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ABSTRACT

Picotti, S. and Carcione, J., 2006. Estimating seismic attenuation (Q) in the presence of random
noise. Journal of Seismic Exploration, 15 165-181.

The spectral-ratio and frequency-shift methods for estimating seismic attenuation (quality
factor, Q) are reviewed and compared using seismic traces obtained from simulations in a 1D and
2D homogeneous constant-Q) medium, In particular, we investigate the reliability of the two methods
In estimating Q when random noise is added to the traces, The two metheds are equivalent in the
absence of noise. On the other hand, the spectral-ratio method performs better in the presence of
noise. However, if the noise magnitude is evaluated from the frequency spectrum and compensated,
the two methods are equivalent for low noise levels, while for very noisy data the frequency-shift

method is move reliable. The comparison is performed for Q varying from 25 to 100 and
noise-to-signal ratios from 0 to 100%.

KEY WORDS: quality factor, seismic modelling, spectral-ratio method, frequency-shift method.

INTRODUCTION

Seismic attenuation or quality factor (Q) has been recognised as a
significant seismic indicator, which is not only useful for amplitude analysis and
improving resolution, but also to obtain information on lithology, saturation,
permeability and pore pressure (Best et al., 1994; Dasgupta and Clark, 1998;
Carcione et al., 2003, Helle et al., 2003, Carcione and Picotti, 2006). Hence,
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estimation of seismic attenuation is as important as the estimation of interval
velocities (Rossi et al., 2005), and provides additional information for rock
characterisation and reservoir studies. On the other hand, high frequency losses
due to absorption reduce the seismic bandwidth, and consequently the resolution
of the seismic images. In this case, attenuation is regarded as a disturbance
which must be eliminated by inverse Q-filters (Wang, 2003). So, while in one
case we need to determine attenuation, in the other case we have to compensate
for it. In both cases, the main problem is to obtain reliable Q estimations.
Efforts to estimate Q often result in undesirable consistent errors for many
reasons {Haase and Stewart, 2004). The main difficulty is the fact that, due to
the low frequency content of seismic waves, the attenuation effects are usually
small, and generally they can be measured with accuracy only for long
distances. Tonn (1991) investigated several methods for the computation of
attenuation, and showed that generally no single method is superior to the other:
depending on the specific situation, some methods are more suitable than others.
However, many of the uncertainties in Q estimation are often caused by the use
of simplified attenuation models. All methods based on amplitude decay, for
example, suffer when unity transmission coefficients are assumed, because
amplitudes may be affected by many different factors, as the reflection/
transmission phenomena. In this case, effective quality factors are estimated,
which are different to intrinsic Q. On the contrary, the methods based on the
evaluation of the frequency-centroid shift are not affected by reflection/
transmission losses, but as we show in this work, they are more sensitive to the
presence of random noise. In this paper, we used two analytical computational
procedures o model the seismic response of a constant-Q medium: the first,
based on the Green’s function, is used for 1D simulations (Kjartansson, 1979)
while the second, based on fractional derivatives, is used for 2D simulations
(Carcione et al., 2002). Plane P waves are modelled in an homogeneous,
isotropic and anelastic medium, under the assumption of a frequency-
independent Q. Then, we revisit the spectral-ratio and frequency-shift techniques
for the intrinsic Q-factor estimation and apply them to the synthetic seismic
traces, including different levels of random noise. Finally, we compare the two
methods and show a simple technique to compensate for the random noise.

BASIC THEORY
Phase and group velocities in a constant-Q model

Intrinsic attenuation is the process by which wave energy is transformed
to heat, resulting in a reduction of the bandwidth of the signal. To model this
phenomena, we need to understand how the velocity of the seismic signal
depends on Q. Generally, the complex bulk modulus is a function of frequency
and it is given by (Carcione et al., 2002)
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M(w) = My(ia/ag)® , (1}
where M, is the relaxed modulus, w, is a reference angular frequency and v is
a dimensionless parameter. The concept of complex velocity is very useful to
define phase and group velocities. The complex velocity is given by

v = [(M/p) , 2)
where p is the density. Then, the phase velocity (Carcione, 2001) is

c = [Re(I/v}™ = colwluwg|™ (3)
where

Cp = \f(Mofp)[COS(W'Y’IZ)]_I (4)

is the phase velocity at w = w,. The parameter + can be expressed in terms of
Q by the following equation

v = (Ym)tan 1(1/Q) . (5}

It follows that Q is independent of frequency (Q is constant), and we see that
Q > 0 is equivalent to 0 < y < %. The complex wavenumber is defined by

k = wv =1« — ia , (6)

where « 1s the real wavenumber and o is the attenuation factor (Carcione et al.,
2002):

o = —wlm(1/v) = tan{ry/2)sgn(w)wic . (7

The relation between the attenuation factor and the intrinsic quality factor
Q can be expressed as (Carcione, 2001, p. 139)

a = (@)VQ + 1) — Ql = (n/cQ)f = &f | 8
where f = w/27 is the frequency, £ is the attenuation coefficient and the second
relation in the right-hand side is valid for large values of Q (low-loss solid).
Since there is physical evidence that attenuation in rocks is almost linear with
frequency (Bland, 1960; Futterman, 1962; Kjartansson, 1979), constant-Q
models provide a good approximation.

On the other hand, the group velocity is

v, = [Re(dk/dw)]™" = [Re(aW)]™' , 9
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where k is the complex wavenumber and the complex coefficient a is given by
(Ben-Menahem, 1981; Carcione, 2001)

a=1— (wvidv/dw) =1 -~ v . {10)

Hence, for a lossless (Q = oo} and isotropic medium, we have from (5)
that v = 0 and all the velocities coincide. In that case, the velocity of the
energy of the pulse is identical to the group velocity (Felsen and Marcuvitz,
1973; Mainardi, 1987). Carcione (1994) shows that the concept of seismic
group velocity as the velocity of the energy is lost at high attenuation.
Therefore, generally, for an absorbing and isotropic medium phase and energy
velocity coincide and differ from the group velocity.

1D and 2D modelling

We consider a viscoacoustic isotropic absorbing medium and a
Ricker-type wavelet source whose time-history is

S(t) = expl—Aw*(t — t¥/dicos[wy(t — t)] (11

and whose frequency spectrum is
S@) = (JVr/aw){exp[~{( + w)/bw)?]

+ exp[—{(w ~ w)/Aw}] Jexpliaty) | (12)

where {; is a delay time, w, is the central angular frequency and w,,, = 24w is
the width of the pulse (Aw = w, in this work). The power spectral density ${w)
= S(w)S*(w) describes how the energy of the signal is distributed with
frequency and it is related to the total energy in the time domain by Parseval’s
theorem, which states that the area under the speciral density curve is equal to
the area under the square of the magnitude of the signal. This gives the
following expression for the root mean square (RMS) amplitude of the source
signal:

w,

T s
Ses = VIAUTw) § S°0dL = V{(20To) | dde} . 3)
[} 0
where T, is the pulse length,

The frequency-domain response of the 1D medium is given by (e.g.,
Eckart, 1948):

Ux,w) = F(w)G(x,w) = Flw)exp(—ikx) , (14)



ESTIMATING SEISMIC ATTENUATION 163

where G(x,w) is the Green’s function (impulse response) of the medium and x
is the travel distance. The inverse Fourier transform of U(x,w) gives the
response in the time domain.

Let us now consider the propagation of the pulse in a 2D medium. The
2D wave equation can be written in the form

afu/ot® = b[(d%u/axh) + (Fu/ozh] , (15)
were u(x,z,t) is a field variable (Carcione, 2001). Considering a plane wave

u(x,z,t) = explifwt — k;x — k2z}] , (16)
we obtain the dispersion relation

(i + bk = 0, a7

where (k,,k,) is the complex wavevector and k = f{k} + k2) is the complex
wavenumber. Eq. (17) is the Fourier transform of eq. (153), and allows the
calculation of the phase velocity corresponding to each Fourier component. The
properties of the Fourier transform when it acts on fractional derivatives are
well established, and a rigorous treatment is available in the literature (e.g.,
Dattoli et al., 1998). Comparison of eqs. (17), (6) and (1) gives

B=2-=2v , b= M/ow® . (18)

Equation {15) with the parameters b and § defined by the relations (18)
is the wave equation corresponding to Kjartansson’s stress-strain relation
(Kjartansson, 1979). In order to obtain realistic values of the quality factor,
corresponding to wave propagation in rocks, ¥ < 1 and the time derivative in
eq. (15) has a fractional order. We solved this equation numerically, using a
finite-difference algorithm based on the Grlnwald-Letnikov and central-
difference approximations (Carcione et al., 2002), which are extensions of the
standard finite-difference operators for derivatives of integer order (Letnikov,
1868; Gorenflo, 1997). Unlike the standard operator of differentiation, the
fractional operator increases in length as time increases, since it must keep the
memory effects. However, after a given time period the operator can be
truncated (short memory principle).

Q-estimation techniques

We use two approaches to estimate attenuation: the classical spectral-ratio
method and the frequency-shift method. The spectral-ratio approach (e.g.,
Dasgupta and Clark, 1998) uses the property that for frequency-independent
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Q in the bandwidth of interest, a seismic wavelet will have its spectral amplitude
S(f) modified to R(f) after travelling along a ray path from the source to the
receiver. It is based on the equation (Quan and Harris, 1997)

{ tdl = (UDIBGSORD] | (19)

ray
where £ is the attenuation coefficient defined in (8) and G lumps many
complicated processes together (such as scattering, geometrical spreading,
source and receiver coupling, radiation patterns and reflection/transmission
effects), and it is difficult to determine. However, if we consider a wave
travelling along a distance x in an homogeneous medium, the amplitudes are
only affected by the geometrical spreading and eq. (19) can be written as
follows (Carcione et al., 2003):

In[SH/REN = &xf + In(G) . (20)

Hence, plotting the logarithm of the spectral ratio as a function of the frequency
should yield a linear trend whose slope, p, is a function of Q. Then:

Q = wx/pc . @20

A major strength of this approach is that any frequency-independent scaling
factor, as the geometrical spreading, falls into the intercept term of the linear
regression and does not affect the Q estimation.

The frequency-shift approach is based on the fact that, as the wavelet
propagates within the medium, the high frequency part of the spectrum
decreases faster than its low frequency part. As a result, the centroid of the
signal spectrum is downshift from f; to a lower frequency fp after the
propagation from the source to the receiver. Under the assumption of a
constant-Q model, this downshift Af = f; — f; is proportional to a linear
integral of the attenuation along the ray path (Quan and Harris, 1997)

af =gt | ar | 22)

ray

where o5 is the variance of the source. Hence, if the wave propagates a distance
X in an homogeneous medium , the quality factor is given by:

Q = wxolYcAf | (23)

Since amplitudes are easily affected by many factors, if the signal
bandwidth is broad enough and the attenuation is high enough to cause



ESTIMATING SEISMIC ATTENUATION 17

noticeable losses of high frequencies during the propagation, the frequency-shift
method appears to be more reliable than the spectral-ratio method. Moreover,
the integral eq. (22) is analogous to the equation that relates the seismic
velocities to the measured traveltimes. Hence, it can be used for tomographic
inversion and easily implemented in algorithms based on the ray-tracing method
(Rossi et al,, 2005),

EXAMPLES
1D simulations

In this first example we consider an homogeneous 1D medium, and a
Ricker-type wavelet source whose frequency spectrum is described by eq. (12),
with a reference frequency fy = wy/(27) = 150 Hz and a cut-off frequency f,,,
= 2§, = 300 Hz. The source is located at the origin x = 0 and the receiver is
tocated at 250 m from the source. The phase velocity corresponding to the
dominant frequency is ¢, = 2000 m/s, and we test four values of Q: 25, 50, 75
and 100. Fig. 1 shows the time propagation (a) and frequency spectra (b)
corresponding to the case Q = 50. The error (or deviation) in the evaluation of
Q is given as the percentage difference between the calculated quality factors,
by using the egs. (21) and (23), and the true quality factors. In all the cases, if
there is no noise, the deviations obtained by using the frequency-shift method
is less than 0.3%. Using the spectral ratio method the deviations are quite
higher, but the two methods become equivalent if we remove the frequency
components outside the interval [min(fy — og,fy — o3), max(fs + og,f; + o).
Then, we add to the seismic traces different noise levels, calculated as a
percentage (noise-to-signal ratio NSR) of the RMS amplitude Sy, of the source
function. In our example, using eq. (I13), Sy = 0.333 and the amplitude
variance of the added random noise is defined as oy = (Spue'NSR)/100, Fig.
2 shows the time propagation (a) and frequency spectra (b) corresponding to Q
= 50 and NSR = 50%. We computed the quality factor Q by adding different
percentages of random noise to the seismic traces: NSR = 25%, 50%, 75% and
100%. Since this is a stochastic experiment, for each value of NSR we iterated
the Q evaluation procedure for 500 times. The deviation corresponding to each
case is the percentage difference between the true Q value and the average
calculated Q. Fig. 3 shows the deviations corresponding to Q = 50 (a) and Q
= 100 (b). We notice that, when NSR > 25%, the spectral-ratio method is
definitely better than the frequency-shift method. This is because we ignore the
presence of random noise in the computation. However, for each method, when
NSR > 50%, the errors are unacceptable high. It is possible to reduce
considerably the errors by evaluating the average amplitude of the random noise
Ay from the amplitude spectra. We computed Ay, in a frequency range from f

max

0 2f,., and redefined the centroid frequency fs and variance o of the source
signal S(f) as follows:
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Fig. 1. Time 1D propagation (a) and frequency spectra (b) corresponding te the case Q = 50
without random noise, where A indicales the source and B the output signal. The reference
frequency is T, = we/(2m) = 150 Hz, the offset is x = 250 m and the phase velocity corresponding
to the dominant frequency is ¢, = 2000 m/s.
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Fig. 2. Time 1D propagation (2) and frequency spectra (b) corresponding to the case Q = 50 and
NSR = 50%, where A indicates the source and B the output signal. The ripples C outside the signal
frequency band are due to the presence of random noise. The reference frequency is f, = w,/(2w)
= 150 Hz, the offset is x = 250 m and the phase velocity corresponding to the dominant frequency
is cq = 2000 m/s,
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Fig. 3. Percentage deviations in the evaluation of Q without compensating for the random noise,
corresponding to the cases Q = 50 (a) and Q = 100 (b}. The curves correspond to the two different
methods adopted in the evaluation of Q: the spectral-ratio method (A) and the frequency-shift method

(B).
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f,

fonas T
b= § £SO — Agde/ § IS - Adf
0 0

fou i (24)
o= § (F~ fUSH — Addf/ | IS — Agdf |
0 Q

where we neglect the contributions having S(f) — A, < 0. Similarly, we
redefined the centroid frequency fy and variance oy of the receiver signal R(f)
as follows:

f,

s frn
fo= | fIR(D - AJdE/ | TR — AgE
0

0

o . (25)
o= § (F — RR® - Agdf/ | RO — A |

0

where we neglect the contributions with R(f) ~ Ay < 0.

Fig. 4 shows the deviations corresponding to Q = 50 (a) and Q = 100 (b),
calculated by using eqgs. (24) and (25). We may conclude that for Q = 50 the
two methods are nearly equivalent. For Q > 50 the two methods are equivalent

only for NSR < 50%, while for NSR > 50% the frequency-shift method is
better.

2D simulations

In this example, we use a more realistic model, based on attenuation
measurements in a homogeneous medium (Pierre shale), made by McDonal et
al. (1958) near Limon, Colorado. They reported a constant-Q behaviour with
attenuation o = 0.3177 f (nepers/km). According to eq. (8), since Co I8
approximately 2133.3 m/s, the quality factor is Q = 32.5. We consider a
reference frequency f;, = 250 Hz, corresponding to the dominant frequency of
the seismic source used in the experiments. The medium is discretized with
uniform vertical and horizontal grid spacings of 2 m, and 77 x 77 grid points.
The spatial derivatives are calculated with the Fourier method by using the fast
Fourier transform (FFT) (Kosloff and Baysal, 1982). The source, applied at the
centre of the mesh, is a Ricker-type wavelet described by eq. (11). The time
step used in this simulation is 0.05 ms, and the receiver is located at 40 m from
the source. With respect to the 1D simulation, we enlarged the source
bandwidth and reduced the source-receiver (offset) distance. Absorbing strips
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Fig. 4. Percentage deviations in the evaluation of Q after compensating for the random noise,
corresponding to the cases Q = 50 (a) and Q = 100 (b). The curves correspond to the two different
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Fig. 5. Time propagation {a} and frequency spectra (b} corresponding to the 2D simulation {Pierre
shale) without random noise, where A indicates the source and B the output signal. The reference
frequency is f, = wy/(2m) = 250 Hz, the offset is x = 40 1 and the phase velocity corresponding
to the dominant frequency is ¢, = 2133.3 mys.
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of width 12 grid points are implemented at the four boundaries of the mesh
(Carcione et al., 1988). As shown by Carcione et al. (2002), the
finite-difference algorithm is more accurate and efficient when the equation is
expressed in the dilatation formulation, and the agreement between the
numerical and analytical solution (based on the 2D Green’s function) is excellent
when the memory operator length is about 40. Fig. 5 shows the time
propagation (a) and frequency spectra (b) of the numerical simulation without
noise. Note that in this case the output signal is affected also by the
geometrical-spreading attenuation. Fig. 6 compares two snapshots of the
dilatation field computed at 20 ms, where (a) corresponds to the case without
noise, and (b) to the case with noise (NSR = 10%). Fig 7(a) shows the errors
in the computation of Q and we notice that the spectral-ratio method is slightly

better for NSR < 50%, while the frequency-shift method is better when NSR
> 50%.

Finally, we performed a 1D simulation using the Pierre shale parameters
and an offset of 300 m. The resulting output signal has the same spectral peak
amplitude obtained in the 21 simulation. Fig 7(b) shows the errors in the
evaluation of Q: the two methods are practically equivalent, and we notice that
the errors are quite lower if compared to the 2D simulation [Fig. 7(a)l. This
means that the errors increase considerably with decreasing offsets, in agreement
with the fact that the attenuation effects are generally observed with accuracy
over large distances.

Fig. 6. Snapshots at 20 ms of the dijatation 2D field in a dissipative model of Pierre shale, without
random noise (a) and with random noise (NSR = 10%) (b},
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Fig. 7. Percentage deviations in the evaluatior of Q after compensating for the random noise,
correspanding to the 21 Pierre shale case (a} and 1D Pierre shale case with offset x = 300 m (b).

The curves correspond to the two different methods adopted in the evaluation of Q: the spectral-ratic
method (A) and the frequency-shift method (B).
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CONCLUSIONS

We tested successfully the reliability of the spectral-ratio and
frequency-shift methods for estimating the intrinsic quality factor Q in the
presence of random noise. We simulated constant-Q wave propagation in a 1D
and 2D (Pierre shale} homogeneous viscoacoustic media. For the 1D model we
solved the equation analytically in the frequency domain using the Green’s
function, while for the 2D model we used a numerical algorithm based on
fractional derivatives. Several tests were made to estimate the intrinsic quality
factor, using in the simulations different  values and random noise levels. The
two methods are very accurate (deviations less than 0.3%) and equivalent when
there is no noise, while in presence of random noise the spectrai-ratio technigue
is better than the frequency-shift technique. However, when the magnitude of
random noise is evaluated from the spectrum and compensated, the accuracy of
the calculation is highly improved and for low values of noise levels the two
methods are equivalent. Moreover, the frequency-shift method is better than the
spectral-ratio method when the noise level is high. Finally, since over large
distances the attenuation effects are more evident, we verified that the accuracy
of the evaluation of Q using both methods increases with increasing offsets.
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