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A B S T R A C T   

Tight sandstone reservoirs basically have low porosity and permeability, a complex pore structure and a het-
erogeneous distribution of immiscible fluids. With the development of theoretical models, it is common to 
characterize rock properties, i.e., pore structure, microfractures, fluid type and saturation, etc., based on acoustic 
and electrical properties. We have taken four tight sandstone samples and performed X-ray diffraction and cast 
thin section analyses. We measure porosity and permeability as well as ultrasonic properties and electrical 
conductivity at different confining pressures and fluid saturations. These measurements show that the P-wave 
velocity, P-wave attenuation and conductivity strongly depend on the type and saturation of the fluid and the 
microstructure of the rock. We propose a combined acoustic-electrical model based on the concept of equivalent 
medium and on the double porosity, patchy saturation and squirt flow models. We then create rock physics 
templates calibrated with wellbore log data to estimate fluid saturation and equant and soft porosities, which are 
well corroborated by gas production reports. This work demonstrates the link between combined acoustic- 
electrical responses and rock properties and provides an effective approach for applications in reservoirs.   

1. Introduction 

Tight-sandstone reservoirs have gradually become the most prom-
ising natural gas resources, accounting for 39% of the total reserves and 
25% of the total production,1,2 and their analysis is essential for an 
effective geological and geophysical characterization.3–7 These rocks 
exhibit fabric and fluid distribution heterogeneities, complex pore 
structures, microfractures and a heterogeneous distribution of immis-
cible fluids.8–10 

Experimental and theoretical studies showed that the pore structure, 
fluid type and saturation affect the wave velocity dispersion and 
attenuation.11–18 Recently, the effects of immiscible fluids and pore 
structure on wave anelasticity were analyzed.8,9,19–21 

With the development of theoretical models, the effects of pores, 
microfractures and fluid on rock electrical properties can be inves-
tigated.22–26 Khairy and Harith27 studied the effects of pore structure, 
pressure and fluid saturation on the resistivity of sandstones and car-
bonates based on X-ray diffraction (XRD) and electrical experiments. 
Yan et al.28 adopted a digital rock technique and pore morphology to 
determine the fluid distribution relying on the XRD and CT images, and 
carried out a sensitivity analysis to obtain the effects of porosity, clay 
content, temperature, water salinity, heavy minerals, clay type and 
wettability in low-resistivity oil layers. Li et al.29 performed 
high-resolution CT scan, micro scanning images stitching and scanning 
electron microscopy tests to setup 3D digital cores with multi-mineral 
components. Then, the electrical responses of tight sandstones, with 
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low water saturation and complex pore structures, were illustrated by 
using the finite element method. 

Rock-physics modeling based on joint acoustical-electrical properties 
can reduce the uncertainty of rock characterization/inter-
pretation.7,30–32 Moreover, researchers have used cross-property re-
lations to characterize rocks.34–41 Han42 combined laboratory 
experiments and models, showing how the wave velocity is related to 
the electrical conductivity. Cilli and Chapman33 developed an electrical 
differential equivalent-medium (DEM) theory and combined it with the 
elastic version to simulate the properties of sandstones. 

There are relatively few studies regarding the acoustical and elec-
trical joint properties of partially-saturated tight rocks, in particular 
considering attenuation. We have performed XRD experiments, casting 
of thin sections (CTSs), and porosity and permeability pressure- 
dependent (PPPD) measurements, and ultrasonic and conductivity 

Table 1 
Physical properties of samples.  

Samples Porosity (%) Permeability (mD) Dry-rock density (g/cm3) 

A 7.220 0.020 2.49 
B 8.998 0.078 2.41 
C 9.000 0.036 2.42 
D 10.165 0.096 2.37  

Fig. 1. CTSs of sample B at different magnifications.  

Table 2 
Mineral compositions of the samples.  

Samples Quartz 
(%) 

Feldspar 
(%) 

Carbonate 
(%) 

Clay 
(%) 

Siderite 
(%) 

A 49 27 18 6 1 
B 57 30 8 5 1 
C 50 35 7 6 2 
D 55 32 7 5 1  

Fig. 2. Porosity (a) and permeability (b) of the samples as a function of 
effective pressure. 
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experiments at different pressures and saturations. The pore structure, 
mineral composition, microfracture porosity, wave velocity, attenuation 
and conductivity of the samples are analyzed, and their relations are 
discussed. 

Three theoretical models are combined, namely, the double-poros-
ity,43–46 the patchy saturation47–52 and the squirt flow.53–57 Then, a joint 
acoustical-electrical model for tight sandstone is developed by 
combining several sorts of petrophysical experiments to analyze the 
effects of pore structure, and fluid type and saturation on the wave ve-
locity, attenuation and conductivity. Finally, we are building an 
acoustic-electrical rock physics template that will be calibrated against 
borehole data for use in the characterization of tight sandstone 
reservoirs. 

2. Laboratory experiments 

In order to analyze the acoustic and electrical properties of partially 
saturated (gas-water) rocks with complex pore structures, four low clay- 
content tight-sandstone samples (A-D) are collected. The samples are 
processed as cylinders with diameters and lengths in the ranges 
25.08–25.13 mm and 49.09–49.77 mm, respectively. Their properties 
are shown in Table 1. CTS, XRD and PPPD measurements are performed, 
and by applying different confining pressures and fluid saturations, we 
obtain the ultrasonic P-wave (0.55 MHz) and conductivity (120 Hz) to 

analyze the effects of microfractures and fluids on the acoustical and 
electrical properties. 

2.1. CTS, XRD and PPPD tests 

Fig. 1 shows the CTSs of sample B at different magnifications. The 
rock space mainly includes intergranular pores, dissolved pores and 
microfractures. Table 2 gives the mineral compositions, which are 
dominated by quartz, feldspar and carbonates, with a small amount of 
clay and siderite. The quartz content is high, the feldspar is plagioclase 
and K-feldspar, and the clays are mainly laumonite and chlorite. We 
measure the porosity and permeability at confining pressures of 20, 30, 
40, 50 and 60 MPa and a pore pressure of 15 MPa. Fig. 2 shows the 
porosity and permeability measurements, indicating a decrease with 
effective pressure (confining minus pore), particularly the permeability. 
The behavior is exponential and then linear with pressure, as described 
by Shapiro,58 who expresses the total porosity as 

φ=φS + φC, (1)  

where the stiff porosity (φS) decreases linearly with pressure, while the 
microfracture porosity (φC) decreases exponentially. 

As the effective pressure increases, microfractures close until only 
the stiff pores remain.58 Fig. 3a shows the total porosity as a function of 
the effective pressure, with an exponential fit and a linear fit at high 
pressures to establish a linear extrapolation and obtain the stiff porosity 
at different pressures. Then, the microfracture porosity can be obtained 
(see Fig. 3b), which decreases exponentially with pressure. Sample A 
with the lowest porosity has the highest microfracture porosity, while 
the other samples have a similar microfracture porosity, with a trend 
that deviates from the overall porosity. From this it can be concluded 
that there is no correlation between the two porosities. 

2.2. Ultrasonic wave experiments 

The wave velocity in the samples is measured by using the ultrasonic 
pulse method, with a frequency of 0.55 MHz. The experiment is per-
formed at a temperature of 25 ◦C and pore pressure of 15 MPa. The 
specimens are placed in an oven for drying and saturated with water in a 
pressurized device. Water is gradually injected into the sample under 
pressure, and saturation is determined based on the injection volume. 
Approximately 20%, 40%, 60%, 80% and 100% water are injected and 
the samples are sealed with rubber jackets. The samples at each satu-
ration are subjected to confining pressures as indicated above and ul-
trasonic P wave experiments are performed, to record the waveforms. 

The onset of the waveforms is used to calculate the P-wave velocity 
and the spectral ratio method to estimate the wave attenuation by using 
aluminium blocks with high quality factors (Q) as reference mate-
rials,16,59 as follows, 

ln
[

A1(f )
A2(f )

]

= −
πx
QV

f + ln
[

G1(f )
G2(f )

]

, (2)  

where f is the frequency, G1(f)/G2(f) and A1(f)/A2(f) are geometric 
factors and amplitude spectra of the sample and reference medium, 
respectively, x is the distance of propagation and V is the wave velocity. 

2.3. Electrical conductivity experiments 

The electrical tests are performed by using the experimental de-
vice.60 The conductivity is measured with alternating currents at a fre-
quency of 120 Hz and a voltage of 1 V. The temperature is 25 ◦C and the 

Fig. 3. Total and stiff porosities (a) and microfracture porosity (b) as a function 
of the effective pressure. 
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Fig. 4. P-wave velocity and attenuation (dissipation factor) as a function of the microfracture porosity.  
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pore pressure is 15 MPa. First, the samples are fully saturated with brine 
(salinity 56.5 g/L), placed into the device. and the above confining 
pressures are applied to measure the resistance. Then, the confining and 
pore pressures are set at 30 MPa and 15 MPa respectively, and the 
conductivity is measured at different water saturations. The conduc-
tivity σ (reciprocal of resistivity Rt) can be estimated as 

Rt=
RS
L
, σ =

1
Rt

, (3)  

where R is the resistance of the sample, L is its length and S is the cross- 
sectional area. 

2.4. Acoustic and electrical properties 

Fig. 4 shows the P-wave velocity and attenuation at different water 
saturations as a function of the microfracture porosity. The velocity 
decreases with increasing porosity and attenuation increases. With the 
increase of water saturation, velocity increases, and the velocity 

difference between the gas- and water-saturated samples becomes larger 
with the increase of porosity. The attenuation initially increases and 
then decreases with water saturation. This phenomenon is attributed to 
the wave-induced local fluid flow (WILFF), which causes the velocity 
dispersion and energy attenuation at partial saturation states. When the 
water saturation approaches 1, the WILFF becomes weaker, which leads 
to a decrease in attenuation. 

Next, we consider an effective pressure of 15 MPa (in situ condition). 
Fig. 5a and b shows the acoustic properties as a function of water 
saturation, and Fig. 5c and d the electrical properties as a function of 
saturation and soft porosity, respectively. Velocity increases with satu-
ration, as expected, and attenuation first increases and then decreases, 
reaching a maximum value at high saturation. Sample A has the lowest 
porosity but the highest attenuation, which can be explained by its high 
microfracture porosity (Fig. 3). Conductivity increases monotonously 
with saturation and porosity, showing exponential and linear trends. 
The results show that the acoustical and electrical properties are highly 
dependent on soft porosity and saturation. 

Fig. 5. P-wave velocity (a), attenuation (b) and conductivity (c) (with an effective pressure of 15 MPa) as a function of water saturation. (d) Conductivity (full water 
saturation) as a function of microfracture (soft) porosity. 
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Fig. 6 shows the cross-property relations. High conductivity is asso-
ciated with low velocity and high attenuation, and the velocity is higher 
for higher pressure and lower microfracture porosity, while the atten-
uation and conductivity are lower. 

3. Theories and methods 

Fig. 7 shows the theoretical scheme to build the joint rock-physics 

model (RPM), which combines the elastic and electrical equations of 
Hashin-Shtrikman (HS), DEM and wave propagation. P-wave velocity, 
attenuation and conductivity, which are affected by the pore structure 
and saturation, are calculated. 

3.1. Acoustic RPM 

The grain properties are those of a mixture of quartz, feldspar, car-

Fig. 6. Cross-property relations between conductivity and velocity (a and b), and conductivity and attenuation (c and d) dependent on confining pressure and 
microfracture porosity. 

Fig. 7. Flow chart of a tight-sandstone acoustical and electrical rock physics modeling.  
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bonate, clay and siderite based on XRD experiments. The composite bulk 
modulus is given by the Hashin-Shtrikman (HS,61) equations. The 
complex pore structure of rock samples is analyzed by casting thin 
sections. The elastic DEM62 is used to add the pores and microfractures 
into the mineral mixture to obtain the dry-rock moduli (Kdry, μdry), 
(

K2 − K∗
dry

)
P(∗2)

(y)= (1 − y)
d
dy

[
K∗

dry(y)
]
, (4)  

(
μ2 − μ∗

dry

)
Q(∗2)

(y)= (1 − y)
d

dy

[
μ∗

dry(y)
]
, (5)  

with initial conditions K∗
dry(0) = K1, μ∗

dry(0) = μ1, where K1 and μ1 are 
the bulk and shear moduli of the host material, y is the content of phase 
2, and K2 and μ2 are the corresponding moduli. P*2 and Q*2 are 
geometrical factors (Appendix A). 

Then, the White and Gurevich models are used to obtain the acous-

Fig. 8. Diagrams showing the White patchy saturation model (a)48 and squirt-flow model (b).56  

Fig. 9. P-wave velocity dispersion and attenuation as a function of frequency at different porosities and saturations (a and b, φC = 0.5%), and different microfracture 
porosities and saturations (c and d, φ = 10%). 
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tical properties of the rock with partial saturation and complex pore 
structures. Gurevich et al.56 proposed a squirt-flow model (Fig. 8b), 
where complaint (soft) pores act as fluid channels to connect stiff pores 
(see63; Section 7.12). The bulk and shear dry-rock moduli, including 
squirt flow effects, are obtained from 

1
Kbf

=
1

Kh
+

⎛

⎜
⎜
⎝

1
1

Kdry
− 1

Kh

+
3ωiη

8φCαC

⎞

⎟
⎟
⎠

− 1

, (6)  

1
μbf

=
1

μdry
−

4
15

(
1

Kdry
−

1
Kbf

)

, (7)  

where ω is the angular frequency, η is fluid viscosity; αc is the aspect 
ratio of the microfractures, Kh is the bulk modulus of the skeleton con-
taining only stiff pores, and Kdry and μdry are the moduli obtained from 
the DEM equations above. 

Finally, the White model is used to estimate the wave response of the 
saturated rock (63, Section 7.13). White47 calculated the dispersion and 
attenuation caused by a heterogeneous distribution of pore fluid at the 

mesoscale, based on a spherical fluid distribution of two fluids (gas--
water). The model assumes a regular arrangement of cubic elements 
(radius b). The center of each cube unit is a gas-filling sphere with radius 
a, and the outside is a water sphere with radius b, as shown in Fig. 8a. 
Dutta and Odé48 improved the model and gave a more rigorous equa-
tion, which is used in this study. We replace the dry-rock moduli (Kdry 
and μdry) in the water-saturated area with the moduli (Kbf, μbf) con-
taining squirt-flow effects. The equivalent elastic moduli (K*, μ*) of the 
partially saturated rock are 

K∗ =
K∞

1 − K∞W
, (8)  

μ∗ =
1
2

[
(
Sgμdry + SWμbf

)
+

(
1

Sg
/

μdry + SW
/

μbf

)]

, (9)  

where 

K∞ =
K2
(
3K1 + 4μbf

)
+ 4μbf (K1 − K2)Sg

(
3K1 + 4μbf

)
− 3(K1 − K2)Sg

, (10)  

Fig. 10. Theoretical P-wave velocity compared with the experimental data. The capital letters indicate the sample.  
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W =
3a2(R1 − R2)(− Q1 + Q2)

b3ωi(Z1 + Z2)
, (11)  

where K1 and K2 are the bulk moduli of the saturated rock in gas and 
water regions respectively, which can be obtained from Gassmann 
equation and the coefficients R1, R2, Q1, Q2, Z1, Z2 given in Appendix B. 

The P-wave velocity and quality factor are 

VP =

[

Re
(

1
vc

)]− 1

, (12)  

QP =
Re(K∗ + 4μ∗/3)
Im(K∗ + 4μ∗/3)

, (13)  

respectively,63 where the complex velocity is vc =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(K∗ + 4μ∗/3)/ρ

√
, the 

rock density is ρ = ρs(1 − φ)+ φSgρg + φSWρW, where ρs, ρg and ρw are 
the densities of mineral, gas and wtaer, respectively. 

3.2. Electrical RPM 

The electrical HS equation64,65 is used to calculate the composite 
conductivity of the mineral mixture. The conductivity is obtained by 
adding the two pore types (with fluids) to this mixture by using the 

electrical DEM,33 

(σ2 − σ∗)λ=(1 − y)
d
dy

[σ∗(y)], (14)  

with initial conditions σ∗(0) = σ1, where σ1 is the conductivity of the 
host phase, and σ2 is the conductivity of phase 2. y is the corresponding 
content, and 

λ=
1
3
∑3

p=1

{[
1 +

(σ2

σ∗
− 1
)

LP

]− 1
}

, (15)  

where LP (P = 1, 2, 3) is the depolarizing factor of phase 2.66,67 We 
consider ellipsoid inclusions of aspect ratio α < 1, 

L3 =
1

1 − α2 −
α

(1 − α2)
3/2cos− 1 α, (16)  

L1 = L2 =(1 − L3) / 2, (17) 

According to Archie’s equation,68 the conductivity of pores and 
microfractures as a function of water saturation is60,69 

σ2 = β− 1Sn
WσW. (18)  

Fig. 11. Theoretical attenuation compared with the experimental data. The capital letters indicate the sample.  
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where σW is the brine conductivity, n is a saturation exponent and β is a 
lithology coefficient. 

4. Model and data 

4.1. Acoustic response and experimental data 

The acoustic RPM yields the P-wave velocity dispersion and atten-
uation. The bulk and shear moduli and density of the mineral are 35 
GPa, 40 GPa and 2.65 g/cm3, respectively, the bulk moduli of gas and 
water are 0.018 GPa and 2.24 GPa, the densities are 0.09 g/cm3 and 
1.002 g/cm3, and the viscosities are 1.6 *10− 5 Pa s and 9.8 *10− 4 Pa s, 
respectively. The aspect ratios of pores and microfractures are 0.2 and 
0.001, respectively, and the patch radius a is 0.8 mm. 

Fig. 9 shows the velocity and attenuation as a function of frequency, 
where the typical inflexion points and peaks can be observed. The ve-
locity decreases with porosity and saturation, and attenuation increases 
with porosity, showing a significant dependence on the soft (micro-
fracture) porosity. Figs. 10 and 11 compare the theoretical and experi-
mental data, showing good agreement, with the exception of sample A 
with a high microfracture porosity (its attenuation is higher than the 
model result). The rock structure and fluid distribution become 
increasingly complicated when the rock has a high microfracture 

porosity, which is characterized by the multiscale distribution of fluid 
patches and multiple pore types of the rock structure. The model in this 
study assumes constant patch size and relatively simplified pore geom-
etries, which could explain the lower attenuation observed in the model 
compared to sample A. 

4.2. Electrical response and experimental data 

In this case, we assume that the electrical conductivity of brine and 
mineral are 8.7 S/m and 0.015 S/m, the pore and microfracture aspect 
ratio are 0.2 and 0.001, and n and β are 2 and 1, respectively. Fig. 12a 
and b shows the rock conductivity, which increases with the soft 
porosity and saturation. Fig. 12c compares theory and experimental 
data, where we can see a good agreement. Setting the soft porosity to 5% 
of the total porosity, we observe the behavior shown in Fig. 12d, where 
the conductivity increases gradually with porosity and saturation, and 
model is consistent with the data. 

5. Example of field data 

5.1. Geological characteristics and well-log data 

The formation is located in the X area of the western depression in 

Fig. 12. Conductivity as a function of water saturation and porosity (a) (φC = 0.5%), and microfracture porosity (b) (φ = 10%), and theoretical conductivity 
compared to the experimental data as a function of total and microfracture porosities (c) and water saturation and porosity (d). 
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the Sichuan Basin, China, which is rich in natural gas resources. The 
tight-sandstone reservoirs mainly produce gas in the Xujiahe Formation 
of Upper Triassic, with a deep burial. The reservoir is a delta sedimen-
tary system, and the mineral composition is mainly quartz, feldspar, 

carbonate and clay. The size of the mineral particles is mainly medium 
to fine, the sorting is good, and the particles are poorly rounded.3,70 The 
target reservoir has experienced a strong diagenesis, resulting in low 
porosity and permeability, diverse pore types and a heterogeneous 

Fig. 13. Petrophysical properties of Wells A (a) and B (b).  
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distribution of pore fluids.10,71 

Well data is used to analyze the petrophysical properties of the res-
ervoirs at the log scale. Fig. 13 shows the porosity, water saturation, P- 
and S-wave velocities, Poisson’s ratio, and electrical properties of two 
wells. The reservoir porosity is low (less than10%), water saturation is 
higher than 10%, the elastic velocity is high, and the conductivity and 
resistivity have wide variations. 

5.2. Acoustical-electrical rock physics template 

We build 3D templates based on conductivity, impedance and 

Poisson’s ratio to estimate the saturation and porosities (total and soft). 
The model properties are given in Table 3. Fig. 14 shows the template 
compared with well-log data, where the blue, green and red lines are 
saturation, total porosity and microfracture porosity isolines, respec-
tively, with the ranges given in Table 3. It can be seen that the agreement 
between theory and well data is good. The latter can be used for cali-
bration of the models and templates. 

We overlay the acoustical and electrical attributes with the template 
and use a grid search method to estimate the reservoir properties at wells 
A and B. These are assigned to the data by minimizing the sum of the 
squares of the differences between the well-log data and the template 
results for the three attributes. Fig. 15 compares theoretical and 
measured log profiles. The results show that water saturation, total and 
microfracture porosities mainly lie in the ranges 15%–100%, 0–10% and 
0–1%, respectively. Well A shows lower porosities and gas saturation 
than those of Well B. Gas reports indicate that Well A produces 3.6 ×
103 m3 per day of gas and 282 m3 per day of water, and Well B is a high- 
production gas well, with a value of 1.012 × 106 m3 per day and a water 
production of 9.5 m3 per day, which are consistent with the theoretical 
values. 

6. Conclusions 

Given the complex lithological characteristics of tight sandstones, we 
develop an acoustical-electrical model and test its performance using the 
data obtained from four samples at different effective pressures and fluid 
saturations. The effects of microfracture (soft) porosity and saturation 
on P-wave velocity, P-wave attenuation and electrical conductivity are 
determined. The model is based on White’s theories of patchy saturation 
and squirt flow in combination with the elastic and electrical DEM 
equations describing wave anelasticity (loss and velocity dispersion) at 
the meso and pore scales, respectively. 

The results show that the properties depend significantly on the rock 
microstructure and saturating fluid. We create 3D rock physics tem-
plates based on acoustic and electrical properties and apply them to a 
tight-sandstone reservoir in the Sichuan Basin. The estimated reservoir 
properties agree well with the log data and are confirmed by the gas 
production reports. This study demonstrates the link between 
acoustical-electrical properties, rock microstructure and fluids and 
provides an effective approach for reservoir interpretation based on the 
joint properties. 
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Acoustical and electrical properties.  
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Fig. 15. Theoretical and experimental profiles of Wells A (a) and B (b).  
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Appendix A. Geometrical factors P and Q 

The coefficients P and Q for ellipsoidal inclusions are given in Berryman72 and Mavko et al.,65 

P=
1
3

T1,Q=
1
5

(

T2 −
1
3
T1

)

, (A-1)  

with 

T1 =
3F1

F2
,T2 −

1
3

T1 =
2
F3

+
1
F4

+
F4F5 + F6F7 − F8F9

F2F4
, (A-2)  

where 

F1 = 1 + G
[

3
2
(g+ θ) − J

(
3
2

g+
5
2

θ −
4
3

)]

, (A-3)  

F2 = 1 + G
[

1 +
3
2
(g + θ) −

J
2
(3g + 5θ)

]

+ H(3 − 4J) +
G
2
(G + 3H)(3 − 4J)

[
g + θ − J

(
g − θ + 2θ2) ], (A-4)  

F3 = 1 + G
[

1 −

(

g+
3
2

θ
)

+ J(g+ θ)
]

, (A-5)  

F4 = 1 +
G
4
[g+ 3θ − J(g − θ)], (A-6)  

F5 =G
[

− g+ J
(

g+ θ −
4
3

)

+Hθ(3 − 4J)
]

, (A-7)  

F6 = 1 + G[1+ g − J(g+ θ) +H(1 − θ)(3 − 4J)], (A-8)  

F7 = 2 +
G
4
[3g+ 9θ − J(3g+ 5θ)] + Hθ(3 − 4J), (A-9)  

F8 =G
[

1 − 2J +
g
2
(J − 1)+

θ
2
(5J − 3)

]

+ H(1 − θ)(3 − 4J), (A-10)  

F9 =G[(J − 1)g − Jθ] + Hθ(3 − 4J), (A-11)  

with 

G= μi/μm
− 1, (A-12)  

H =
1
3

(

Ki/Km
− μi/μm

)

, (A-13)  

J =
[

(1 − 2vm)/2(1 − vm)

]

, (A-14)  

where Km, μm and vm are the bulk and shear moduli and Poisson’s ratio of the host phase, respectively, Ki, and μi are the bulk and shear moduli of phase 
i, and 
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θ=

⎧
⎪⎪⎨

⎪⎪⎩

α
(α2 − 1)3/2

[
α
(
α2 − 1

)1/2
− cosh− 1 α

]

α
(1 − α2)

3/2

[
cos− 1 α − α

(
1 − α2)1/2

]

⎫
⎪⎪⎬

⎪⎪⎭

, (A-15) 

for prolate (α > 1) and oblate (α < 1) spheroids, respectively, with α the aspect ratio, and 

g=
α2

1 − α2 (3θ − 2)， (A-16)  

Appendix B. Coefficients of the White and squirt-flow models 

According to Dutta and Odé48 and Ren et al.,9 we have 

K1 =
Ks − Kdry + φKdry

(
Ks
/

Kf 1 − 1
)

1 − φ − Kdry
/

Ks + φKs
/

Kf 1
, (B-1)  

K2 =
Ks − Kbf + φKbf

(
Kg
/

Kf 2 − 1
)

1 − φ − Kbf
/

Ks + φKs
/

Kf 2
, (B-2)  

R1 =
K1 − Kdry

1 − Kdry
/

Ks

3K2 + 4μbf

K2
(
3K1 + 4μbf

)
+ 4μbf (K1 − K2)Sg

, (B-3)  

R2 =
K2 − Kbf

1 − Kbf
/

Ks

3K1 + 4μ1

K2
(
3K1 + 4μbf

)
+ 4μbf (K1 − K2)Sg

, (B-4)  

Q1 =

(
1 − Kdry

/
Ks
)
KA1

K1
, (B-5)  

Q2 =

(
1 − Kbf

/
Ks
)
KA2

K2
, (B-6)  

Z1 =
η1a
κ

1 − exp(− 2γ1a)
(γ1a − 1) + (γ1a + 1)exp(− 2γ1a)

, (B-7)  

Z2 = −
η2a
κ

(γ2b + 1) + (γ2b − 1)exp[2γ2(b − a)]
(γ2b + 1)(γ2a − 1) − (γ2b − 1)(γ2a + 1)exp[2γ2(b − a)]

, (B-8)  

where φ is the porosity, KS is the bulk modulus of the mineral, Kf1 and Kf2 are the bulk moduli of gas and water respectively, η1 and η2 are the vis-
cosities, and κ is the permeability,65 such that 

κ =
κ0φ3

2

(1 − φ2)
2， (B-9)  

γ1 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ωiη1/(κKE1)

√
, (B-10)  

γ2 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ωiη2/(κKE2)

√
, (B-11)  

where, κ0 = 25 D, and, 

KE1 =

[

1 −
Kf 1(1 − K1/Ks)

(
1 − Kdry

/
Ks
)

φK1
(
1 − Kf 1

/
Ks
)

]

KA1, (B-12)  

KE2 =

[

1 −
Kf 2(1 − K2/Ks)

(
1 − Kbf

/
Ks
)

φK2
(
1 − Kf 2

/
Ks
)

]

KA2, (B-13)  

KA1 =

[
φ

Kf 1
+

1 − φ
Ks

−
Kdry

K2
s

]− 1

, (B-14)  

KA2 =

[
φ

Kf 2
+

1 − φ
Ks

−
Kbf

K2
s

]− 1

. (B-15)  
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