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Abstract
The acoustic-electrical (AE) response of subsurface hydrocarbon reservoirs is highly affected by 
rock heterogeneity. In particular, the characterization of the microstructure of tight (low-permea-
bility) rocks can be aided by a joint interpretation of AE data. To this purpose, we evaluate cores 
from a tight-oil reservoir to obtain the rock mineralogy and pore structure by X-ray diffraction 
and casting thin sections. Then, ultrasonic and resistivity experiments are performed under dif-
ferent confining pressures to analyze the effects of pores, microcracks and mineralogy on the 
AE properties. We have developed acoustic and electrical models based on effective-medium 
theories, and the Cole–Cole and triple-porosity equations, to simulate the response to total and 
soft (crack) porosities and clay content. The results show that these properties play a significant 
role. Then, a 3D rock-physical template is built and calibrated by using the core samples and 
well-log data. The template is applied to tight-oil reservoirs to estimate the rock properties, which 
are validated with log data. The good match between the predictions and these data indicates that 
the model can effectively explain the effects of the heterogeneous microstructure on the AE data.
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Article Highlights

•	 Tight rock microstructure is analyzed with X-ray diffraction, thin sections and ultra-
sonic and electrical resistivity tests

•	 Rock acoustic-electrical properties are obtained by the effective-medium and triple-
porosity theories

•	 Practical application is given based on an acoustic-electrical rock physics template

1  Introduction

With the depletion of conventional oil resources, tight-oil reservoirs become the next 
hydrocarbon prospects (Kathel and Mohanty 2013; Ghanizadeh et  al. 2015; Behmanesh 
et  al. 2018; Lin et  al. 2022). Tight-oil rocks have a complex pore structure and mineral 
composition, with a high clay content (Lu et al. 2019; Pang et al. 2021a; Gao et al. 2022). 
Pores and cracks, as well as clay interstitial minerals, result in a strong microstructure het-
erogeneity (Siitari-Kauppi et  al. 1997; Solano et  al. 2017; Ba et  al. 2017, 2019; Kumar 
et  al. 2019; Ghasemi et  al. 2020; Ma et  al. 2021), thus greatly affecting the reservoir 
response to AE fields (Kozlovskaya and Hjelt 2000; Kazatchenko 2004; Bakar, et al. 2019; 
Cilli and Chapman 2018; Dutilleul et al. 2020; Leger and Luquot 2021).

Microstructure heterogeneity results in a diversity of petrophysical behaviors (Anguy 
et al. 1996; Nover 2005; Heise and Ellis 2016; Pang et al. 2019; Mahanta et al 2020; Iqbal 
et al. 2021; Ozotta et al. 2021; Iwamori et al. 2021; Zhang et al. 2021, 2022; Shen et al. 
2022; Wu et al. 2022), including infiltration, acoustic velocity and attenuation, and electri-
cal properties. Sun et  al. (2019) built 3D digital cores of tight sandstones with different 
crack diameters, lengths and dip angles using computed tomography (CT) and studied the 
effects of the pore geometry on the infiltration characteristics. Fliedner and French (2021) 
used a differential-equivalent-medium (DEM) model and rock images to quantify the 
contribution of mineralogy, mineral fabric, porosity and pore shape to the P- and S-wave 
velocities. Pang et al. (2021a) studied the pore structure and mineralogy of tight-oil rocks 
by scanning electron microscopy (SEM) and ultrasonic experiments and concluded that the 
microstructure greatly affects the inelastic properties. More recently, Wang et  al. (2022) 
obtained multi-component digital rocks based on CT scans, maps and SEM multi-scale 
experiments, estimating the resistivity by a finite-element method and studying the influ-
ence of the pore geometry and mineral composition on the electrical properties.

Joint AE properties are generally applied to estimate the characteristics of sub-
surface rocks (Heinson 1999; Hacikoylu et  al. 2006; Carcione et  al. 2007; Han et  al. 
2011, 2020; Jensen et  al. 2013; Gomes et  al. 2017; Cilli and Chapman 2018; Attias 
et  al. 2020; Amalokwu and Falcon-Suarez 2021). Many experimental and theoretical 
works estimate the effect of pore structure and mineralogy on the AE properties of 
rocks (Gabas et al. 2016; Falcon‐Suarez et al. 2019; Cilli and Chapman 2020). Gomez 
et  al. (2010) experimentally established relations among resistivity, elastic velocity, 
porosity and permeability of sandstones and used the self-consistent approximation to 
simulate the AE properties of rocks. Pride et al. (2017) studied changes in geophysi-
cal properties caused by fluid injection, specifically seismic velocity and conductivity 
of sandstone and granite samples. Wu et al. (2020) proposed a hybrid stochastic (HS) 
algorithm, combined the quartet structure generation set and discrete finite-element 
method to establish multi-scale and multi-composition digital models and simulated 
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the rock resistivity and elastic moduli. Pang et al. (2021b) established a 3D rock phys-
ics model (RPM) to simulate the effect of mineral composition, pore structure and fluid 
saturation on AE properties and calibrated the model with well-log data.

In order to characterize the rock microstructure, we extract cores from a tight-oil 
reservoir of Yanchang Formation in the Q Area, Ordos Basin, China. Then, X-ray dif-
fraction (XRD), casting thin sections (CTS), ultrasonic wave and electrical resistivity 
experiments under different confining pressures are performed. The pore structure and 
mineralogy of the rocks is analyzed, and the relation between the AE properties and 
porosity, pressure (crack) and mineral composition is studied. Based on the mineral 
composition and thin section analysis, we use a triple-porosity model to describe the 
acoustic properties of the rock (Sun et al. 2016; Ma et al. 2019).

In the acoustic RPM, the Hashin–Shtrikman equation (Hashin and Shtrikman 1963) 
is used to estimate the elastic modulus of the mineral mixture, and the acoustic DEM 
(A-DEM) equation (Berryman 1992) to add clay minerals, pores and cracks into the 
minerals. The final (saturation) model is obtained with the triple-porosity equation. 
We implement the electrical HS (E-HS) (Hashin and Shtrikman 1962), DEM (E-DEM) 
(Cilli and Chapman 2021) equations and Cole–Cole model (Cole and Cole 1941; Pel-
ton et  al. 1978) to estimate the electrical properties of the mineral mixture and rock 
frame containing the clay minerals, pores and cracks to obtain the electrical RPM. 
Thus, the AE models with the same microstructure are used to analyze the response 
to porosity, crack porosity and clay content. A 3D AE rock physics template (RPT) is 
built with the elastic attributes and resistivity and calibrated with core and well-log 
data and applied to the tight-oil reservoirs.

2 � Geological Characteristics and Rock Microstructure

The prospect is located in the Q area of Ordos Basin, which has a complex tectonic 
history and warm and humid climate, resulting in the deposition of hydrocarbon source 
rocks rich in organic matter (Liu et  al. 2021). The burial depth of Member 7 of the 
Yanchang Formation is located between 1200 and 2350 m. The sediments of the tight-
oil reservoirs in this formation are mainly lacustrine facies with high-quality source 
rocks widely distributed. The reservoir lithology is mainly tight sandstone intercalated 
with mudstone and mud shale intercalated with thin sandstone. The sandstone layer is 
the main section of the reservoir in Member 7, which is characterized by developed 
microcracks and micro-/nanopore throats. The pore radius is mainly 2–8 μm. The pore 
structure favors the reservoir capacity and contributes to the hydrocarbon accumula-
tion (Fan et al. 2021; Ji et al. 2022).

We select 9 core samples (A–I) from the reservoirs to perform the CTS and XRD 
experiments. Figure  1 shows the thin sections of sample I. The reservoir space is 
mainly dominated by intergranular and dissolved pores and microcracks. The inter-
stitial materials in the rocks are mainly clay and a small amount of cement such as 
carbonate and siliceous minerals. The existence of pores, cracks and fillings results in 
strong heterogeneity of the microstructure. Figure 2 shows the mineral compositions 
of the samples. The minerals are mainly quartz, feldspar, carbonate minerals, clay 
and a small amount of ore mineral. The quartz content is high, and feldspar is mainly 
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Fig. 1   Thin sections of the tight-oil rock sample I, showing the intergranular and dissolved pores, microc-
racks and interstitial materials. Figure 1a, b shows thin section I in plane polarized light (PPL), and 1c and 
1d in cross-polarized light (XPL), respectively

Fig. 2   Mineral components of the rock samples. Please note that pyrite occurs only in Sample B with 0.35%
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plagioclase and potassium feldspar, where the plagioclase content is higher. The clay 
minerals are mainly laumontite and chlorite, and ore minerals are siderite and pyrite. 

3 � Acoustic and Electrical Properties of the Tight‑Oil Rocks

3.1 � Laboratory Experiments

Nine samples with different porosity and clay content are used to perform the ultrasonic 
and electrical experiments. The contribution of microcracks (soft pores) cannot be ignored. 
Experiments and theories have proved that microcracks are highly affected by effective 
pressure (David and Zimmerman 2012; Zhang et  al. 2019). Thus, ultrasonic-wave and 
resistivity measurements are performed to analyze the influence of cracks on the AE prop-
erties by applying different confining pressures. Cylindrical rock specimens with a diam-
eter of 25.077–25.147 mm and a length of 48.803–50.093 mm are extracted from the initial 
rock samples (see Table 1).

Table 1   Properties of the samples

Sample A B C D E F G H I

Depth (m) 2036.5 2000.6 1948.2 1819.5 2341.5 1979.6 1964 2101.83 1996
Porosity (%) 3.56 4.49 5.28 6.38 7.33 7.79 8.85 9.20 10.16
Permeability (mD) 0.005 0.033 0.005 0.018 0.019 0.042 0.065 0.038 0.096
Clay content (%) 6.03 15.23 10.96 6.23 5.85 5.29 5.55 7.12 5.35
Dry-rock density (g/cm3) 2.58 2.57 2.53 2.49 2.48 2.44 2.41 2.44 2.37

Fig. 3   Ultrasonic equipment. a Transmitter; b Specimen; and c Receiver
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Firstly, the ultrasonic experiments are carried out. The equipment (Fig.  3) is used to 
measure the elastic velocities by the pulse method at 25 °C and a pore pressure of 15 MPa 
within ultrasonic frequency range (MHz). The samples are saturated with water and then 
sealed with a rubber sleeve and placed in the equipment. Confining pressures of 20, 30, 40, 

Fig. 4   Schematic diagram of the 
resistivity measurement princi-
ple, A is electric current, ΔU is 
voltage (potential difference), 
and M and N are electrodes

Fig. 5   Experimental apparatus to measure rock resistivity. M and N denote electrodes
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50 and 60 MPa are applied to the specimens, and the waveforms are recorded. The elastic 
velocities are calculated from the first arrivals.

Then, based on the two-electrode method (Fig. 4) and resistivity experimental appa-
ratus shown in Fig. 5, the electrical resistivity is measured with an alternating current 
at 120  Hz and a voltage of 1  V. The samples are saturated with brine (the salinity is 
56.5 g/L). The above confining pressures are applied to the specimens to measure the 
resistivity ρ (reciprocal of electrical conductivity) which can be computed as

where R is the resistance, S is the cross-sectional area and L is the sample length.

3.2 � Experimental Results

The effects of the microstructures on the AE properties of tight rocks are analyzed based 
on the experiments. Figure 6a, b shows the ultrasonic P- and S-wave velocities of the sam-
ples as a function of the effective pressure (confining minus pore). The velocities increase 
with pressure. This is due to the microcracks gradually closing, increasing the elastic mod-
uli and velocity of the skeleton. Due to the same reason, the resistivity increases and the 

(1)ρ =
RS

L

Fig. 6   Ultrasonic P- and S-wave velocities a, b, resistivity c and conductivity d as a function of the effective 
pressure
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conductivity decreases (Fig. 6c, d). The results show that the crack density greatly affects 
the AE properties.

In the reservoir, the pore and effective pressures are both about 15 MPa. Then, we select 
the experimental data of 30  MPa confining pressure to analyze the AE properties with 
porosity and clay content under in-situ conditions. Figure 7 shows the P- and S-wave veloc-
ities, Poisson’s ratio, resistivity and conductivity as functions of porosity and clay content 
at an effective pressure of 15 MPa, respectively. The elastic attributes (velocities and Pois-
son’s ratio) have no clear relations with porosity due to the influence of the clay minerals. 
However, there is a relatively good correlation between the electrical properties and poros-
ity. The resistivity of the samples basically decreases with increasing porosity, and the con-
ductivity increases as expected. In Fig. 7b, d and f, there is no evident trend between the 

Fig. 7   Ultrasonic P- and S-wave velocities (blue and red) a, b, Poisson’s ratio c, d and electrical resistivity 
and conductivity (blue and red) e, f of the samples with an effective pressure of 15 MPa as a function of 
porosity and clay content. The symbols are corresponding to Fig. 6
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elasticity and electrical behaviors and the clay content. It can be inferred that the AE prop-
erties are affected by the combination of pore structure and clay minerals.

We use 3D schematic diagrams to analyze the behavior of the AE properties with poros-
ity and clay content, as shown in Fig. 8, where the colors represent different samples. The 
velocities decrease with porosity and clay content (Fig. 8a, 8b). Sample A shows the high-
est velocity due to its low porosity and clay content. Samples B and C have also have low 
porosity, but low velocity because of the high clay content. The other samples have similar 
clay content and the velocities are well correlated with porosity.

Fig. 8   Ultrasonic P- and S-wave velocities a, b, Poisson’s ratio c, resistivity d and conductivity e as a func-
tion of porosity and clay content
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Poisson’s ratio shows a poor correlation with both porosity and clay content (Fig. 7c, 
7d); however, the trend is better in Fig.  8c. Poisson’s ratio decreases with porosity and 
increases with clay content when the effect of one of them is removed. This is why the 
Poisson’s ratio of the sample I with high porosity and low clay content is the lowest. In 
Fig. 8d, 8e, samples A and D to I with similar clay content show that the electrical proper-
ties are well correlated with porosity. As porosity increases, resistivity decreases and con-
ductivity increases. Similarly, the behavior of samples A, B and C, with similar porosity, 
indicates that the resistivity decreases with clay content, which explains the divergences 
between the electrical attributes and porosity of sample B in Fig. 7e due to its high clay 
content.

4 � Rock Physics Models (RPM)

Figure 9a shows a thin section of a tight-oil core, with intergranular pores, microcracks 
and interstitial fillings containing laumontite and chlorite, which results in strong hetero-
geneities. The rock microstructure can be modeled by three isotropic frames, associated 
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Fig. 9   Tight-oil rock: a thin section, b schematic diagram of the microstructure and c triple-porosity model 
(v1, v2 and v3 are the volume content of the crack inclusion, host and clay inclusion, respectively)
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with pores, cracks and clay minerals (Fig. 9b). Thus, we consider a triple-porosity structure 
(Fig. 9c) to build the AE RPMs of the tight-oil rock.

4.1 � Acoustic RPM

Figure 10 shows the modeling sequence of the acoustic RPM. Firstly, on the basis of XRD 
experiments, the rock minerals are mainly composed of quartz, feldspar, clay, calcite, dolo-
mite and a small amount of ore mineral. The A-HS (Hashin and Shtrikman 1963) equation 
is used to calculate the bulk and shear moduli of the mineral mixture (excluding the clay 
minerals). Berryman (1995) proposed a more general form of the bounds for more than 
two phases (Mavko et al. 2009),

where Ki and µi are the bulk and shear modulus of the single phases and fi is the corre-
sponding volume fraction.

Stiff pores and cracks are added into the host mineral and inclusion, with aspect ratios 
of 1 and 0.001, respectively, by using the A-DEM equation (Berryman 1992). Then, clay 
inclusions (with few pores), whose aspect ratio is 1, are added into the host frame by using 
the A-DEM equation to obtain the dry-rock moduli, K* and μ*,
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)
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Fig. 10   Modeling flowchart of the acoustic RPM
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With K* (0) = K1, G* (0) = G1, where K1 and G1 are the bulk and shear moduli of the 
host phase, and K2 and G2 those of phase 2, y is the corresponding content, and P*i and Q*i 
represent the geometrical factors of the ith component (see Appendix 1).

The bulk modulus and density of the fluids at reservoir conditions are estimated as in Bat-
zle and Wang (1992). Finally, the triple-porosity equation (see Zhang et al. 2017) is used to 
obtain the wet-rock properties (all the pores are filled with fluids),

where u denotes the solid displacement vector, �̇(1) , �̇(2) and �̇(3) are the displacement vec-
tors of the fluids in cracks, pores and clay micropores, respectively, e , �1 , �2 and �3 are the 
corresponding divergences, and �12 and �23 are the variations in fluid content owing to the 
local fluid flow between cracks and intergranular pores and between clay and intergranular 
pores, respectively. The quantities �1 , �2 and �3 are the permeabilities of the crack, host and 
clay-mineral frames, respectively, R12 and R23 are the radii of the crack and clay inclusions, 
respectively. The volume ratio and porosity of the crack are v1 and �10 , while those of the 
host skeleton are v2 and �20 , and those of the clay inclusion are v3 and �30 , respectively; 
v1 + v2 + v3 = 1, and �1 , �2 and �3 are the absolute porosities of the crack, host and clay 
skeletons, respectively, and �1 + �2 + �3 is the total porosity, and �1 = v1�10 , �2 = v2�20 and 
�3 = v3�30 ; �f  and � denote the fluid density and viscosity, respectively. The stiffness coef-
ficients A , N , Q1 , Q2 , Q3 , R1 , R2 and R3 , dissipation coefficients b1 , b2 and b3 , and density 
parameters �00 , �01 , �02 , �03 , �11 , �22 and �33 depend on the rock properties (Appendix 2).

The complex wave number k is estimated from a plane-wave analysis (see Appendix 2), 
and the wave velocity and quality factor are
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where v = �∕k and � is the angular frequency (Carcione 2014).

4.2 � Results of the Acoustic RPM

The model allows us to analyze the wave response of rock pore structure and mineralogy. The 
model properties are given in Table 2. The minerals of the crack inclusions and host are same, 
so the elastic properties of the two phases Ks1 = Ks2 = Ks, μs1 = μs2 = μs and ρs1 = ρs1 = ρs. Then 
the skeleton moduli of the three phases (Kb1 and μb1, Kb2 and μb2, Kb3 and μb3) are estimated 
by the A-DEM equation and then the moduli of the dry rock (Kb and μb). The model is set as 
full-oil saturation. By adjusting the total and crack porosities and clay content, the wave veloc-
ity and quality factor can be obtained.

Figure 11 shows the P-wave velocity and dissipation factor at four total porosities (ϕ), crack 
porosities (ϕC) and clay content (Vsh) settings, respectively, given in the figure. Figure 11a, b 
shows two dispersion steps and attenuation peaks, and in Fig. 11c, d, the steps and peaks shift 
to higher frequencies. Increasing the total and soft porosities and clay content decreases the 
velocity and increases the attenuation, the latter depending on the frequency band.

4.3 � Electrical RPM

Figure  12 shows the modeling workflow of the electrical RPM. Similarly, based on XRD 
results of the samples, the E-HS (Hashin and Shtrikman 1962) equation is used to calculate 
the electrical conductivity of the mineral mixture by mixing quartz, feldspar, carbonate and 
ironstone minerals. Berryman (1995) proposed a more general form of the bounds for more 
than two phases,

(5a)VP =
1

Re
(
v−1

) ,

(5b)Q =
Re

(
v2
)

Im
(
v2
) ,

Table 2   Medium properties

Mineral bulk modulus (KS) 55 GPa Crack inclusion radius (R12) 50 μm
Shear modulus (μS) 45 GPa Porosity (ϕ10) 0.01
Density (ρS) 2.65 g/cm3 Aspect ratio 1
Clay bulk modulus (Ksh) 10.5 GPa Clay inclusion radius (R23) 50 μm
Shear modulus (μSh) 3.5 GPa Porosity (ϕ30) 0.00001
Density (ρsh) 2.45 g/cm3 Aspect ratio 1
Water bulk modulus (KW) 2.24 g/cm3 Pore aspect ratio 1
Viscosity (ηw) 0.00098 Pa s Crack aspect ratio 0.001
Density (ρW) 1.002 GPa
Oil bulk modulus (KO) 1.27 Pa s
Viscosity (ηO) 0.0021 Pa s
Density (ρO) 0.79 g/cm3
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where σHS+ and σHS− are the upper and lower bounds, respectively, σi is the conductivity 
of the single phases and fi is the volume fraction, and σmax and σmin are the maximum and 
minimum values.

(6a)�HS+ = F
(
�max

)
�HS− = F

(
�min

)
,

(6b)F(z) =

(
N∑
i=1

fi

�i + 2z

)−1

− 2z,

Fig. 11   Wave velocity and dissipation factor of the P wave as a function of frequency at different porosities 
a and b (ϕC = 0.1% and Vsh = 10%), crack porosities c and d (ϕ = 5% and Vsh = 10%), and clay content e and 
f (ϕ = 5% and Vsh = 0.1%)
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We consider the same microstructure (aspect ratios of pores, cracks) to build the electri-
cal model. The E-DEM equation is used to add pores and cracks containing fluid into the 
host and inclusions. Then, the crack and clay inclusions are added into the host frame to 
obtain the conductivity σ* by using the E-DEM equation, as follows (Cilli and Chapman 
2021),

with σ * (0) = σ1, where σ1 is the conductivity of the host phase, σ2 is the conductivity of 
phase 2, y is the corresponding content, and m is a function of the depolarizing factor LP of 
phase 2:

Archie (1942) assumed a rock without clay and other conductive minerals, so that the rock 
conductivity only depends on the formation water in the pore space. The additional conduc-
tivity of clay minerals is not considered, since the salinity in the target formation is 56.5 g/L 
(Leveaux and Poupon 1971; Han et al. 2005; Wang et al. 2006). The surface conductivity is 
also neglected in the studies of tight siltstones (Pang et al. 2021b). Thus, the formation factor 
and resistivity index are

 Respectively, where σW and σr are the water and rock conductivities, respectively, SW is the 
saturation, b is a lithology coefficient, and M and n are the parameters (b and n are assumed 
to be 1 and 2 here, respectively).

According to Archie’s equation, the electrical conductivity of pores and cracks as a 
function of water saturation is,

(7)(1 − y)
d

dy

[
�∗(y)

]
=
(
�2 − �∗

)
m,

(8)m =
1

3

3∑
p=1

{[
1 +

(�2
�∗

− 1
)
LP

]}
,

(9a)F =
�W

�r
=

1

�M
,

(9b)I =
b

Sn
w

,

Fig. 12   Modeling flowchart of the electrical RPM
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where σ2 is the conductivity of pores or cracks.
Finally, the Cole–Cole equation (Cole and Cole 1941; Pelton et al. 1978; Mansoor and 

Slater 2007) is applied to consider the frequency dependence caused by the polarization 
effects. The complex conductivity is

where � is the angular frequency, σ0 is the conductivity at zero frequency, τ is the relaxa-
tion time, mm is the chargeability, and c is a frequency exponent ( 0 ≤ c ≤ 1 ). We have

where Rt∗(�) is the complex resistivity, �
real

(�) and �
im
(�) are the real and imaginary con-

ductivities, respectively, and i =
√
−1.

4.4 � Results of the Electrical RPM

Figure 13 shows the effect of frequency, based on the Cole–Cole model, for different val-
ues of the parameters. The conductivity and the dispersion effect increase with increas-
ing σ0 and mm, with σ0 and mm having low and high impacts (Fig. 13a–d), respectively. 
The peaks shift to lower frequencies with increasing τ (see Fig.  13e, f). We can see in 
Fig. 13g, h that the frequency coefficient affects curves. With the increase of c, the disper-
sion increases and the corresponding frequency band becomes narrow.

We consider the same properties of the acoustic model. The electrical and Cole–Cole 
models are used to analyze the responses of pores, cracks and clay mineral. The conductiv-
ity obtained by the E-DEM model is set as the zero-frequency conductivity σ0, and mm, 
τ and c are 0.05, 0.1 and 0.87, respectively (Revil et al. 2018). The conductivities of the 
clay, brine and mineral mixture are 0.5, 4.69 and 0.01 S/m (Han et al. 2016; Pang et al. 
2021b), respectively, and the rock is saturated with water. The results are shown in Fig. 14, 
where we can see that with the increase of the total and crack porosities and clay content, 
the conductivity and dispersion increase. It is shown that these are less affected by the rock 
microstructure.

We consider a frequency of 120  Hz and water saturation from 0 to 1 to analyze the 
effects of the rock microstructure on conductivity and formation factor. Figure 15 shows 
the conductivity and formation factor of as a function of the water saturation at five values 
ϕ, ϕC and Vsh settings, indicated in the figure. The conductivity increases and the forma-
tion factor decreases with increasing water saturation. At low saturation, the conductiv-
ity decreases with increasing total and crack porosities. However, the electrical properties 
show an opposite trend when the saturation exceeds a certain value (see Fig. 15a–d). This 
is because when the water saturation is low, the conductivity of the pores and cracks con-
taining fluids is lower than the mineral mixture, so the rock conductivity decreases with the 
porosity. With increasing saturation, the conductivity of pores and cracks are higher than 
that of the minerals, resulting in an increase in the rock conductivity. In Fig. 15e, f, the 
conductivity increases with clay content, and the formation factor decreases, as expected.

(10)�2 = b−1Sn
W
�W,

(11)�∗(�) = �0

[
1 +mm

(
(i��)c

1 + (i��)c(1 −mm)

)]
,

(12)�∗(�) =
1

Rt∗(�)
= �real(�) + i�im(�).



1777Surveys in Geophysics (2022) 43:1761–1791	

1 3

Fig. 13   Real and imaginary conductivities as a function of frequency at different σ0 (a and b, mm = 0.05, 
τ = 0.1 and c = 0.87), mm (c and d, σ0 = 0.02, τ = 0.1 and c = 0.87), τ (e and f, σ0 = 0.02, mm  = 0.05 and 
c = 0.87) and c (g and h, σ0 = 0.02, mm  = 0.05, and τ = 0.1)
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5 � Rock Physics Template and Application

5.1 � 3D Rock Physics Template

3D rock physics templates (RPT) can be built by using the elastic attributes (Poisson’s 
ratio (v), and acoustic impedance (AI)) and electrical property (resistivity (Rt)). Fig-
ure 16 shows the template and experimental data (symbols), where the color bar cor-
responds to the effective pressure, and the black, red and blue lines are isolines of total 

Fig. 14   Real and imaginary conductivities as a function of frequency for different porosities (a and b), 
crack porosities (c and d) and clay contents (e and f), mm  = 0.05, τ = 0.1 and c = 0.87
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porosity, crack porosity and clay content, within the range of 3–15%, 0.005–0.625% 
and 1–19%, respectively. As the pressure decreases, the AE properties agree with the 
data.

Similarly, data with an effective pressure of 15 MPa (in-situ condition) are selected, 
as shown in Fig. 17, where the color bar represents porosity and clay content, respec-
tively. The porosity agrees very well, whereas the clay content departs for a small 
number of samples.

Fig. 15   Resistivity and conductivity as a function of water saturation at different porosities a and 
b (ϕC = 0.1% and Vsh = 10%), crack porosities c and d (ϕ = 1% and Vsh = 10%), and clay content e and f 
(ϕ = 10% and Vsh = 0.1%)
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Fig. 16   3D acoustic-electrical 
RPT and samples, the color is 
effective pressure

Fig. 17   3D RPT and data (sym-
bols): a porosity; b clay content
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5.2 � Well Data and Calibration

Well log data of the target reservoir are used to calibrate the RPT. Figures 18 and 19 
show the logs at Wells A and B. The reservoir has low porosity (less than 13%) and a 
wide range of clay content, being a mixture of sandstone, muddy sandstone and mud-
stone layers. There is a large difference in petrophysical behaviors between the differ-
ent formations (the dotted box is the mudstone layer). The sandstone layer is the main 

Fig. 18   Petrophysical properties at Well A. The dashed box indicates the mudstone section

Fig. 19   Same as Fig. 18 but for Well B
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oil-producing section, and well log data from this layer (a clay content less than 30%) 
are selected to calibrate the AE RPT.

The study area is almost saturated with oil, so that full-oil saturation is assumed. 
The frequency is 10 kHz to match the sonic log data, and the radii of the crack and clay 
inclusions are set to 1 mm. As shown in Fig. 20, the well log data are projected onto 
the template, with the color bar denoting porosity (a) and clay content (b). The data are 
consistent with the RPTs, and the three attributes show the same trend with increasing 
porosity and clay content. Thus, a quantitative characterization of the reservoir proper-
ties can be obtained by superimposing the well log data on the template.

5.3 � Application to Well Log Data

The three and two sandstone layers of Wells A and B are selected, respectively, to esti-
mate the clay content, and the total and crack porosities. The impedance, Poisson’s 

Fig. 20   3D RPT and well-log 
data: a porosity; b clay content
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Fig. 21   Results for Well A; a 
porosity b clay content c crack 
porosity

Fig. 22   Same as Fig. 21 but for 
Well B
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ratio and resistivity are projected onto the RPT, the nearest grid of each data point is 
searched, and its reservoir properties are assigned to the data.

Figures 21 and 22 show the predictions and log interpretation for Wells A and B. The 
main ranges of clay content, total and crack porosities are 8–30%, 2–15% and 0–0.7%, 
respectively. The predicted curves are basically in agreement with the porosity and clay 
content of the two wells. It is clear that there is a good relation between porosity and 
crack porosity, and it is oppositely correlated with clay content. Formations with high 
total and crack porosities and low clay content have better pore space and connectivity, 
and higher hydrocarbon storage potential.

6 � Conclusions

We have analyzed the properties of a tight-oil reservoir based on a joint acoustic-electrical 
petrophysical model. The rocks belong to the Yanchang Formation in the Q area of the Ordos 
Basin, whose core samples were characterized by X-ray diffraction and cast thin sections. 
Then, ultrasonic and resistivity experiments were performed at different confining pressures. 
A 3D rock-physics template has been built, based on Poisson’s ratio, impedance and resistiv-
ity, and calibrated with the ultrasonic and well-log data. The template was applied to predict 
the properties of the reservoir. We conclude the following:

(1)	 The rocks have low porosity and permeability, with microcracks and high clay content, 
which highly affect their petrophysical behavior.

(2)	 Wave velocities and resistivity increase with effective pressure (crack density 
decreases), and the conductivity decreases. The combined effects of the stiff pores, 
cracks and clay minerals have to be considered to obtain reliable predictions.

(3)	 The good match between the proposed joint model and data on the basis of acoustic-
electrical rock-physics templates shows that these can effectively be used to perform 
suitable interpretations involving tight rocks.

Appendix 1: The geometrical factors (P, Q)

The coefficients P and Q for ellipsoidal inclusions are given in Berryman (1980) and Mavko 
et al. (2009),

with the pertinent scalars T1 and T2 given by,

where
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with G, H and J given by

where Km, μm and vm are the bulk and shear moduli and Poisson’s ratio of the host phase, 
respectively, Ki, and μi are the bulk and shear moduli of the phase i, and

for prolate (α > 1) and oblate (α < 1) spheroids, respectively, the α is aspect ratio, and
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Appendix 2: The dispersion equation

The dispersion equation is given in Sun et  al. (2016) and Zhang et  al. (2017). The 
plane-wave analysis was performed by substituting a time harmonic kernel ei(�t−k⋅�) into 
Eq. (4). Then the complex wave number k can be obtained as

and

where the Biot dissipation coefficients (Biot 1962 and Sun et al. 2016) and the permeabili-
ties of the three phases (Vaughan et al. 1986 and Mavko et al. 2009),

where D = 50 and κ0 = 75.54 mdarcy, and
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The stiffness and density coefficients are

where Ks, Kb and Kf are the bulk moduli of the mineral mixture, skeleton and fluid, respec-
tively, ρs1, ρs2 and ρsh are the mineral densities corresponding to the three phases, ρf is the 
fluid density, and

where Kb1, Kb2 and Kb3 are the skeleton bulk moduli of the crack inclusions, host and clay 
inclusions, respectively, and Ks1, Ks2 and Ksh are the mineral bulk moduli corresponding to 
the three phases.
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