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The acoustic behavior of porous media can be simulated more realistically using a stress-strain rela-

tion based on the Cole-Cole model. In particular, seismic velocity dispersion and attenuation in

porous rocks is well described by mesoscopic-loss models. Using the Zener model to simulate

wave propagation is a rough approximation, while the Cole-Cole model provides an optimal

description of the physics. Here, a time-domain algorithm is proposed based on the Gr€unwald-

Letnikov numerical approximation of the fractional derivative involved in the time-domain repre-

sentation of the Cole-Cole model, while the spatial derivatives are computed with the Fourier

pseudospectral method. The numerical solution is successfully tested against an analytical solution.

The methodology is applied to a model of saline aquifer, where carbon dioxide (CO2) is injected.

To follow the migration of the gas and detect possible leakages, seismic monitoring surveys should

be carried out periodically. To this aim, the sensitivity of the seismic method must be carefully

assessed for the specific case. The simulated test considers a possible leakage in the overburden,

above the caprock, where the sandstone is partially saturated with gas and brine. The numerical

examples illustrate the implementation of the theory. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4990965]

[RKS] Pages: 134–145

I. INTRODUCTION

Local fluid flow explains the high attenuation of low-

frequency waves in fluid-saturated rocks. When seismic

waves propagate through small-scale heterogeneities, pressure

gradients are induced between regions of dissimilar proper-

ties. White et al. (1975) and Johnson (2001) have shown that

attenuation and velocity dispersion measurements can be

explained by the combined effect of mesoscopic-scale inho-

mogeneities and energy transfer between wave modes, with

P-wave to slow P (Biot)-wave conversion being the main

physical mechanism. We refer to this mechanism as meso-

scopic loss. The mesoscopic-scale length is intended to be

larger than the grain sizes but much smaller than the wave-

length of the pulse. For instance, if the matrix porosity varies

significantly from point to point, diffusion of pore fluid

between different regions constitutes a mechanism that can be

important at seismic frequencies. A review of the different

theories and authors, who have contributed to the understand-

ing of this mechanism, can be found, for instance, in Carcione

and Picotti (2006) and Carcione (2014).

The Cole-Cole model has been used to describe attenua-

tion by Spencer (1981) who conducted forced-deformation

experiments at frequencies from 4 to 400 Hz in fluid-

saturated sandstones and limestones, implying a stress-

relaxation mechanism in the presence of pore fluids. More

recently, Lu and Hanyga (2004) simulated wave propagation

in viscoelastic media using the Cole-Cole model and frac-

tional time derivatives. These works provide a phenomeno-

logical description of wave loss. The Cole-Cole model has

also been used to model the deformation of rocks by pressure

solution, to simulate the seismoelectric coupling in a poro-

elastic body saturated by a viscoelastic fluid and to model

the complex conductivity of porous media (Revil and

Jardani, 2010; Revil et al., 2006; Revil et al., 2014). Here,

we show that the Cole-Cole model can be linked to a physi-

cal process such as wave-induced fluid flow.

Simulation of synthetic seismograms in the presence of

mesoscopic loss requires solving Biot’s differential equa-

tions (e.g., Picotti et al., 2007). Because the loss mechanism

involves the conversion of fast P-wave energy to diffusion

energy in the form of the Biot slow wave and the wavelength

of this wave can be very small, the poroelastic solution

requires a very large amount of storage and computer time.

An efficient approach is to approximate the attenuation and

velocity dispersion curves using a viscoelastic model and

then solve the corresponding differential equations. Picotti

et al. (2010) and Picotti et al. (2012) attempted to approxi-

mate the mesoscopic loss in partially saturated rocks by

using the Zener viscoelastic model. This model provides

accurate fits when the gas patches have a regular geometry.

On the other hand, the fit is not good for irregular geome-

tries. An optimal agreement is obtained with the Cole-Cole

model, which has been introduced in electromagnetism

[Cole and Cole, 1941; Carcione, 2014, Eq. (8.138)]. In this

field of research, Abdullah et al. (2012), Rekanos and

Yioultsis (2014), and Bia et al. (2015) have solved the elec-

tromagnetic equations using different techniques to compute

the fractional derivative.

As the Zener kernel is a good approximation to both

the Biot loss mechanism (Carcione, 1998, 2014) and the

squirt-flow dissipation peak and related velocity dispersiona)Electronic mail: spicotti@inogs.it
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(Carcione and Gurevich, 2011), the Cole-Cole kernel pro-

vides a good fit to the White and Johnson mesoscopic models.

In particular, the Johnson model has two relevant parameters

determining the shape and the mean size of the patches,

which makes it more general than the White model based on

spherical shapes. For a single relaxation mechanism, such as

pore fluids oscillating in a general porous medium, the com-

pressional wave will show a sigmoidal increase with increas-

ing frequency and attenuation will peak at the relaxation

frequency, where velocity increases rapidly. This coupling

can be described by a Cole-Cole model (e.g., Batzle et al.,
2006).

Here, we propose to solve the time-domain differential

equations based on the Cole-Cole model with a direct

method, where the spatial derivatives are computed by using

the staggered Fourier pseudospectral method (e.g., Carcione,

2014). Fractional time derivatives are computed with the

Gr€unwald-Letnikov (GL) approximation (Carcione et al.,
2002; Caputo et al., 2011), which is an extension of the stan-

dard finite-difference approximation for derivatives of inte-

ger order.

In the first part of this work, we introduce the stress-

strain relation and Johnson model, and calculate the complex

moduli, phase velocities, and quality factors versus fre-

quency. We then recast the wave equation in the time-

domain in terms of fractional derivatives and obtain the GL

approximation. The model is discretized on a mesh, and the

spatial derivatives are calculated with the Fourier method by

using the fast Fourier transform.

The methodology is applied to the problem of CO2

storage monitoring. Specifically, we consider a model of

saline aquifer, where CO2 is injected. Besides following the

migration of the plume in the reservoir, the objective of

monitoring is the detection of possible CO2 leakages in the

above formations. Picotti et al. (2012) assessed the sensitiv-

ity of the reflection seismic method from the surface for this

specific problem, by using Zener approximations. Use of

the Cole-Cole model could allow for more reliable sensitiv-

ity studies. To estimate the amount of leaked gas, it is

essential to fully characterize the seismic properties of the

formations constituting the caprock and overburden. We

consider a possible leakage scenario in the overburden,

caused by the degradation of the casing of an abandoned

well.

II. MESOSCOPIC-LOSS MODELS OF PATCHY
SATURATION

White (1975) and White et al. (1975) were the first to

introduce the mesoscopic-loss mechanism based on approxi-

mations in the framework of Biot theory. Their first model

consisted of porous layers alternately saturated with water

and gas, respectively, where the layers might be also com-

posed of different materials. Then, they considered a peri-

odic ensemble of spherical gas pockets in a water-saturated

porous medium. In recent studies (Johnson, 2001; M€uller

and Gurevich, 2005) a generalization of White model for

patches of arbitrary shape was developed. In particular,

Johnson (2001) obtained the P-wave modulus E(x), where x

is the angular frequency, to describe the crossover between

the high and low frequency limits. The theory of E(x) is

extensively outlined in Appendix A [Eq. (A14)], while a

review of White’s layered model is given in Appendix B. In

addition to the usual parameters of Biot theory, Johnson

model of patchy saturation has two other parameters, depend-

ing on the patch geometry. These parameters are the specific

surface area S/V (the ratio of the surface area of a patch to its

volume, referred to as shape factor), which depends on the

shape of the patches, and the parameter T (referred to as size
factor), which is governed by the mean size of the patches.

For a given shape, Johnson (2001) derived asymptotic solu-

tions for low and high frequencies. The two parameters S/V
and T appear in the expressions for the high and low fre-

quency limits. The solution for intermediate frequencies was

proposed using the simplest function that ensured causality of

the solution (Johnson, 2001). A review of the theory of White

and Johnson models can also be found in Picotti et al. (2010).

III. THE COLE-COLE MODEL

Effective attenuation can be described by means of

power laws in the form of fractional derivatives. With the

purpose of obtaining the equivalent viscoelastic medium, we

use the Cole-Cole model (Cole and Cole, 1941; Bagley and

Torvik, 1986; Hanyga, 2003; Bano, 2004; Carcione, 2014),

which has been adopted to describe dispersion and energy

loss in dielectrics, anelastic media and electric networks

(e.g., Grimnesand and Martinsen, 2005). The frequency-

domain Cole-Cole stress-strain relation (based on irrational

powers of the frequency) can be represented in the time

domain as a differential equation involving derivatives of

fractional order (e.g., Carcione, 2014). The complex modu-

lus of a Cole-Cole element can be expressed as

M xð Þ ¼ MU
sr

s�

� �q 1þ ixs�ð Þq

1þ ixsrð Þq

" #
; (1)

where MU is the unrelaxed (high-frequency) modulus, sr

and se are relaxation times, 0� q< 2 is a real number and

i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary number. When q¼ 1, we obtain

the Zener model (e.g., Picotti et al., 2010; Carcione, 2014),

while q¼ 0 gives the lossless case. The quality factor associ-

ated with M is equal to Re(M)/Im(M), where Re and Im

denote real and imaginary parts. Its minimum value is

located at

x0 ¼
1ffiffiffiffiffiffiffiffi
srs�
p (2)

and is equal to

Q0 ¼
1þ c2
� �

cotuþ 2ccscu
c2� 1

; c¼ s�
sr

� �q=2

; u¼ pq

2
:

(3)

f0¼x0/(2p) is the central frequency of the relaxation peak,

and 1/Q0 is the maximum dissipation factor (e.g., Carcione,

2014).
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Using x0 and Q0 as parameters, we have

s� ¼
c1=q

x0

; sr ¼
c�1=q

x0

; (4)

where c is a solution of Eq. (3),

c ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

0

p
sin u

Q0 sin u� cos u
: (5)

The Cole-Cole model stress (r)-strain (e) relation, corre-

sponding to the kernel (1), is

rþ sq
r
@qr
@tq
¼ MR �þ sq

�

@q�

@tq

� �
; 0 � q < 2; (6)

where

MR ¼ MU
sr

s�

� �q

(7)

is the relaxed (low-frequency) modulus (e.g., Carcione,

2014). The limit q¼ 1 gives the Zener model and se¼ 0

gives the Kelvin-Voigt model implemented in Caputo et al.
(2011). In the frequency domain, we have

r ¼ M�: (8)

IV. PHASE VELOCITY AND QUALITY FACTOR

The complex velocity is the key quantity to obtain the

phase velocity and quality factor of the equivalent viscoelas-

tic medium. The complex P-wave velocities are

v xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
E xð Þ

q

s
and �v xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M xð Þ

q

s
(9)

for the Johnson and Cole-Cole models, respectively. The

bulk density is

q ¼ ð1� /Þqs þ /qf ; (10)

where qs is the grain density and / is the porosity. The den-

sity of the fluid mixture is

qf ¼ S1qf 1 þ S2qf 2; S2 ¼ 1� S1; (11)

where qfj is the density of the jth fluid (i.e., gas and water),

and Sj, j¼ 1, 2, the corresponding saturation. The phase

velocity and quality factor are

vp ¼ Re
1

v

� �� ��1

(12)

and

Q ¼ Re v2ð Þ
Im v2ð Þ (13)

(e.g., Carcione, 2014). The properties of the Cole-Cole

model are obtained by replacing v by �v.

V. 2D DYNAMICAL EQUATIONS

The conservation of linear momentum for a 2D linear

anelastic medium, describing dilatational deformations, can

be written as

q@2
t ui ¼ @ir; i ¼ 1ðxÞ; 2ðyÞ; (14)

where ui are displacement components and @t and @i denote

partial time and spatial derivatives, respectively.

The initial conditions are uið0; xÞ ¼ 0; @tuið0; xÞ ¼ 0,

and ui(t, x)¼ 0, for t< 0, where x is the position vector.

The strain-displacement relation is � ¼ @1u1 þ @2u2. Then,

the complete set of equations describing the propagation is

@2
t u1 ¼ q�1@1r;

@2
t u2 ¼ q�1@2r;

rþ sq
r
@qr
@tq
¼ MR �þ sq

�

@q�

@tq

� �
;

� ¼ @1u1 þ @2u2: (15)

VI. NUMERICAL ALGORITHM

The computation of the fractional derivative is based

on the Gr€unwald-Letnikov (GL) approximation (Podlubny,

1999; Carcione et al., 2002). The fractional derivative of

order q of a function g is

@qg

@tq
� Dqg ¼ 1

hq

XJ

j¼0

�1ð Þj q
j

� �
g t� jhð Þ; (16)

where h is the time step, and J¼ t/h – 1. The derivation of

this expression can be found, for instance, in Carcione et al.
(2002). The fractional derivative of g at time t depends on

all the previous values of g. This is the memory property of

the fractional derivative, related to field attenuation. The

binomial coefficients are negligible for j exceeding an inte-

ger J. This allows us to truncate the sum at j¼ L, L� J,

where L is the effective memory length.

Fractional derivatives of order q< 1 require large

memory resources and computational time, because the

decay of the binomial coefficients in Eq. (16) is slow

(Carcione et al., 2002; Carcione, 2009), and the effective

memory length L is large. We increase the order of the

derivative by applying a time derivative of order m to the

third Eq. (15). The result is

@2
t u1 ¼ q�1@1r;

@2
t u2 ¼ q�1@2r;

Dmrþ sq
rDmþqr ¼ MRðDm�þ sq

�D
mþq�Þ þ s;

� ¼ @1u1 þ @2u2; (17)

where we added a source term s. It is enough to take m¼ 1

to have a considerable saving in memory storage compared

to m¼ 0.
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We discretize Eq. (17) at t¼ nh. Using the notation

un¼ u(nh), the left-hand side of the first two expressions in

Eq. (17) can be approximated using

h2ðD2uiÞn ¼ unþ1
i � 2un

i þ un�1
i ; i ¼ 1; 2; (18)

where we have used a right-shifted finite-difference expres-

sion for the second derivative. The third equation results in

rn ¼MRð�nþR�þ hmsq
�D

qþm
� Þ �Rr� hmsq

rDqþm
r ; (19)

where

Rn ¼
Xm

j¼1

ð�1Þj m
j

� �
nm�j: (20)

Let us consider the case m¼ 1. The GL derivative (16)

at time nh can be rewritten as

Dqþ1gn ¼ gn

hqþ1
þ r qþ1ð Þ

g ;

r qþ1ð Þ
g ¼ 1

hqþ1

XJ

j¼1

�1ð Þj qþ 1

j

 !
gn�j; (21)

where r
ðqþ1Þ
g has the memory of the field from n – 1 and back

in time.

Finally, we obtain

unþ1
1 ¼ h2 q�1@1r

n
� �

þ 2un
1 � un�1

1 ;

unþ1
2 ¼ h2 q�1@2r

n
� �

þ 2un
2 � 3un�1

2 ;

rn ¼ 1

ar

	
rn�1 � hsq

rrqþ1
r þMR a��

n � �n�1
�

þ hsq
� r

qþ1
�

�
þ hsn



;

�n ¼ @1un
1 þ @2un

2; (22)

where

an ¼ 1þ sn

h

� �q

; n ¼ �; r: (23)

The spatial derivatives are calculated with the staggered

Fourier method by using the fast Fourier transform (FFT)

(Carcione, 1999, 2009, 2014). The Fourier pseudospectral

method has spectral accuracy for band-limited signals. Then,

the results are not affected by spatial numerical dispersion.

Grid staggering requires averaging the material properties to

remove diffractions arising from the discretization of the

interfaces. At half-grid points, we average the values defined

at regular points. In this case, we apply an arithmetic averag-

ing to the density and the stiffness.

Since we use Fourier basis functions to compute the spa-

tial derivatives, Eq. (22) satisfies periodic boundary condi-

tions at the edges of the numerical mesh.

VII. MATRIX AND FLUID PROPERTIES

Permeability can be related to porosity by the Kozeny-

Carman relation

j ¼ B/3D2

1� /ð Þ2
(24)

(Mavko et al., 1998), where D is the grain diameter and

B¼ 0.003. Equation (24) is an approximation of the perme-

ability of porous media, which is sufficient for the objectives

of the present work. However, other theories can better cap-

ture the effects of the heterogeneities in the permeability

computation (e.g., Revil and Florsch, 2010). We use the

Krief model (Krief et al., 1990) to obtain the dry-rock mod-

uli Km and lm. The porosity dependence is consistent with

the concept of critical porosity, since the moduli should be

small above a certain value of the porosity (usually from 0.4

to 0.6). The moduli are given by

Km ¼ Ksð1� /Þ3=ð1�/Þ;

lm ¼ Kmls=Ks; (25)

where Ks and ls are the bulk and shear moduli of the solid

grains. The mesoscopic-loss effect is enhanced when the two

fluids are quite different, such as gas and brine. The proper-

ties of the fluids depend on temperature and pressure, which

in turn depend on depth z. The gas adiabatic bulk modulus

and density can be calculated from the Peng-Robinson equa-

tion of state, while the properties of brine are given by the

Batzle and Wang relations (e.g., Picotti et al., 2012).

VIII. RESULTS

We consider the model of Fig. 1, where a sedimentary

overburden overlies a caprock. First, we computed the petro-

physical parameters of the model, and determined the

P-wave velocity and quality factor versus frequency of each

geological formation. Then, by fitting these curves we built

the equivalent viscoelastic media and run the numerical sim-

ulations of wave propagation.

FIG. 1. Two-dimensional synthetic model of the aquifer overburden and

caprock, whose material and fluid properties are given in Tables I and II.
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A. Viscoelastic model building

Both overburden and caprock consist of a periodic

sequence of sandstone and mudstone thin layers with different

proportions. The period of the stratification is 1 cm and 4 cm

in the overburden and caprock, respectively, while the mud-

stone proportion is 50% in the overburden and 80% in the

caprock. The porous material is fully saturated with brine,

and the mesoscopic-loss effect is due to heterogeneities in the

petrophysical properties of the hosting rock. Attenuation and

velocity dispersion curves, shown in Figs. 2(c) and 2(d), are

computed using White’s layered model.

As shown in the geological model of Fig. 1, we simulate

a possible CO2 leakage caused by the degradation of the cas-

ing of an abandoned well. It is assumed that the CO2 is accu-

mulated in a lenticular sandstone structure in the overburden.

The material and fluid properties, computed using the equa-

tions of Sec. VII, are given in Tables I and II.

Figure 2 shows the phase velocity (a) and quality factor

(b) obtained by using the Johnson model and two different

geometries of the patches, i.e., the concentric spheres geom-

etry and an irregular (fractal) geometry. In the first case, a

gas-saturated sphere is surrounded by an outer sphere of

radius R¼ 50 cm, and the CO2 saturation is Sg¼ 10%. To

obtain the irregular patch, we proceed as described in Picotti

et al. (2010). We start from the spherical patch of size factor

FIG. 2. Phase velocity (a) and quality factor (b) curves, corresponding to the leakage for different patch geometries, computed with the Johnson model. Phase

velocity (c) and quality factor (d) curves, corresponding to the overburden and caprock, computed with the White layered model. The best fits of the Cole-

Cole model were obtained using the parameters listed in Table III, while for the Zener model it is q¼ 1. The vertical dashed line indicates the dominant fre-

quency of the source for the numerical simulation.

TABLE I. Material properties.

Sandstone Mudstone

Grain bulk modulus, Ks (GPa) 36 12

shear modulus, ls (GPa) 45 6

size, D (lm) 50 1

density, qs (kg/m3) 2650 2600

Framea bulk modulus, Km (GPa) 15.6 0.16

shear modulus, lm (GPa) 19.5 0.08

porosity, / 0.2 0.45

permeability, j (mD) 95 0.92

Frameb bulk modulus, Km (GPa) 4.93 –

shear modulus, lm (GPa) 6.16 –

porosity, / 0.35 –

permeability, j (D) 0.77 –

aOverburden and caprock.
bSandstone lens.
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1000 T¼ 10 and shape factor S/V¼ 1.3 m–1. Then, we

deform the patch from a sphere to a fractal rough shape, by

multiplying the shape factor of the initial geometry by a fac-

tor of 10. As observed by Picotti et al. (2010), we note that

the shape of the curves corresponding to the two geometries

are similar, but as the irregularity of the patches increase, the

relaxation peak moves towards higher frequencies, whereas

the maximum loss decreases.

With the purpose of determining the parameters of the

equivalent viscoelastic media, we fit both the phase velocity

and quality factor curves using the Zener and Cole-Cole

models, described in Sec. III. The viscoelastic properties of

the Cole-Cole model are given in Table III, where the unre-

laxed P-wave velocity is cP ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
MU=q

p
. The results, dis-

played in Figs. 2(a) and 2(b), clearly show that while the

best fit of the Zener model is satisfactory for the spherical

geometry, it is inadequate for the irregular geometry.

Instead, the best fit obtained using the Cole-Cole model is

excellent at all frequencies. Figures 2(c) and 2(d) show that

the fits are excellent also for the overburden and caprock.

B. Unbounded homogeneous medium numerical test

Analytical solutions of wave propagation problems are

exact and conceptually appealing, but can be obtained only

under rather restrictive assumptions about the geometry and

the nature of the propagation medium. On the other hand,

numerical solutions can cope with complex media and arbitrary

boundary conditions, but are error prone and hence require ver-

ification (i.e., tests with synthetic data) and validation (i.e., tests

with realistic data). Therefore, we first verify our numerical

algorithm by comparing numerical and analytical solutions

arising from a model that assumes an unbounded homogeneous

model. Appendix C provides the analytical solution. To com-

pute the numerical transient responses, we use the following

time-dependence for the source:

s tð Þ ¼ a� 1

2

� �
exp �að Þ; a ¼ p t� tsð Þ

tp

� �2

; (26)

where tp is the period of the wave and we take ts¼ 1.4tp. Its

frequency spectrum is

S xð Þ ¼ tpffiffiffi
p
p
� �

�a exp ��a � ixtsð Þ; �a ¼ x
xp

� �2

;

xp ¼
2p
tp
: (27)

The peak frequency is fp¼ 1/tp.

We now perform simulations to compare snapshots

between a hypothetical lossless medium and the actual

medium. A sandstone formation is discretized on a numeri-

cal mesh with uniform vertical and horizontal grid spacings

of 3 m, and 231� 231 grid points. The viscoelastic parame-

ters are those of the leakage in Table III, but with Q0¼ 10. A

dilatational source is applied at the center of the mesh with a

peak frequency fp¼ 60 Hz. We use a memory length L¼ 70,

a time step h¼ 0.2 ms and m¼ 1. We run several simulations

using q¼ 0.2, 0.5, 1, and 1.5. Figures 3(a) and 3(b) show the

phase velocity and quality factor as a function of frequency,

for the different values of q, respectively. It is clear that the

lower is q the lossier is the medium. In particular, for q> 1

we obtain narrower quality factor curves respect to the Zener

FIG. 3. Phase velocity (a) and quality factor (b) as a function of frequency, corresponding to q¼ 0.2, 0.5, 1, 1.5. The viscoelastic parameters are those of the

leakage in Table III, but with Q0¼ 10. The vertical dashed line indicates the dominant frequency of the source for the numerical simulation.

TABLE II. Fluid properties.

Overburden Caprock

Brine density, qw (kg/m3) 1036 1036

viscosity, gw (cP) 1.29 1.12

bulk modulus, Kw (GPa) 2.38 2.46

CO2 density, qg (kg/m3) 70.9 —

viscosity, gg (cP) 0.016 —

bulk modulus, Kg (MPa) 3.95 —

TABLE III. Viscoelastic properties.

Formation q q (kg/m3) cP
a (m/s) Q0 f0 (Hz)

Overburden 0.53 2112 1968 17 9397

Leakage 0.52 2051 2885 18 110

Caprock 0.52 1982 1675 61 3772

aThe unrelaxed P-wave velocity is cP ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
MU=q

p
.
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FIG. 4. Snapshots of the dilatational wave in a sandstone formation at 0.12 s, where (a) corresponds to the lossless medium (q¼ 0) and (b) to the lossy medium

(q¼ 0.2 and Q0¼ 10). The other viscoelastic parameters are those of the leakage in Table III.

FIG. 5. Comparison between the analytical (solid line) and numerical (dots) solutions in a sandstone lossy medium, for q¼ 0.2 (a), 0.5 (b), 1 (c), and 1.5 (d).

The field is normalized and the source-receiver distance is about 100 m.
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case (q¼ 1). On the other hand, for 0< q< 1 the curves are

broader. In the limit of q¼ 2 the imaginary part of the Cole-

Cole element vanishes and the quality factor peak reduces to

a delta function centered at f0. Figure 4 shows the snapshots

at 0.12 s, where the strong attenuation and velocity disper-

sion in the real medium [Fig. 4(b)] is evident.

Figure 5 compares the numerical and analytical transient

solutions at a distance of about 100 m from the source loca-

tion. The agreement between solutions has an L2-norm error

lesser than 0.5%. Figure 6 compares the different analytical

transient solutions, showing that for lower values of q the

medium is more lossy and dispersive.

C. Simulation of a leakage scenario

We consider the idealized model of aquifer overburden

and caprock shown in Fig. 1, with the purpose of illustrating

FIG. 6. Comparison between the analytical transient solutions, for q¼ 0.2,

0.5, 1, and 1.5. The source-receiver distance is about 100 m.

FIG. 7. Snapshots of wave field propa-

gation in the model of Fig. 1 at 0.18 s

[(a), (b)], 0.22 s [(c), (d)], and 0.26 s

[(e), (f)], where panels (a), (c), (e) cor-

respond to a hypothetical lossless

medium and panels (b), (d), (f) corre-

spond to the actual medium.
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the attenuation and velocity dispersion effects due to the

presence of a CO2 leakage within the overburden. The visco-

elastic parameters of each geologic formation correspond to

the properties shown in Table III. The model is discretized

on a numerical mesh with uniform vertical and horizontal

grid spacings of 3 m, and 231� 231 grid points. The mesh

has absorbing boundary conditions (Cerjan et al., 1985) at

the top and bottom of the grid (20 grid cells). Due to the

periodicity of the Fourier method, the absorbing strip of the

top boundary is located at the bottom of the mesh. To be

effective, the damping is applied to all the temporal levels,

un, n¼ –1, 0, 1. To simulate the propagation of a plane

wave, a dilatational source is applied at each grid cell at the

top of the mesh, with a peak frequency fp¼ 60 Hz. We use a

memory length L¼ 70, a time step h¼ 0.2 ms and m¼ 1.

Figure 7 compare snapshots between a hypothetical

lossless medium (a), (c), (e) and the actual medium (b), (d),

(f). The snapshots show the wave field at three different

propagation times, 0.18, 0.22, and 0.26 s, displaying how the

down-going plane wave is diffracted by the leakage. As can

be seen, the field is faster and more attenuated in the region

where the leakage is present, while velocities and amplitudes

in the real medium are lower than in the lossless medium.

The simulations show that the seismic technique is suitable

for CO2 storage monitoring and leakage detection. This

methodology allows a more reliable evaluation of the sensi-

tivity of the seismic method to the CO2 detection.

IX. CONCLUSIONS

We have presented a numerical algorithm to model seis-

mic propagation in partially saturated porous media based on

the Cole-Cole model, which implies the solution of fractional

time derivatives of stress and strain. The kernel of this stress-

strain relation has three parameters that can be obtained by fit-

ting real or synthetic data, namely, the unrelaxed (high-fre-

quency) velocity, the maximum dissipation factor and the

fractional order. In this work, we fitted the P-wave velocity

and quality factor obtained using the While and Johnson mod-

els, the latter being a generalization of White theory for

patches of arbitrary shape. The wave field is computed in the

time-space domain using the Gr€unwald-Letnikov approxima-

tion and the staggered Fourier pseudospectral method. The

algorithm is successfully tested against an analytical solution

and applied to CO2 detection and monitoring. It provides an

optimal description of the mesoscopic-loss effect arising in

partially saturated porous media, and allows to obtain more

realistic simulations of the wave propagation phenomena. In

the specific example considered, this methodology enables for

a better evaluation of the sensitivity of the seismic method to

the CO2 detection.

The advantages of this approach are that the viscoelastic

modeling uses fewer material properties and field variables

than the corresponding poroelastic modeling. Moreover, the

use of very small grid spacings due to the presence of the

Biot slow wave can be avoided, allowing to adopt coarser

grids. This implies a considerable reduction of computer

time and storage saving, particularly in three dimensions.

This research is of particular relevance for the simula-

tion of wave propagation in reservoir rocks.

APPENDIX A: DYNAMIC BULK MODULUS AND
JOHNSON’S MODEL

The dynamic bulk modulus K(x) describes the crossover

between the two frequency limits, i.e., from the Gassmann-

Wood (GW) modulus at low frequencies to the Gassmann-

Hill (GH) modulus at high frequencies. When the pore space

is partially saturated with two very different fluids, such as

gas and water, a fast P wave traveling in the medium induces

very different pore pressures in the two regions, which tend to

equilibrate through a diffusive phenomenon governed by the

so called Biot acoustic slow-wave. The effective P-wave bulk

modulus of the two regions is

KE ¼
Em

�M

EG
(A1)

(Carcione and Picotti, 2006), where

Em ¼ Km þ
4

3
lm (A2)

is the dry-rock P-wave modulus, and

EG ¼ KG þ
4

3
lm (A3)

(Carcione, 2014), where Km is the dry-rock bulk modulus

and lm is the dry-rock shear modulus. The parameter �M
depends on the bulk modulus of the pore fluid Kf and is

given by

�M Kfð Þ ¼
a� /

Ks
þ /

Kf

� ��1

; (A4)

where Ks is the solid-grain bulk modulus and a (also known

as the Biot-Willis coefficient) is defined as

a ¼ 1� Km

Ks
: (A5)

The Gassmann bulk modulus KG is given by

KG ¼ Km þ a2 �M: (A6)

As shown by White (1975), slow-wave diffusion indu-

ces wave-velocity dispersion and attenuation of the fast P

wave, which depends mostly on the size of the gas pockets

(saturation), frequency, permeability and porosity of the

rocks. At very low frequencies, there is enough time for pore

pressure to equilibrate to a constant value. Therefore, the

fluid pressure is uniform (isostress state), and the effective

modulus of the pore fluid is given by Wood’s modulus

(Wood, 1955), KW, which is exact for the static modulus of

two fluids,

KW ¼
S1

Kf 1

þ S2

Kf 2

� ��1

; (A7)
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where Sj, j¼ 1, 2, is the saturation of the jth fluid. In this

case, the effective bulk modulus of the composite at the low

frequency limit is given by the Gassmann expression

KGW ¼ Km þ a2 �MðKWÞ (A8)

(e.g., Johnson, 2001), and it is independent of the spatial dis-

tribution of the fluids. The process of equilibration is gov-

erned by the diffusion equation whose diffusivity constant is

given by

D Kfð Þ ¼
jKE

g
; (A9)

and the critical fluid diffusion relaxation length is

Lc ¼
ffiffiffiffiffiffiffiffiffiffi
D=x

p
: (A10)

On the other hand, when the frequency is sufficiently high

(e.g., smaller diffusion lengths) the pore pressures in the two

phases do not have enough time to equilibrate within one

half cycle. Consequently, the pressure is not uniform, but it

can be assumed to be constant within each phase. In such a

situation, the fluid flow effect can be ignored and Hill’s theo-

rem (e.g., Hill, 1964) gives the composite bulk modulus at

the high-frequency limit

KGH ¼
S1

EG1

þ S2

EG2

� ��1

� 4

3
lm: (A11)

The high-frequency P-wave modulus is given by

E1 ¼ KGH þ
4

3
lm: (A12)

Johnson (2001) suggested for K(x) the following

expression:

K xð Þ ¼ KGH �
KGH � KGW

1� nþ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ixs=n2

q ; (A13)

and the P-wave modulus is

E xð Þ ¼ K xð Þ þ 4

3
lm; (A14)

where the parameters n and s are calculated from S/V and T
separately (Johnson, 2001; Picotti et al., 2010). They are not

fitting parameters; rather, they have a precise physical signifi-

cance: n is a shape parameter, whereas s sets the frequency

scale. When n< 1 the crossover region is quite broad, whereas

when n> 1 it is quite narrow. The parameter S/V depends on

the shape of the patches, while the parameter T is governed by

the mean size of the patch in a complicated and non-local way,

which can be solved only with certain simplifying geometries

(Johnson, 2001). Let us consider, for example, the concentric

spherical geometry (White, 1975), wherein region 1 is a gas-

filled sphere of porous medium of radius a surrounded by

region 2 of outer water-filled sphere of radius b (a< b). The

two Johnson parameters have the following expression:

S=V ¼ 3
a2

b3
;

T ¼ KGW/2

30jb3

n
3g2g2

2 þ 5 g1 � g2ð Þg1g2 � 3g1g2
1

h i
a5

�15g2g2 g2 � g1ð Þa3b2 þ 5g2 3g2g2½

� 2g1 � g2ð Þg1



a2b3 � 3g2g2

2b5
o
;

where

gj ¼
1� Km=Ksð Þ 1=KW � 1=Kf j

� �
1� Km=Ks � /Km=Ks þ /Km=KW

; j ¼ 1; 2:

(A15)

APPENDIX B: WHITE’S MODEL OF A LAYERED
POROUS MEDIUM

Let us consider a periodic layered system composed of

porous media 1 and 2 with thickness dl, period d1þ d2 and

saturation Sl¼ dl/(d1þ d2), l¼ 1, 2. White et al. (1975)

obtained the complex bulk modulus for a P wave traveling

along the direction perpendicular to the stratification. It is

given by

E xð Þ ¼ 1

E1
þ

2 r2 � r1ð Þ2

ix d1 þ d2ð Þ I1 þ I2ð Þ

" #�1

: (B1)

Omitting the subindex l for clarity, we have for each

medium,

r ¼ aM

EG
: (B2)

This is the ratio of fast P-wave fluid tension to total nor-

mal stress. Moreover,

I ¼ g
jk

coth
kd

2

� �
(B3)

is an impedance related to the slow P wave, where g is the

fluid viscosity and j is the permeability, and

k ¼
ffiffiffiffiffiffiffiffiffi
ixg
jKE

r
(B4)

is the complex wavenumber of the slow P wave. The param-

eters E1, M, KE and EG are given by Eqs. (A12), (A4), (A1),

and (A3), respectively.

APPENDIX C: GREEN’S FUNCTION AND ANALYTICAL
SOLUTION

A 2D analytical solution corresponding to Eq. (17) with

m¼ 1 in a homogeneous medium can easily be obtained.

Combining the expressions, we have

@2
t � ¼

1

q
Dr: (C1)
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In the frequency domain, r¼M�, according to Eq. (8), and

using Eq. (17), Eq. (C1) becomes a Helmholtz equation

D�þ p2� ¼ � Ds

ixM 1þ ixsrð Þq
	 
 ; p ¼ x

�v
; (C2)

where p is the wavenumber and �v is given by Eq. (9). If v is

real, the medium is lossless. The solution to the acoustic

(lossless) equation ðDþ p2ÞG ¼ �8dðrÞ is the Green func-

tion G ¼ �2iH
ð2Þ
0 ðprÞ, with �v ¼ c0, where H

ð2Þ
0 is the zero-

order Hankel function of the second kind (e.g., Carcione,

2014). More precisely,

G x; y; x0; y0;x; c0ð Þ ¼ �2iH 2ð Þ
0

xr

c0

� �
; (C3)

where (x0, y0) is the source location, and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
: (C4)

The anelastic solution is obtained by invoking the correspon-

dence principle (Bland, 1960), i.e., by substituting the acous-

tic velocity c0 with the complex velocity �v. The differential

operator �D=ðixM½1þ ðixsrÞq�Þ acts on the source in Eq.

(C2). Thus, the Green’s function for the strain is

G� ¼ �
1

ixM 1þ ixsrð Þq
	 
DG: (C5)

Since DG¼ –p2G away from the source and r¼M�, the

Green’s function for the stress is

Gr ¼ MG� ¼
p2G

ix 1þ ixsrð Þq
	 
 : (C6)

We set G(–x)¼G*(x), where the superscript asterisk

denotes complex conjugation. This equation ensures that the

inverse Fourier transform of the Green’s function is real.

The frequency-domain solution is then given by rðxÞ
¼ 1

8
GrðxÞFðxÞ, where F is the Fourier transform of the

source time history. Hence,

r x; y; x0; y0;xð Þ ¼
1

8
GrF

¼ � xF xð Þ
4�v2 1þ ixsrð Þq
	 
H 2ð Þ

0

xr

�v

� �
:

(C7)

Because the Hankel function has a singularity at x¼ 0,

we assume G¼ 0 for x¼ 0, an approximation that does not

have a significant effect on the solution [note, moreover, that

F(0)¼ 0]. The time-domain solution r(t) is obtained by a

discrete inverse Fourier transform. We have tacitly assumed

that r and dr/dt are zero at time t¼ 0.
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