

We demonstrate the advantages of adopting a wave-vector-
based coordinate system �WCS� for the application of perturba-
tion theory to derive and display approximate expressions for
qP- and qS-wave polarization vectors, phase velocities, and
group velocities in general weakly anisotropic media. The ad-
vantages stem from two important properties of the Christoffel
equation when expressed in the WCS: �1� Each element of the
Christoffel matrix is identical to a specific stiffness component
in the WCS, and �2� the Christoffel matrix of an isotropic me-
dium is diagonal in the WCS.

Using these properties, one can easily identify the small
components of the Christoffel matrix in the WCS for a weakly
anisotropic medium. Approximate solutions to the Christoffel
equation are then obtained by straightforward algebraic ma-
nipulations, which make our perturbation theory solution con-

siderably simpler than previously published methods. We com-
pare and contrast our solutions with those discussed by other
workers. Numerical comparisons between the exact, first-order,
and zero-order qS-wave polarization vectors illustrate the accu-
racy of our approximate formulas. The form of the WCS phase-
velocity expressions facilitates the derivation of closed-form,
first-order expressions for qP- and qS-wave group-velocity vec-
tors, providing explicit formulas for the direction of propaga-
tion of seismic energy in general weakly anisotropic media. Nu-
merical evaluation of our group-velocity expressions demon-
strates their accuracy.

We discuss problems with the approximate qS-wave group
velocities and polarizations in neighboring directions of singu-
larities. Standard methods are used to transform our solutions
from the WCS to the acquisition coordinates, as illustrated by
application to orthorhombic symmetry.
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INTRODUCTION

The physical properties of elastic waves propagating in linear
ondissipative elastic media are characterized by P- and S-wave
olarization vectors, phase velocities, and group velocities. These
ave attributes arise from the solutions of the Christoffel equation.
umerical modeling of elastic waves propagating in anisotropic
edia of arbitrary symmetry �triclinic� can be computer intensive

Igel et al., 1991�. In view of the ubiquity of weak anisotropy in the
arth’s crust and robust applicability of first-order solutions to the
hristoffel equation, there has been longstanding interest in devel-
ping approximate solutions for weak elastic anisotropy problems
Thomsen, 1986; Mensch and Rasolofosaon, 1997; Pšenčík and
ajewski, 1998�. Closed-form approximate wave-attribute expres-

ions also provide physical insight into elastic anisotropy that is
therwise not afforded by numerical solutions.

Several authors have obtained approximate solutions to the
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hristoffel equation by linearizing its exact solutions. Thomsen
1986�, using Taylor series expansions of the exact vertical trans-
erse isotropy �VTI� formulas, obtains first-order expressions for
P- and qS-waves in weak VTI media. Rommel �1994� uses a simi-
ar approach to derive first-order expressions for polarization vec-
ors for weak VTI systems. Ohanian et al. �2002� use a set of coor-
inate transformation rules to derive first-order qP- and qS-wave
ttribute expressions for weak horizontal transversely isotropic
HTI� media directly from the corresponding VTI expressions.
ayers �1994� uses an expansion into spherical harmonics to obtain
pproximate relations for phase velocity of qP-waves in arbitrary
eakly anisotropic media. Tsvankin �1997� develops the approxi-
ate phase-velocity equation for qP-waves in orthorhombic media

y linearizing the corresponding exact equations.
Perturbation theory offers a different approach for computing

pproximate solutions of the Christoffel equation, in that it makes
o reference to the exact solutions of the equation. Backus �1965�,
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D46 Ohanian et al.
n dealing with refraction shooting in nearly isotropic media, uses
erturbation theory to obtain information about the azimuthal de-
endence of qP- and qS-wave phase velocities for horizontal
ropagation. Jech and Pšenčík �1989� use first-order perturbation
heory to obtain expressions for phase velocities and polarization
irections for qP- and qS-waves in general weakly anisotropic me-
ia. Corrections to their qS-wave polarization expressions are
iven by Thomson et al. �1992�. Gajewski and Pšenčík �1996� and
šenčík and Gajewski �1998� use perturbation theory to obtain
rst-order expressions for qP-wave phase velocities and polariza-

ions in weakly anisotropic media with applications to media with
TI, HTI, and orthorhombic symmetry. Ohanian �1996� uses per-

urbation theory to investigate phase velocities and polarization
ectors for waves in weak VTI systems. Mensch and Rasolofosaon
1997� apply the perturbation approach to obtain approximate qP-
nd qS-wave phase-velocity expressions for arbitrary anisotropy.

The analysis of the Christoffel equation is simplified substan-
ially when it is transformed to a wave-vector coordinate system
WCS�. This Cartesian coordinate system has one of its axes in the
irection of the wave vector. For a given wave-propagation direc-
ion, we demonstrate that the general solutions of the Christoffel
quation are expressible in terms of only six independent stiffness
omponents of the WCS. Moreover, for an isotropic medium, the
hristoffel matrix in the WCS is strictly diagonal. These simplifi-
ations make the WCS a convenient coordinate system for the ap-
lication of perturbation theory to the weak anisotropy problem.
ensch and Rasolofosaon �1997� obtain their qP- and qS-wave

hase velocity expressions in the WCS.
In continuation of previously cited works, we do three things.

irst, we extend the work of Mensch and Rasolofosaon �1997� by
eeking perturbation-theory solutions of the Christoffel equation in
he WCS that include qP- and qS-wave polarization expressions in
ddition to phase velocities. We compare and contrast our polariza-
ion expressions with those discussed by others. Second, we de-
elop first-order qP- and qS-wave group-velocity expressions that
rovide the direction of propagation of seismic energy in weak but
rbitrarily anisotropic media. Despite their physical significance,
P- and qS-wave group-velocity expressions for waves propagat-
ng in weakly anisotropic elastic media have not been studied in
ufficient generality. Our first-order group-velocity expressions,
hich are also developed with respect to the WCS, complement

he suite of wave-attribute expressions already discussed in the lit-
rature. Finally, we use orthorhombic symmetry to illustrate how
ur general expressions can be used to derive explicit wave-
ttribute expressions for media with any given symmetry. Numeri-
ally, we examine the domain of applicability of the approximate
olarization and group-velocity expressions and address problems
ssociated with qS-wave expressions near the singularity direc-
ions.

CHRISTOFFEL EQUATION AND
COORDINATE SYSTEM CONSIDERATIONS

It is well known �Auld, 1973; Carcione, 2001� that the Christof-
el equation may be written as an eigenvector system of equations:

Hijuj = �ui �i = 1, 2, 3; sum over j from 1 to 3� . �1�

ere and throughout this paper we adopt the usual summation con-
ention for repeated indices. Roman subscripts denote components
f vectors or tensors relative to some Cartesian coordinate system.
he eigenvector u determines the wave polarization, and the corre-
ponding eigenvalue � determines the wave phase velocity v ac-
ording to

v = ��

�
, �2�

here � is the mass density of the medium. The symmetric 3 � 3
atrix H, called the Christoffel matrix �Auld, 1973�, has compo-

ents related to the components of the elastic �stiffness� tensor Cijkl

f the medium and to the direction of the wave vector k of the
ave. Explicitly,

Hij = Cirsjer
�3�es

�3�, �3�

here e�3� is a unit vector in the direction of k. The reason for the
uperscript 3 is explained below. Components of the stiffness ten-
or Cijkl in a given coordinate system are referred to as stiffness
omponents for that coordinate system.

Our goal is to obtain first-order solutions to the eigenvalue prob-
em posed by the Christoffel equation for weak but arbitrarily
nisotropic media. Based on important structural simplifications
f the Christoffel equation in the WCS, we will seek a perturbation
heory solution of the equation directly in the WCS. Figure 1
hows the orientation of the WCS relative to the acquisition coor-
inate system. The acquisition coordinate system, otherwise
nown as the field coordinates, is the system with respect to which
ata are acquired and physical measurements are made. In a labo-
atory setting, the acquisition coordinate system is the same as the
aboratory coordinate system. The acquisition coordinate system,
ith its z-axis oriented perpendicular to the earth’s surface and in-

reasing downward, is represented by �x, y, z�. The basis vectors
or this coordinate system are the unit vectors x, y, and z.

In Figure 1 the WCS is represented by the primed system
x�,y�,z��, with the z�-axis oriented in the direction of the wave-
ector k and the y�-axis oriented horizontally. For the unit basis
ectors in the WCS, we use the superscript notation e�1�, e�2�, and
�3� �rather than the notation x�, y�, and z�� to facilitate writing and
anipulating certain tensor expressions associated with the WCS.
The spherical coordinates � and � shown in Figure 1 denote the

olar and azimuthal angles of k relative to the acquisition coordi-
ate system. The unit basis vectors of the two coordinate systems

igure 1. Orientations of the acquisition coordinate system
x, y, z� and the WCS �x�, y�, z��. The two systems are connected
hrough the spherical coordinates ��,��. The z-axis of the acquisi-
ion system is in the vertical direction, and the z�-axis of the WCS
s in the wave-vector direction k = e�3�.
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Waves in weak anisotropy media D47
re related via these angles according to the well-known relations
Symon, 1971�

e�1� = cos � cos �x + cos � sin �y − sin �z ,

e�2� = − sin �x + cos �y ,

e�3� = sin � cos �x + sin � sin �y + cos �z . �4�

The components of any vector v relative to the WCS are denoted
ith primes as v1�, v2�, and v3�. Relative to the acquisition coordi-
ates, the components of the same vector are denoted without
rimes as v1, v2, and v3. The components of v in the WCS may be
xpressed in terms of its components in the acquisition coordinates
ccording to

v� = v · e�a� = viei
�a� �a = 1,2,3� , �5�

here ei
�a� with i = 1, 2, 3 are the acquisition-system components

f the unit vector e�a�. These components may be read directly from
quation 4, for example, e2

�1� = cos � sin �. Likewise, for tensors
uch as Hij and Cijkl, we have

Hab� = Hijei
�a�ej

�b� �6�

nd

Cabcd� = Cijklei
�a�ej

�b�ek
�c�el

�d�. �7�

The relationship in equation 7 shows how the components of the
ourth-rank stiffness tensor in the WCS can be expressed in terms
f its components with respect to the acquisition coordinates. A
ore tractable method of relating stiffness components in the two

oordinate systems is offered by the Bond matrix method �Auld,
973�. The advantage of the Bond transformation matrix is that it is
pplied directly to the Voigt indices of the tensor. �Voigt notation
bbreviates the indices by replacing the first and last pair of indices
f Cijkl by single integers according to 11 → 1, 22 → 2, 33 → 3,
3 or 32 → 4, 13 or 31 → 5, 12 or 21 → 6�. The stiffness compo-
ents are then denoted Cij in the acquisition coordinate system and
ij� in the WCS, with i and j running from 1 to 6.� Equation 7 may

hen be replaced by the highly efficient transformation equation

Crs� = MriMsjCij , �8�

here the explicit form of the 6 � 6 Bond matrix M is given in
ppendix A. Through equation 8 each Crs� in the WCS may be in-

erpreted as an abbreviation for a specific linear combination of Cij

n the acquisition coordinate system with coefficients that are func-
ions of the propagation angles � and �. This means that an expres-
ion �such as a velocity or polarization formula� written in terms of

CS stiffness components may be interpreted via equation 8 as an
bbreviated form of the expression in the acquisition coordinates.
CHRISTOFFEL EQUATION IN THE
WAVE-VECTOR COORDINATE SYSTEM

In this section we write the Christoffel equation explicitly in the
CS and cast it in a form conducive to the application of first-

rder perturbation theory. We begin by using equations 3, 6, and 7
o obtain

Hij� = Habea
�i�eb

�j� = Carsber
�3�es

�3�ea
�i�eb

�j� = Ci33j� . �9�

his shows the important fact that the components of the Christof-
el matrix in the WCS are certain stiffness components in the

CS. In Voigt notation, the identity in equation 9 may be written
oncisely as

Hij� = C�6−i��6−j�� , �10�

here i and j range from 1 to 3. Equation 10 holds only in the
CS �and in coordinate systems obtained from the WCS by rota-

ion about e�3��.
Since the Christoffel equation 1 is a tensor equation, it must

ave the same form in the WCS. Thus,

Hij�uj� = �ui�. �11�

ow, using equation 10 to write out equation 11 explicitly as

�C55� C45� C35�

C45� C44� C34�

C35� C34� C33�
��u1�

u2�

u3�
� = ��u1�

u2�

u3�
� , �12�

e arrive at the Christoffel equation in the WCS. Mensch and Ra-
olofosaon �1997� obtain this representation for the Christoffel ma-
rix through two coordinate rotations.

Equation 12 displays the six conspicuous stiffness compo-
ents — C33� , C44� , C55� , C34� , C35� , and C45� — that make up the ele-
ents of the Christoffel matrix H� in the WCS. Evidently, for a

iven wave-propagation direction, the exact solutions of the
hristoffel equation for media with arbitrary anisotropy are ex-
ressible in terms of these six WCS stiffness components. As
tated earlier, through equation 8 the WCS solutions of the Christ-
ffel equation also exhibit the explicit form of the solutions with
espect to the acquisition coordinates. Thus, the full complement of
he stiffness components with respect to the acquisition coordi-
ates, which is generally 21, would be revealed. The economy in
he number of independent stiffness components entering the WCS
hristoffel matrix substantially simplifies the bookkeeping in the
nalytic treatment of the problem as well as the presentation of the
esults. It is also important to recognize that the solutions in the

CS have no less physical significance than in the acquisition co-
rdinate system. The physical meaning of Cij� , the elements of the
hristoffel matrix in the WCS, is clear: They are the stiffness com-
onents of the medium as one would measure by squeezing and
hearing the medium in directions defined by the axes of the WCS.

For isotropic media, the Christoffel matrix in the WCS is simpli-
ed even further: It is strictly diagonal. This follows from the fact

hat for isotropic media, irrespective of the choice of the coordinate
ystem, the stiffness components Cijkl with an odd number of re-
eated indices must vanish �Auld, 1973�.
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PERTURBATION-THEORY SOLUTION
OF THE CHRISTOFFEL EQUATION

The economy in the number of independent stiffness compo-
ents in the WCS Christoffel matrix H� for general anisotropy and
he strict diagonal form of H� for isotropy make the WCS a natural
oordinate system for the application of perturbation theory to the
eak anisotropy problem. Perturbation theory has been discussed

xtensively in the quantum mechanical literature �Landau and Lif-
chitz, 1977�. It provides a method of finding approximate eigen-
alues and eigenvectors of a symmetric matrix H if we know the
igenvalues and eigenvectors of another symmetric matrix H0 that
pproximates H. We now use the methodology of perturbation
heory to obtain approximate eigenvalues and eigenvectors for H�

orresponding to weak anisotropy.
For weak anisotropy we can approximate H�, the Christoffel
atrix of the weakly anisotropic medium in the WCS by the
hristoffel matrix H0� of a suitably chosen isotropic medium. Be-
ause H0� is also represented with respect to the WCS, it is diago-
al and may be written

H0� = �C44
0 � 0 0

0 C44
0 � 0

0 0 C33
0 �

� , �13�

here the elements C33
0� and C44

0� determine the elastic properties of
he isotropic medium �Auld, 1973�.

The values of C33
0� and C44

0� appearing in equation 13 may be cho-
en in any manner that makes H0� a good approximation to H� for
he weakly anisotropic medium of interest. In this paper, we take

33
0� and C44

0� to be the values of C33� and C44� of H� for the particular
hoice of the WCS corresponding to vertical wave propagation.
or vertically propagating waves, except for a possible rotation
bout the vertical axis, the WCS coincides with the acquisition co-
rdinate system. Thus, our choice amounts to setting C33

0� = C33,
here C33 is the stiffness component as measured in the acquisition

oordinate system for the weakly anisotropic medium. As for C44
0�,

ny of the choices C44
0� = C44, C44

0� = C55, or C44
0� = �C44 + C55�/2

ould be suitable since C44 � C55 for any weakly anisotropic me-
ium. In this paper we choose C44

0� = C44. Numerical estimates for
33 and C44 can be obtained from the near-vertical propagating qP-
nd qS-wave phase velocities �Mensch and Rasolofosaon, 1997�.

Since equation 13 with C33
0� = C33 and C44

0� = C44 approximates
� for weak anisotropy, we conclude that H� is approximately di-

gonal and its off-diagonal elements C34� , C35� , and C45� are small
ompared to C33 and C44. Likewise, the differences C33� − C33, C44�
C44, and C55� − C44 are small compared to C33 and C44. We adopt

he conventional terminology of perturbation theory when using
he descriptions zero order, first order, etc. �Landau and Lifschitz,
977�. Thus, we say that C33 is the zero-order approximation to C33�
nd that C44 is the zero-order approximation for both C44� and C55� .
xpressions such as C34� /C33, �C33� − C33�/C33, and �C55� − C44� �/C44

re small, first-order quantities. The product of two first-order
uantities is a second-order quantity, and so forth. These order-of-
agnitude relationships between the Cij� of the WCS and the com-

onents C33 and C44 of the acquisition coordinate system facilitate
he algebraic manipulations involved in the perturbation-theory so-
ution of the weak anisotropy problem discussed next.
P-wave phase velocities and polarization
ectors for general weak anisotropy

To obtain first-order solutions to equation 12 corresponding to
quasi-� longitudinal waves �qP-waves�, we note that in a weakly
nisotropic medium, the longitudinal component u3� of the polariza-
ion will be much larger than either transverse component u1� or u2�
u1� and u2� would be zero in an isotropic medium�. Thus, for qP-
aves we may consider u1� and u2� as small, first-order quantities

ompared to u3�.
Writing equation 12 to the first order for a qP-wave yields

	C55� u1� + C35� u3� = �u1�

C44� u2� + C34� u3� = �u2�

C33� u3� = �u3�

 . �14�

hese lead directly to

� = C33� �15�

nd

u1� =
C35�

C33� − C55�
u3�, u2� =

C34�

C33� − C44�
u3�. �16�

ere, u is a first-order unit vector if we take u3� = 1. The denomina-
ors in equation 16 may be replaced by their zero-order approxima-
ions, and the overall expressions will still be accurate to first order.
hus, the first-order qP-wave unit polarization vector is

uqP =
C35�

C33 − C44
e�1� +

C34�

C33 − C44
e�2� + e�3�. �17�

his expression agrees with the qP-wave polarization formula dis-
ussed by Pšenčík and Gajewski �1998�.

The qP-wave phase velocity is obtained by substituting equation
5 into equation 2:

vqP = �C33�

�
. �18�

quation 18 gives a compact, approximate expression for the qP-
ave phase velocity in any weakly anisotropic medium. Equation
8 may be linearized to first-order accuracy as follows:

vqP = �C33�

�

= �C33

�
�1 +

C33� − C33

C33
�

= vP
0�1 +

C33� − C33

2C33
� , �18a�

here vP
0 = �C33/�. Equation 18a displays the qP-wave phase ve-

ocity as a zero-order approximation vP
0 plus a first-order correc-

ion. We note that for vertical propagation in the acquisition coor-
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Waves in weak anisotropy media D49
inate system, C33� = C33. Therefore, equation 18a shows that vP
0 is

qual to the vertical qP-wave phase velocity to first-order accuracy.
The qP-wave polarization and phase-velocity expressions �equa-

ions 17 and 18�, along with those for the qS-waves to be discussed
ext and the qP- and qS-wave group-velocity expressions to be dis-
ussed later, demonstrate the compactness and physical interpret-
bility of solutions to the Christoffel equation in the WCS. We dis-
lay these wave attributes in terms of the WCS stiffness
omponents Cij� and the WCS basis vectors e�i�. Each Cij� appearing
n our formulas has the physical meaning of being a stiffness com-
onent of the medium as measured directly in the WCS. For sur-
ace seismic exploration, these wave attributes need to be written
ith respect to the acquisition coordinate system. For this purpose,

hrough equation 8, each Cij� appearing in our expressions can be
xpanded in terms of Ckl, the stiffness components of the medium
ith respect to the acquisition coordinate system. Equation 4 pro-
ides the rule for transforming the WCS basis vectors e�i� to the ac-
uisition system � x̂, ŷ, ẑ�.
As an illustration, consider the qP-wave phase-velocity expres-

ion 18a. It can be written with respect to the acquisition coordi-
ate system by using equation 8 to express C33� as

C33� = M3iM3jCij , �19�

ith M as given in Appendix A. Equation 18a then becomes iden-
ical to equation 8 of Gajewski and Pšenčík �1996�. As expected,
hen written out explicitly with respect to the acquisition coordi-
ate system, vqP becomes fairly lengthy and complex.

S-wave phase velocities and polarization
ectors for general weak anisotropy

For qS-waves, u3� is a small, first-order quantity compared with
1� or u2�. Keeping only terms up to the first order in equation 12
ields

	C55� u1� + C45� u2� = �u1�

C45� u1� + C44� u2� = �u2�

C35� u1� + C34� u2� + C33� u3� = �u3� .

 �20�

he first two equations have nontrivial solutions only if

C55� − � C45�

C45� C44� − �
 = 0. �21�

hus, as expected, we generally have two values for � correspond-
ng to two distinct qS-wave modes:

�± =
1

2
�C44� + C55� ± ��C44� − C55� �2 + 4C45�

2� . �22�

he plus sign corresponds to the faster qS-wave. Note that the two
S-wave phase velocities are equal to one another �degenerate� to
he first-order only if C44� = C55� and C45� = 0. Equation 22 agrees
ith equation 34 of Mensch and Rasolofosaon �1997�. A density-
ormalized version of equation 22 is also developed by Jech and
šenčík �1989� and Farra and Pšenčík �2003�.
For convenience in writing the results for the qS-wave polariza-
ion directions, we introduce an angle �, lying between −�/2 and
/2, defined by

� =
1

2
arctan�C55� − C44� ,2C45� � , �23�

here arctan�x,y� is defined to be the angle � lying between −�
nd � such that x = r cos �, y = r sin �, and r = �x2 + y2. �Thus,
he range of our arctangent function is not restricted to principal
alues.�

Substituting equation 22 into the first equation of equation 20
ields

�u2�

u1�
�

+

= tan � and �u2�

u1�
�

−

= − cot � . �24�

he plus and minus subscripts correspond to the faster and slower
quasi-� qS-waves, respectively. Thus, for the faster wave we take
1� = cos � and u2� = sin �, while for the slower wave we take u1�
−sin � and u2� = cos �. In the language of degenerate perturba-

ion theory �Landau and Lifshitz, 1977�, these results give us the
ero-order approximation for the unit polarization vectors corre-
ponding to the faster and slower qS-waves:

uS0
+ = cos �e�1� + sin �e�2�, �25�

uS0
− = − sin �e�1� + cos �e�2�. �25a�

Proceeding to the first-order approximations, after some algebra,
e find that we can express the qS-wave polarization vectors in the

ollowing form:

uqS
+ = cos�� + ���e�1� + sin�� + ���e�2�

+ �C35� cos � + C34� sin �

C44 − C33
�e�3�, �26�

uqS
− = − sin�� + ���e�1� + cos�� + ���e�2�

+ �C34� cos � − C35� sin �

C44 − C33
�e�3�, �26a�

here � is given by equation 23 and

�� =
1

C44 − C33
�C45� �C34�

2 − C35�
2� + C34� C35� �C55� − C44� �

�C55� − C44� �2 + 4C45�
2 � .

�27�

There is an important restriction on the validity of our expres-
ions for the qS-wave polarization vectors. Generally, in an aniso-
ropic medium there exist certain isolated directions of wave
ropagation for which the qS-wave polarization angle � is indeter-
inate because of degeneracy of the two qS-wave phase velocities.
s previously noted, these degenerate directions occur in our first-
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rder treatment whenever both C55� = C44� and C45� = 0. Equations
3 and 27 thus show that both � and �� are undefined at the de-
enerate directions. In the immediate neighborhood of a degener-
te direction, � and �� tend to be unstable with regard to small
ariations in the elastic properties of the medium. Therefore, equa-
ions 23 and 27 are not reliable in the vicinity of S-wave degen-
racy. Moreover, inspection of equation 27 shows that �� actually
iverges when approaching a degenerate direction because the de-
ominator in equation 27 approaches zero faster than the numera-
or as both �C55� − C44� � and C45� approach zero. Thus, in the neigh-
oring directions of degeneracy, �� is not a valid first-order
orrection to the zero-order angle �. In fact, near degenerate direc-
ions, the first-order approximation � + �� can be less accurate
han the zero-order approximation �. This behavior is illustrated
ater with numerical evaluations.

Jech and Pšenčík �1989� use perturbation theory to derive ex-
ressions for both zero-order and first-order approximations for
S-wave polarizations in an arbitrary weakly anisotropic medium.
xcept for the zero-order expressions, our results are equivalent to

heirs. Our zero-order qS-wave polarization expressions agree with
ormulas discussed by Thomson et al. �1992� and Farra and
šenčík �2003�.
The introduction of the qS-wave polarization angle �, together

ith the use of the WCS basis vectors �e�1�,e�2�,e�3��, allows us to
xpress our qS-wave polarization expressions in a form that clearly
isplays the geometry of the polarization directions. As equations
5 and 25a show, to the lowest �zero� order of approximation, the
S-wave polarization vectors uS0

+ and uS0
− are obtained by rotating

�1� and e�2� about e�3� by the angle �. Equations 26 and 26a explic-
tly give the qS-wave polarizations relative to the WCS in terms of
he polarization angles defined in equations 23 and 27. They show
hat the effect of the first-order correction is to introduce a small
omponent along the wave vector e�3� and to add a small angular
orrection �� to �. Transformation to the acquisition coordinate
ystem may be accomplished using equations 4 and 8.

The faster and slower qS-wave phase velocities are found by
ubstituting the qS-wave eigenvalues of equation 22 into equation
. After performing manipulations similar to those indicated in
quation 18a, we obtain

vqS
± = vS

0�1 + �C55� + C44� − 2C44 ± ��C55� − C44� �2 + 4C45�
2

4C44
�� ,

�28�

here vS
0 = �C44/�. Here, vqS

+ is associated with the plus sign in
ront of the square root in equation 28 and denotes the phase veloc-
ty for the faster qS-wave. Similarly, vqS

− corresponds to the slower
S-wave. Equation 28 agrees with Jech and Pšenčík �1989� and
ensch and Rasolofosaon �1997�.

GROUP VELOCITIES IN GENERAL
WEAKLY ANISOTROPIC MEDIA

Phase velocity characterizes the speed of propagation of a fixed
alue of phase of an infinitely extended plane �harmonic� wave. In
ractice, we do not deal with an ideal plane wave, but rather, with a
ave that is limited in both spatial extent and duration. If the spa-

ial and time limitations are not too extreme, then the wave may be
onsidered to be a superposition of plane waves covering a rather
arrow range of wave vectors centered around some average wave
ector k0. The spread in wave vectors includes a variation in direc-
ion as well as magnitude. Although a specific value of phase of the
ave group propagates essentially at the phase velocity corre-

ponding to k0, the wave group as a whole and the energy carried
y the wave propagate at a group velocity �ray velocity� that gen-
rally differs from the phase velocity in both direction and magni-
ude. For a graphic demonstration of group velocity arising from
he superposition of two plane waves of the same frequency but
lightly different wave-vector directions, see Wolfe and Hauser
1995�. Ohanian et al. �1997� investigate acoustic wavefronts and
roup velocities as superposition of plane harmonic waves in
nisotropic geologic sediments.

Letting 	�k� = kv�k� denote the angular frequency of the har-
onic component with wave vector k, the group velocity vector w
ay be expressed as

w = �k	�k� = �e�1� �

k��
+ e�2� �

k sin ���
+ e�3� �

�k
�	�k� ,

�29�

here the k-space gradient operator �k is written out explicitly in
erms of spherical coordinates of the acquisition coordinate sys-
em. �For a formal discussion of group velocities, see Auld �1973�
nd Wolfe and Hauser �1995�.� These derivatives in equation 29
re to be evaluated at the average wave vector k0. Since the basis
ectors of the spherical coordinates of the acquisition system are
dentical to the basis vectors of the WCS, equation 29 conveniently
xpresses the group velocity relative to the WCS.

The phase-velocity expressions derived earlier show that in an
nisotropic medium, the phase velocity v�k� depends explicitly on
he direction of k. However, since dispersion is largely absent for
he long wavelengths used in seismic exploration, v�k� has negli-
ible dependence on the magnitude of k. Thus, we may write
�k� = kv ��,�� and reduce equation 29 to an expression relating

he group velocity to derivatives of the phase velocity:

w =
�v��,��

��
e�1� +

�v��,��
sin ���

e�2� + v��,��e�3�. �30�

enoting the group-velocity vector by its components w = w1�e�1�

w2�e�2� + w3�e�3�, we have

w1� =
�v
��

, w2� =
1

sin �

�v
��

, w3� = v . �31�

nspection of equations 18a and 28 shows that the P- and S-wave
hase velocities depend on � and � only via the WCS stiffness
omponents C33� ,C44� ,C45� , and C55� �whose functional dependence on
and � is given by equation 8�. Therefore, the P- and S-wave

roup velocities involve derivatives of these stiffness components
ith respect to � and �. These derivatives can be shown to be ex-
ressible as linear functions of other WCS stiffness components.
s a result, we obtain the following vector expression for the first-
rder qP-wave group velocity:
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wqP = 2vP
0�C35�

C33
e�1� +

C34�

C33
e�2�� + vqPe�3�, �32�

here vqP is given by equation 18a. Similarly, for the qS-wave
roup velocities, we find

wqS
± = w1�

±e�1� + w2�
±e�2� + vqS

± e�3�, �33�

here vqS
± is given in equation 28 and

w1�
± =

vS
0

2C44
�C15� + C46� − C35�

± �C15� − C46� − C35� �cos 2�

± �C14� + C56� − C34� �sin 2�� , �33a�

w2�
± =

vS
0

2C44
�C24� + C56� − C34�

± �C34� + C56� − C24� �cos 2�

± �C25� + C46� − C35� �sin 2�� . �33b�

he upper-lower sign �
� in the above expressions for w1�
± and w2�

±

orresponds to taking the upper/lower sign �
� in equation 28, and
is the polarization angle defined by equation 23.
The appearance of the polarization angle � in the first-order qS-

ave group-velocity expressions is interesting. As stated earlier,
henever the phase velocities of the two qS-waves coincide, � be-

omes indeterminate. Therefore, like the first-order qS-wave polar-
zation expressions, the derived first-order qS-wave group veloci-
ies are unreliable near the directions of S-wave degeneracy. This
ehavior is illustrated later with numerical evaluations of the
roup-velocity expressions.

Inspection of expressions 32 and 33 shows that the deviations of
he directions of the qP- and qS-wave group velocities from the di-
ection of the wave vector are linear functions of C34� , C35� , C14� , C15� ,

24� , C25� , C46� , and C56� . For weak anisotropy, the magnitude of these
tiffness components is, at most, first-order compared with C33 and
44. This implies that �w� = v up to and including first-order accu-

acy. However, we see explicitly that weak anisotropy generates
rst-order deviations in the qP- and qS-wave group-velocity direc-

ions from the wave-vector direction. Later we present numerical
ests that quantitatively illustrate the influence of anisotropy on
hese deviations.

Byun and Corrigan �1990� discuss an iterative model-based ray-
racing scheme to invert the traveltimes from field VSP data for the
TI stiffness components. For the purposes of computing first-

rrival traveltimes in VTI media used in Kirchhoff migration, Faria
nd Stoffa �1994� incorporate Thomsen’s group-velocity expres-
ions to calculate ray directions. Cheadle et al. �1991� use group-
elocity measurements taken directly along the symmetry planes
nd in 45° propagation directions of a phenolic cube to compute
he stiffness components of an orthorhombic specimen. Our group-
elocity expressions can facilitate the extension of similar algo-
ithms to media with arbitrary symmetry.
APPLICATION TO WEAK
ORTHORHOMBIC SYMMETRY

To illustrate the use of our general results, we focus on media
ossessing orthorhombic symmetry, which has direct practical ap-
lications in exploration �Schoenberg and Helbig, 1997�. Tsvankin
1997� shows that in the symmetry planes of an orthorhombic me-
ium, solutions to the Christoffel equation reduce to equivalent
TI expressions. Pšenčík and Gajewski �1998� derive first-order
hase velocity and polarization relations for qP-waves in weak
rthorhombic media. Farra and Pšenčík �2003� investigate addi-
ional wave attributes in orthorhombic media. We rederive some of
hese results and additionally obtain useful approximate qS-wave
olarization and group-velocity expressions.

Instead of dealing explicitly with individual stiffness compo-
ents, Thomsen �1986� simplifies the weak VTI problem by intro-
ucing his parameters �, �, and . Several authors extend his work
o include media with arbitrary symmetry �Sayers �1994�, Pšenčík
nd Gajewski �1998�, Mensch and Rasolofosaon �1997��. We pro-
eed along similar lines to define weak-anisotropy parameters for
se in our wave-attribute expressions.

The stiffness tensor Cij
ortho of the standard orthorhombic medium

with its axes of symmetry coincident with the acquisition coordi-
ate axes� has nine independent components �Tsvankin, 1997�,
hereas the isotropic stiffness tensor Cij

iso has only two: C33 and C44

Thomsen, 1986�. Since for weak anisotropy, the difference be-
ween Cij

ortho and Cij
iso is small, it is natural to define the weak-

nisotropy parameters gij by considering some dimensionless
caled version of �Cij

ortho − Cij
iso�. The degree of anisotropy for an

rthorhombic medium may be characterized by the following
even weak anisotropy parameters:

g11 =
C11 − C33

2C33
, g22 =

C22 − C33

2C33
,

g55 =
C55 − C44

2C44
, g66 =

C66 − C44

2C44
,

g12 =
C12 + 2C66 − C33

C33
, g13 =

C13 + 2C55 − C33

C33
,

g23 =
C23 + 2C44 − C33

C33
. �34�

or weak anisotropy, all gij are small compared to one and reduce
o zero for the isotropic case. These parameters are identical to
hose of Pšenčík and Gajewski �1998�, except that we introduce
wo additional parameters, g55 and g66.

irst-order phase velocities for
eak orthorhombic media

Working with equations 18a and 28, after expanding each of the
tiffness components Ckl� appearing in these expressions in terms of
he C and using equation 34 to eliminate C in favor of g , we ob-
ij ij ij
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ain the following first-order qP- and qS-wave phase-velocity ex-
ressions for waves propagating in weakly orthorhombic media:

vqP = vP
0 �1 + P��,��� , �35�

vqS
± = vS

0�1 + S��,�� ± �M��,��2 + N��,��2� .

�35a�

he explicit dependence of these phase-velocity expressions �as
ell as the polarization and group-velocity expressions discussed
ext� on the weak-anisotropy parameters gij and the propagation
irections � and � can be seen through the full form of the abbre-
iations P��,��, S��,��, M��,��, etc., provided in Appendix B.

irst-order polarization vectors for
eak orthorhombic media

After transforming the general weak-anisotropy polarization ex-
ressions 17, 26, and 26a to the acquisition coordinates and ex-
ressing them in terms of the weak orthorhombic parameters, we
btain the following first-order unit polarization vectors for qP-
nd qS-waves in weak orthorhombic media �see Appendix B�:

uqP = A��,��e�1� + B��,��e�2� + e�3�, �36�

uqS
+ = cos �e�1� + sin �e�2�

− �A��,��cos � + B��,��sin ��e�3�, �36a�

uqS
− = − sin �e�1� + cos �e�2�

− �B��,��cos � − A��,��sin ��e�3�. �36b�

he polarization angle �, via the general expression 23, is

� =
1

2
arctan�M��,��,N��,��� and −

�

2
� � �

�

2
.

�37�

For propagation in the symmetry planes of the orthorhombic
edium, these expressions simplify. For example, using the ex-

licit forms of M��,�� and N��,�� given in Appendix B, we can
how that for each symmetry plane of the orthorhombic medium,
quation 37 yields � = 0 or �/2. This result is consistent with the
olarization angle for a VTI system and provides an example of a
eneral property discussed by Tsvankin �1997�.

Inspection of equation 27 shows that the first-order correction to
he polarization angle ���� can become very complicated when it
s written in terms of the stiffness components of the acquisition
oordinate system. Numerical results of the next section provide
nsight into the accuracy of the zero-order and first-order expres-
ions for the qS-wave polarization angles. There we show that the
ero-order approximation for the polarization angle as given in
quation 37 provides sufficient accuracy without including the
rst-order correction �� for a wide range of propagation directions

n a weak orthorhombic medium. For this reason, we set �� = 0 in
he qS-wave polarization vector expressions 36a and 36b to keep
hem simple in form and without a significant loss in accuracy. To

ake these expressions truly accurate to first order, � should be re-
laced by � + �� in the coefficients of e�1� and e�2�, as in equations
6 and 26a.

Equations 35 and 36 for the qP-wave phase velocity and polar-
zation vector agree with formulas discussed by Pšenčík and Ga-
ewski �1998�. For additional discussions on qS-wave phase ve-
ocities, see Mensch and Rasolofosaon �1997�.

irst-order group velocities for
eak orthorhombic media

From the general weak-anisotropy group-velocity expressions
2 and 33, we obtain the corresponding group-velocity formulas
alid for weak orthorhombic media. With reference to the abbre-
iations in Appendix B, these group velocities can be written in the
ollowing convenient forms:

wqP = 2�1 −
C44

C33
��P

0 �A��,��e�1� + B��,��e�2�� + �qPe�3�,

�38�

wqS
± = w1�

±e�1� + w2�
±e�2� + �qS

± e�3�, �38a�

here

w1�
± = F1��,�� ± �G1��,��cos 2� + H1��,��sin 2�� ,

�38b�

w2�
± = F2��,�� ± �G2��,��cos 2� + H2��,��sin 2�� .

�38c�

he terms �qP and �qS
± associated with the e�3� components of group

elocity expressions 38 and 38a denote the qP- and qS-wave phase
elocities defined in equations 35 and 35a. An examination of the
ccuracy of equations 38 and 38a is provided in our later discus-
ion on numerical evaluations of group velocities.

The approximate wave-attribute expressions for orthorhombic
edia discussed here can be shown to be exact for vertically

ropagating waves. Therefore, they are more accurate for waves
ropagating in directions that are closer to the vertical. Symmetry-
lane projections of the derived approximate orthorhombic expres-
ions reduce to equivalent VTI expressions.

NUMERICAL COMPARISON OF S-WAVE
POLARIZATION EXPRESSIONS

In this section, we investigate the accuracy of the zero-order and
rst-order qS-wave polarization expressions 25, 25a, 26, and 26a
y applying them to the orthorhombic model investigated by
choenberg and Helbig �1997�. The density-normalized elastic
tiffness matrix of this model relative to the acquisition coordinate
ystem is
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�Cij� = �
9.00 3.60 2.25 0 0 0

3.60 9.84 2.40 0 0 0

2.25 2.40 5.94 0 0 0

0 0 0 2.00 0 0

0 0 0 0 1.60 0

0 0 0 0 0 2.18

� .

�39�

he anisotropy represented by this model is not weak. For ex-
mple, C33 differs from C22 by about 65%, and the value of the as-
ociated weak anisotropy parameter g22 is about 0.33. The rela-
ively strong anisotropy of this model provides a robust test of our
olarization expressions. �For the same reason, we also use it next
o evaluate group velocities.� Numerical studies of approximate
ormulas for qS-wave polarization directions for this model are
iven in Farra and Pšenčík �2003�. Our purpose here is to evaluate
nd compare the accuracy of our WCS expressions for the zero-
rder and first-order qS-wave polarization angles and to illustrate
heir behavior near directions of S-wave degeneracy.

As predicted, the derived approximate polarization expressions
re inaccurate for qS-waves propagating in directions close to sin-
ular directions. Figure 2 shows a contour map that displays the
ercent difference between the first-order faster and slower qS-
ave phase velocities. Four dots mark the points where the faster

nd slower phase velocities are equal. These singular directions ob-
ained from our first-order phase velocity expressions are at
�,�� = �50.5°,42.2°�, �20.1°, 0°�, �66.1°, 0°�, and �76.6°, 90°�.
he corresponding numerically computed exact directions are at

igure 2. Contour map showing the percent difference between the
aster and slower qS-wave phase velocities generated for the
choenberg and Helbig orthorhombic model using the first-order
pproximation formulas. The percent difference is plotted as a
unction of the propagation direction angles � and �. Four dots
ark the singular points where the faster and slower phase veloci-

ies are equal.
�,�� = �46.5°,44.9°�, �20.1°, 0°�, �59.8°, 0°�, and �72.5°, 90°�.
Figure 3 displays plots of the exact, first-order, and zero-order

olarization angles of the faster qS-wave as a function of wave-
ector direction. We plot the angle between e�1� and the projection
f the faster qS-wave polarization vector onto the e�1� − e�2� plane.
o zero-order approximation, this is � given in equation 23. To
rst-order approximation, the polarization angle is given by �
��, where �� is given in equation 27. Exact polarization angles

re obtained by a numerical solution of the Christoffel equation.
he graphs cover one octant of space specified by the domain 0

� � 90°, 0 � � � 90°. Each graph plots polarization angle
ersus � for a fixed value of �. Angular deviations between the ap-
roximate and exact polarization directions are interpreted as the
rror in the polarization angle.

Figure 3 shows that both zero-order and first-order approxima-
ions are quite accurate for �, less than about 40° for all values of
. For this restricted but rather large domain, the polarization error

n the zero-order approximation remains less than 5°, while the er-
or in the first-order approximation is less than 3°. In this domain,

igure 3. Comparison of the exact, first-order, and zero-order po-
arization angles for the faster qS-wave computed for the Schoen-
erg and Helbig model. The plots are generated as functions of �
or fixed values of the wave-vector azimuth angles � ��0 = 10°,

= 20°, � = 30°,. . .�.
0 0
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here is no significant advantage in including the first-order correc-
ion ��. In Figure 3, we also note that for the domain 40° � �

60°, the first-order correction provides noticeable improvement
or most values of �. However, near qS-wave degeneracy �� near
0° and � near 50°� the first-order approximation clearly breaks
own and even gives poorer results than the zero-order approxima-
ion. As discussed earlier, this behavior is because of the diver-
ence of the expression for �� in equation 27 near the degenerate
irections. We also notice that for the plots corresponding to �
10° and � = 80°, the first-order curves display inaccurate blips

or � near 65° and 75°, respectively. Again, this is because the qS-
aves are nearly degenerate for these propagation directions.
In summary, the zero-order approximation for the qS-wave po-

arization is generally quite stable and accurate away from the sin-
ular directions. Although the first-order correction gives notice-
ble improvement in certain limited domains of propagation
irection, it is more complicated in form than the zero-order ap-
roximation. For this particular model, the first-order approxima-
ion can give poorer results than the zero-order approximation near
irections of qS-wave degeneracy. Very near the degenerate direc-
ions, neither the zero-order nor the first-order expressions can be
xpected to yield accurate results.

NUMERICAL EVALUATION OF
GROUP-VELOCITY EXPRESSIONS

We now provide numerical evaluation of the accuracy of our
rst-order qP- and qS-wave group-velocity expressions. For this
urpose, we again use the Schoenberg and Helbig �1997� ortho-
hombic model described by the elastic stiffness matrix �equation
9�.

Since to the first order, in weak anisotropy, the magnitude of the
roup velocity is equal to the phase velocity, we consider only
roup-velocity directions. To describe the direction of the group-
elocity vectors, we use polar and azimuthal angles ��,�� to
pecify deviations of the group velocity w from the wave vector k.
igure 4 shows the orientation of w with respect to the WCS
e�1�,e�2�,e�3�� through the polar and azimuthal angles. Note that
�,�� are distinct from the polar angles ��,��, which specify the
rientation of k with respect to the acquisition coordinate system

igure 4. Illustration of the direction of group velocity w with re-
pect to the WCS basis vectors �e�1�,e�2�,e�3�� through the polar and
zimuthal angles ��,��. Equations 40 give ��,�� as functions of
he wave-vector direction angles � and �, illustrated in Figure 1.
x,y,z� illustrated in Figure 1. The polar angle � denotes the angle
etween k and w. This angle determines a cone on which the group
elocity must lie. The azimuthal angle � locates the group velocity
n the cone. It denotes the angle between e�1� and the projection of

onto the e�1� − e�2� plane. Recalling the notation used earlier to
escribe the group-velocity vector by its components, w = w1�e�1�

w2�e�2� + w3�e�3�, the polar and azimuthal group-velocity angular
eviations from the direction of the wave vector are given by:

���,�� = tan−1���w1��
2 + �w2��

2

w3�
� ,

���,�� = tan−1�w2�

w1�
� . �40�

or weak media, � is always small. However, � can be any angle.
Figures 5–7 compare the first-order and exact qP- and qS-wave

igure 5. Comparison of the exact and first-order group-velocity
irections for qP-waves for the Schoenberg and Helbig orthorhom-
ic model. Shown are plots of the functions �left� ���,�0� and
right� ���,�0� versus � for fixed values of � ��0 = 20°, �0

40°, �0 = 60°, and �0 = 80°�. The first-order qP-wave results
re computed using equation 38.
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roup-velocity directions for the Schoenberg and Helbig model.
igure 5 corresponds to qP-waves, Figure 6 corresponds to slow
S-waves, and Figure 7 corresponds to fast qS-waves. For each
ode, for fixed values of � ��0 = 20°, �0 = 40°, �0 = 60°, and

0 = 80°�, we use equation 40 to generate plots of ���,�0� and
��,�0� versus �. We obtain the exact directions by numerical so-

ution of the Christoffel equation. Although we display results for
xed values of � �in 20° intervals�, these plots illustrate the sub-
tance of our general conclusions, based on our investigation of the
ntire domain 0 � � � 90°, 0 � � � 90°. The deviation between
he first-order and the exact results is called the error in the first-
rder group-velocity direction.

Referring to Figure 5, we first consider the qP-wave group-
elocity polar direction plots ���,�0� �left column�. As the graphs
or all � values show, in the domain 0 � � � 50°, the angular de-
iation of the group velocity from the wave vector can be as large
s 16°. In the same domain, as can be confirmed by inspection, the
rst-order curves underestimate the exact curves by less than 3°.
eyond � = 50° up to � = 90°, the first-order ���,�0� graphs
losely follow the trend of the exact curves and overestimate them

igure 6. Comparison of the exact and first-order group-velocity
irections for slow qS-waves for the Schoenberg and Helbig
rthorhombic model. Shown are plots of the functions �left�
��,�0� and �right� ���,�0� versus � for fixed values of � ��0

20°, �0 = 40°, �0 = 60°, and �0 = 80°�. The first-order results
re obtained from equation 38a.
y less than 5°. Considering the qP-wave group-velocity azimuthal
irection plots ���,�0� �right column�, we note that for all propa-
ation directions �0 � � � 90°� and for all �0 values, the errors in
he first-order azimuthal angle remain less than 5°, even though the
zimuthal angle itself undergoes large changes.

Figure 6 shows group-velocity direction plots for the slow qS-
aves. Here, inspection of the polar direction graphs ���,�0�

hows that the first-order approximation is quite accurate for � less
han 40° and for all � values. For this near-vertical sector, the an-
ular deviation of the group velocity from the wave-vector direc-
ion can be as large as 30°, while the error in the first-order results
emains less than 2°. Within the same range of near-vertical propa-
ation directions �0 � � � 40°�, the errors in the slow qS-wave
zimuthal direction graphs ���,�0� are hardly observable. For
ropagation directions away from the vertical �40° � � � 90°�,
he first-order polar and azimuthal direction graphs �for all � val-
es� closely follow the trends of the corresponding exact results.
owever, the first-order graphs for both ���,�0� and ���,�0� are

hifted laterally with respect to the exact results, making the first-
rder results less reliable for � � 40°.

igure 7. Comparison of the exact and first-order group-velocity
irections for fast qS-waves for the Schoenberg and Helbig ortho-
hombic model. Shown are plots of the functions �left� ���,�0�
nd �right� ���,�0� versus � for fixed values of � ��0 = 20°, �0

40°, �0 = 60°, and �0 = 80°�. The first-order results were ob-
ained from equation 38a.
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Finally, we consider the results for the fast qS-waves shown in
igure 7. Inspecting the ���,�0� plots, we note that in the domain
� � � 25°, the deviation between the direction of the fast qS-
ave group velocity and the wave vector can be as large as 20°,
hile the corresponding error never exceeds 3°. Moreover, refer-

ing to the azimuthal graphs ���,�0�, we note that for the same
ropagation directions 0 � � � 25°, the differences between first-
rder and exact results are negligible for all � values. Thus, the
rst-order fast qS-wave group-velocity expression gives very accu-
ate results for prevailingly vertical propagation directions. For
ropagation directions away from the vertical �30° � � � 90°�,
rst-order fast S-wave results are shifted with respect to exact re-
ults and are less reliable.

As the analytic form of the approximate qS-wave group-velocity
xpressions predicts, these expressions are inaccurate for propaga-
ion near singular S-wave directions. This is evident in the fast qS-
ave group-velocity azimuthal direction plot corresponding to �
40° �Figure 7�. We see that in the domain 40° � � � 50°, the

xact graph for ���,40°� undergoes a change of nearly 125° while
oing through a minimum. Here, the first-order approximation
ompletely breaks down. This domain is near the qS-wave degen-
rate direction, located at ��,��exact = �46.5°,44.9°�.

In summary, the derived first-order group-velocity expressions
rovide very good results for propagation directions tending to-
ard the vertical. The numerical results from the Schoenberg and
elbig model show that the accuracy of our approximate group-
elocity expressions is mode dependent. Letting �max denote the
pper bound for the near-vertical propagation directions �0 � �

�max� for which the errors in the first-order group-velocity polar
nd azimuthal directions do not exceed 3°, we can summarize our
ndings for each mode: For qP-waves, �max = 50°; for slow qS-
aves, �max = 40°; and for fast qS-waves, �max = 25°. We have also
bserved that near qS-wave degenerate directions, first-order qS-
ave group-velocity expressions cannot be expected to yield accu-

ate results.

DISCUSSION AND CONCLUSIONS

The WCS has distinct advantages for deriving and expressing
erturbation-theory formulas for qP and qS-wave phase velocities,
roup-velocity vectors, and polarization vectors. For a specified
ave-propagation direction in an arbitrarily anisotropic medium,

xact solutions of the Christoffel equation depend on only six
CS stiffness components. Based on this simplification of the

hristoffel equation in the WCS and that for an isotropic medium
he Christoffel matrix in the WCS is strictly diagonal, we conclude
hat the WCS is a natural coordinate system for the application of
erturbation theory and the study of weak anisotropy.

For weakly anisotropic media, the off-diagonal components of
he Christoffel matrix in the WCS are small �first-order� terms
ompared to the diagonal components. Moreover, in weakly aniso-
ropic media, qP- and qS-waves may be treated, approximately, as
ongitudinal and transverse waves, respectively. These observa-
ions facilitate the order-of-magnitude analysis involved in our
reatment of the perturbation-theory solution to the Christoffel
quation, reducing it to simple algebraic manipulations. We treat
he zero-order and first-order qS-wave polarization corrections un-
er the same footing as angles by which the polarization directions
re rotated about the wave vector. This facilitates the visualization
f polarization orientations.
The economy in the number of independent stiffness compo-
ents involved in the Christoffel matrix in the WCS, contributes to
he conciseness of our general approximate wave-attribute expres-
ions. They are displayed as linear functions of the stiffness com-
onents in the WCS, making the physical meaning of the terms of
ur expressions transparent. Using the example of orthorhombic
ymmetry, we illustrate how to transform the general wave-
ttribute expressions from the WCS to the acquisition coordinate
ystem. We present these results as linear functions of the weak-
nisotropy �orthorhombic� parameters; thus, the dependence of the
resented expressions on the degree of anisotropy is apparent.

Using the Schoenberg and Helbig orthorhombic model, we illus-
rate the accuracy of the zero-order and first-order polarization ex-
ressions. Test results show that the precision of the derived ap-
roximate qS-wave polarization expressions increases as the
ropagation direction approaches the vertical. In the domain 0

� � 40° and for all azimuth angles, the error in the zero-order
pproximation of the qS-wave polarization direction remains less
han 5°, whereas the error in the first-order approximation is less
han 3°. As expected, the first-order qS-wave polarization expres-
ions are generally more accurate than the zero-order expressions.
owever, in light of its simplicity, the zero-order expressions may

till be useful in processing data from weakly anisotropic geologic
egions. The approximate qS-wave polarization expressions are
nreliable near degenerate propagation directions.

The qP- and qS-wave group-velocity expressions developed in
his paper for the general weakly anisotropic media complement
reviously published theoretical work on weak anisotropy. They
an be incorporated into computer programs for forward and in-
erse modeling in weakly anisotropic elastic media and can be use-
ul for computing traveltime tables in Kirchhoff migration that re-
uire ray tracing. As our group-velocity expressions show, while
or weak anisotropy the difference between the magnitudes of
hase velocity and group velocity can at most be a second-order
uantity, the direction of the group velocity differs from the direc-
ion of the wave vector by a first-order amount. To illustrate the ef-
ect of anisotropy on group velocity directions, we use the Schoe-
berg and Helbig orthorhombic model, to generate plots of the
olar and azimuthal angular deviations of the group-velocity direc-
ions from the wave-vector direction. The polar angle � gives the
ngle between the group-velocity vector and the wave vector, and
t sufficiently describes the deviation angle in a homogeneous
nisotropic medium. Numerical results show that the angular de-
iation for qP-waves can be as large as �max � 16°. For the slow
S-waves, the corresponding maximum deviation angle is �max

30° and for the fast qS-wave �max � 20°. In light of these num-
ers, it is evident that when rays are traced across anisotropic inter-
aces and over large distances, their trajectories can diverge signifi-
antly from the direction of the wave vector.

Differences between the first-order and exact group-velocity
lots provide a measure of the errors in the derived approximate
xpressions. Test results from the Schoenberg and Helbig model
how that, for near-vertical propagations, the range of propagation
irections �wave-vector direction �� for which the errors do not ex-
eed 3° depends on the particular wave mode. For qP-waves, slow
S-waves, and fast qS-waves, these ranges are 0 � � � 50°, 0

� � 40°, and 0 � � � 25°, respectively. The numerical results
lso confirm our prediction that the first-order qS-wave group-
elocity expressions are unreliable in the vicinity of S-wave degen-
racy.
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The Schoenberg and Helbig orthorhombic model, with greater
han 30% anisotropy, provides a robust test of the perturbation-
heory results discussed in this paper. Numerical results show that
he precision of the derived approximate expressions is high, even
hen anisotropy is strong. We have tested the derived approximate

xpressions against weaker models, generated by uniformly reduc-
ng the weak-anisotropy parameters of the Schoenberg and Helbig

odel. As expected, we find that when the anisotropy is weakened,
he agreement between the first-order and the exact results im-
roves.
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APPENDIX A

TRANSFORMATION OF STIFFNESS
COMPONENTS FROM WCS TO

ACQUISITION COORDINATE SYSTEM

Using Voigt notation, any stiffness component Crs� in the WCS
ay be expressed in terms of the stiffness components Cij in the

cquisition coordinate system and the wave-vector direction angles
and � by the relation

Crs� = MriMsjCij �sum over i and j from 1 to 6� ,

�A-1�
here the 6 � 6 Bond matrix M is explicitly given by

= �
C�

2C�
2 C�

2S�
2 S�

2 − S2�S� − S2�C� C�
2S2�

S�
2 C�

2 0 0 0 − S2�

S�
2C�

2 S�
2S�

2 C�
2 S2�S� S2�C� S�

2S2�

−
1

2
S�S2�

1

2
S�S2� 0 C�C� − C�S� S�C2�

1

2
S2�C�

2 1

2
S2�S�

2 −
1

2
S2� C2�S� C2�C�

1

2
S2�S2�

−
1

2
C�S2�

1

2
C�S2� 0 − S�C� S�S� C�C2�

� .

�A-2�

ere, we use the abbreviations C� = cos �, S2� = sin 2�, S�
2

sin2 �, etc.
For a discussion of the general form of the Bond matrix M for

ransforming stiffness components between any two Cartesian co-
rdinate systems, see section 3.D of Auld �1973�.

APPENDIX B

ABREVIATIONS USED IN
ORTHORHOMBIC EXPRESSIONS

Following are the explicit expressions for the abbreviations used
n the derived first-order formulas for weak orthorhombic media.
nly terms linear in the weak-anisotropy parameters gij are re-

ained.
P��,�� = sin2 ��sin2 ��g11 cos4 � + g22 sin4 �

+ g12 cos2 � sin2 �� + cos2 ��g23 sin2 �

+ g13 cos2 ��� , �B-1�

S��,�� =
C33

2C44
sin2 ��g11 cos2 ��cos2 � cos2 � + sin2 ��

+ g22 sin2 ��sin2 � cos2 � + cos2 ��

− cos2 ��g23 sin2 � + g13 cos2 ��

− g12 sin2 � sin2 � cos2 ��

+ �1

2
��g55�1 − sin2 � sin2 �� + g66 sin2 �� .

�B-2�

M��,�� =
C33

2C44
sin2 ��g11 cos2 ��cos2 � cos2 � − sin2 ��

+ g22 sin2 ��sin2 � cos2 � − cos2 ��

− cos2 ��g23 sin2 � + g13 cos2 ��

+ g12�1 + cos2 ��sin2 � cos2 ��

+ �1

2
��g55�cos2 � − sin2 � cos2 ��

− g66 sin2 �� , �B-3�

N��,�� =
sin 2� cos �

4
�C33

C44
sin2 ��− 2g11 cos2 �

+ 2g22 sin2 � − g23 + g13 + g12 cos 2�� − 2g55� ,

�B-4�

A��,�� =
sin 2�

2�1 −
C44

C33
��2 sin2 ��g11 cos4 � + g22 sin4 ��

+ cos 2��g23 sin2 � + g13 cos2 ��

+
1

2
g12 sin2 2� sin2 �� , �B-5�

B��,�� =
sin 2� sin �

2�1 −
C44

C33
� �2 sin2 ��− g11 cos2 � + g22 sin2 ��

+ cos2 ��g − g � + g cos 2� sin2 �� , �B-6�
23 13 12
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F1��,�� = vs
0sin 2�

2
�−

C33

C44
�g11 cos2 ��2 cos2 � sin2 �

− 1� + g22 sin2 ��2 sin2 � sin2 � − 1�

+ cos 2��g23 sin2 � + g13 cos2 ��

+
1

2
g12 sin2 2� sin2 �� − g55 sin2 � + g66� ,

�B-7�

G1��,�� = vs
0sin 2�

2
�C33

C44
�g11 cos2 ��2 cos2 � cos2 � − 1�

+ g22 sin2 ��2 sin2 � cos2 � − 1�

− cos 2��g23 sin2 � + g13 cos2 ��

+
1

2
g12 sin2 2� cos2 �� + g55 sin2 � − g66� ,

�B-8�

H1��,�� = vs
0sin 2� sin �

4
�C33

C44
�3 cos2 � − 1�

��− 2g11 cos2 � + 2g22 sin2 � − g23 + g13

+ g12 cos 2�� + 2g55� , �B-9�

F2��,�� = vs
0sin 2� sin �

2
�C33

C44
�g11�2 cos2 � sin2 � − 1�

− g22�2 sin2 � sin2 � − 1� + �g13 − g23�cos2 �

− g12 cos 2� sin2 �� − g55� , �B-10�

2��,�� = vs
0sin 2� sin �

2

��C33

C44
cos 2��g12 − g11 − g22� − g55� , �B-11�

H2��,�� = vs
0sin 2�

4
�C33

C44
�2g11 cos2 ��2 sin2 �

− cos2 � sin2 �� + 2g22 sin2 ��2 cos2 �

− sin2 � sin2 �� + g �2 sin2 � sin2 � − 1�
23
+ g13�2 cos2 � sin2 � − 1�

+ g12�cos2 2� −
1

2
sin2 2� sin2 ���

+ 2g55 sin2 � − 2g66� . �B-12�
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