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ABSTRACT

We build rock-physics templates (RPTs) for reservoir rocks
based on seismic quality factors. In these templates, the effects
of partial saturation, porosity, and permeability on the seismic
properties are described by generalizing the Johnson meso-
scopic-loss model to a distribution of gas-patch sizes in brine-
and oil-saturated rocks. This model addresses the wave-induced
fluid flow attenuation mechanism, by which part of the energy
of the fast P-wave is converted into the slow P (Biot) diffusive
mode. We consider patch sizes, whose probability density func-
tion is defined by a normal (Gaussian) distribution. The com-
plex bulk modulus of the composite medium is obtained with
the Voigt-Reuss-Hill average, and we show that the results
are close to those obtained with the Hashin-Shtrikman average.

The templates represent the seismic dissipation factor (recipro-
cal of seismic quality factor) as a function of the P-wave veloc-
ity, acoustic impedance, and VP∕VS (P to S velocity ratio), for
isolines of saturation, porosity, and permeability. They differen-
tiate between oil and brine on the basis of the quality factor, with
the gas-brine case showing more dissipation than the gas-oil
case. We obtain sensitivity maps of the seismic properties to
gas saturation and porosity for brine and oil. Unlike the gas-
brine case, which shows higher sensitivity of attenuation to gas
saturation, the gas-oil case shows higher sensitivity to porosity,
and higher acoustic impedance and VP∕VS sensitivity values
versus saturation. The RPTs can be used for a robust sensitivity
analysis, which provides insights on seismic attributes for hy-
drocarbon detection and reservoir delineation. The templates are
also relevant for studies related to CO2-storage monitoring.

INTRODUCTION

Rock-physics templates (RPTs) link the elastic properties (e.g.,
velocity, density, seismic impedance, wet-rock stiffness moduli, and
seismic dissipation factor) and reservoir properties such as porosity,
fluid saturation, permeability, and lithology (e.g., Avseth et al.,
2005; Carcione and Avseth, 2015). Seismic attenuation has been
scarcely used to build templates, despite the fact that the quality
factor is very sensitive to saturation and permeability. In fact, when
seismic waves propagate through small-scale heterogeneities, pres-
sure gradients are induced between regions of dissimilar elastic
properties. White (1975) and Johnson (2001) — who considered
spherical gas pockets and gas patches of arbitrary shape, respec-
tively — showed that seismic attenuation and velocity dispersion
measurements can be explained by the effect of mesoscopic-scale
inhomogeneities and energy transfer between wave modes com-

bined with P-wave to slow P (Biot)-mode conversion. We refer
to this mechanism as mesoscopic loss. The mesoscopic-scale length
is intended to be much larger than the grain sizes but much smaller
than the wavelength of the seismic pulse. For instance, if the type of
saturating pore fluid varies significantly from point to point, diffu-
sion of pore fluid between different regions constitutes a mechanism
that can highly affect attenuation at seismic frequencies (a range
between 5 and 200 Hz). Reviews of different models to understand
this mechanism can be found, for instance, in Carcione and Picotti
(2006), Müller et al. (2010), and Carcione (2014).
We build RPTs addressing the P-wave seismic attenuation caused

by partial saturation of gas. The first to attack this problem were
Dvorkin and Mavko (2006), who discriminate gas sandstone from
wet sandstone. Here, we describe the effects of varying partial
saturation, porosity, and permeability by a generalization of the
Johnson mesoscopic-loss model to the case of patches of different
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sizes. We vary the radius of the patches (White model) according to
a probability density function (PDF) of a normal distribution.
Generalizing the White model to the Johnson model is achieved by
increasing the surface-to-volume ratio parameter for spherical patches,
(S∕V in Johnson, 2001), describing rough gas-brine interfaces.
We consider specific relations to obtain the dry-rock moduli and

the permeability, namely, the Krief and Kozeny-Carman equations,
respectively, but in practice, the model has to be calibrated with log
and seismic data to obtain these properties. Alternative models
describing attenuation and velocity dispersion in fractal media have
been developed by Toms et al. (2007) and Müller et al. (2008), as-
suming a multiple-scattering approach to approximate the scattered
field of a system of randomly distributed poroelastic inclusions.
Sensitivity analysis can identify the rock properties exerting the

dominant impact on the seismic attributes (Hamby, 1994). Identifica-
tion of these petrophysical properties is useful for evaluating
the effectiveness of certain seismic attributes in hydrocarbon explora-
tion and CO2 monitoring. In this process of evaluating effectiveness,
rock-physics models are used to assess which seismic attribute is more
sensitive to detect the presence of gas or to reliably estimate the spatial
extent of a reservoir. In CO2-storage monitoring, seismic attributes
sensitive to the presence of gas can also detect CO2 leakages in
the overlying formations (Picotti et al., 2012). However, sensitivity
analysis of seismic attributes often involves complex numerical pro-
cedures, such as the calculation of synthetic seismograms, which is
computationally demanding. In fact, the simulation of synthetic seis-
mograms requires solving Biot’s differential equations on a very fine
computational grid to capture the loss mechanism of converting fast
P-wave energy to diffusion energy in the form of the Biot slow wave.
A computationally efficient approach is to approximate White’s
moduli by the Zener model (e.g., Carcione et al., 2012; Picotti et al.,
2010) or the Cole-Cole model (Picotti and Carcione 2017) and then
solve the single-phase viscoelastic differential equations.
In summary, the state of the art indicates that RPTs based on

attenuation were only studied by Dvorkin and Mavko (2006). Here,
we extend their work to a detailed analysis involving different fluids
and seismic and transport properties, such as varying porosity, sat-
uration, and permeability. Our approach is based on a generalization
of the Johnson theory of mesoscopic attenuation. We show that the
use of RPTs allows for a faster, and at the same time more reliable,
sensitivity study than full-wave inversion methods.

METHODOLOGY

In this section, we introduce the models for building the RPTs.
Specifically, we describe the rock basic properties, such as permeabil-
ity, dry-rock moduli, fluid properties, the model to obtain the effective
wet-rock modulus, the seismic-wave characteristics (phase velocity
and quality factor), and the sensitivity-analysis method.

Matrix and fluid properties

In the Kozeny-Carman relationship (Carman, 1961), permeabil-
ity κ is related to porosity ϕ through:

κ ¼ κ0ϕ
3

ð1 − ϕÞ2 ; (1)

here, we assume a realistic value of κ0 ¼ 2.5 D. For example, if
ϕ ¼ 1∕3, we have κ ¼ κ0∕12 ¼ 0.2 D, a typical value for clastic

reservoir rocks. Equation 1 is a classical model for the permeability
of porous media, which is a sufficient approximation. However,
other expressions can perform better provided that a proper calibra-
tion is performed. Another possibility is to use mineral composition.
Herron (1987) used explicit mineralogical information available
from geochemistry to obtain estimates of porosity and permeability.
He quantified the effects of the minerals composing the rock by
defining specific weights. In any case, the Kozeny-Carman equation
is the most used because it is based on physical principles (e.g., Tiab
and Donaldson, 2015).
We use Krief model (Krief et al., 1990) to obtain the dry-rock

moduli Km and μm ≡ μ. The moduli are given by

Km ¼ Ksð1 − ϕÞ4∕ð1−ϕÞ;
μ ¼ Kmμs∕Ks;

(2)

where Ks and μs are the bulk and shear moduli of the solid grains,
respectively. The porosity dependence in equation 2 is consistent
with the concept of critical porosity because the moduli should
be small above a certain porosity value (usually from 0.4 to 0.6).
The mesoscopic-loss effect is enhanced when the two fluids are

quite different, such as gas and brine. The properties of the fluids
depend on temperature and pressure, which can directly correlate to
depth z. The gas adiabatic bulk modulus and density can be calcu-
lated from the Peng-Robinson equation of state, whereas the proper-
ties of brine are given by the Batzle and Wang relations. Picotti et al.
(2012) use this approach to obtain the fluid properties.

Mesoscopic-loss model with varying patch sizes:
effective wet-rock modulus

The seismic properties are determined from a mesoscopic rock-
physics theory (Johnson, 2001) for robust estimation of attenuation
as a function of porosity, gas saturation, fluid viscosity, and per-
meability (see Appendix A). It is assumed that the medium has
gas patches of mesoscopic size in a uniform background, where
mesoscopic means smaller than the wavelength and larger than
the pore size, e.g., centimeters compared with tens of meters and
micrometers, respectively.
Johnson (2001) describes wave velocity and attenuation as a

function of frequency for the given surface-to-sample-volume ratio
β ¼ S∕V of the mesoscopic patches. This parameter defines the
shape of the patch, as it is illustrated in Appendix A for an ellip-
soidal geometry. A second parameter of the model T describes the
size of the patch. Johnson generalized theWhite model (White, 1975)
for spherical patches.White developed a model for a gas-filled sphere
of porous medium of radius a located inside a water-filled cube of
porous medium. To further simplify the calculations, White considers
an outer sphere of radius b (i.e., b > a), instead of a cube, where
Sg ¼ a3∕b3. At the same time, β ¼ 3Sg∕a, where Sg is the gas sat-
uration (see equation A-25). We consider this value of β as a lower
limit, whereas the parameter T in the Johnson theory is assumed to be
that of White (see Appendix A).
Having the single wet-rock complex moduli corresponding to

each patch size, the complex bulk modulus of the composite
medium is obtained with the Voigt-Reuss-Hill (VRH) average. This
average is based on isostrain (Voigt) and isostress (Reuss) approx-
imations (the stress and strain are unknown and are expected to be
nonuniform). The VRH estimates were found in most cases to have
an accuracy comparable to that of the self-consistent schemes and
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are valid for complex rheologies such as anisotropy (e.g., Man and
Huang, 2011).
We generalize the Johnson theory to the case of a distribution of

patch radii aj; j ¼ 1; : : : ; J, based on a normal PDF. The normal
distribution from a0 − Δa to a0 þ Δa is given by the Gaussian
function

PDFj ¼
δffiffiffiffiffi
2π

p
σ
exp½−ðaj − a0Þ2∕ð2σ2Þ�; (3)

where a0 is the dominant radius and σ is the variance of the distri-
bution. There are J radii equispaced at an interval δ ¼ 2Δa∕ðJ − 1Þ.
Other PDFs can be found in Engelsen et al. (2002).
We obtain J complex moduli Kj describing the anelastic proper-

ties of each porous medium with radius aj (see equation A-12) by
the VRH average. The Voigt ðKVÞ and Reuss ðKRÞ averages are
isostrain and isostress approximations, respectively (the stress and
strain are unknown and are expected to be nonuniform). The VRH
is close in accuracy to more sophisticated techniques such as self-
consistent schemes and are applicable to complex rheologies such
as general anisotropy and arbitrary grain topologies (e.g., Man and
Huang, 2011). We calculate the effective bulk modulus as

K ¼ 1

2
ðKV þ KRÞ; (4)

where

KV ¼
X
j

PDFjKj and K−1
R ¼

X
j

PDFjK−1
j (5)

An alternative method is to assume that the effective bulk modu-
lus is equal to the arithmetic average of the upper and lower Hashin-
Shtrikman (HS) bounds (Hashin and Shtrikman, 1963; Carcione
et al., 2006; Mavko et al., 2009). The shear modulus is not affected
by the mesoscopic loss. In subsequent sections, we show that the
heuristic VRH average is approximately equal to the HS average for
the problem at hand.
The effective density is given by the arithmetic average:

ρ ¼
X
j

PDFjρj: (6)

For a given patch radius a, the location of the White relaxation
peak is

fp ¼ κbKEb

πηbðb − aÞ2 ¼
κbKEb

πηba2ðS1∕3g − 1Þ2
(7)

(White, 1975; Carcione, 2014, equation 7.449), where the subindi-
ces “g” and “b” stand for gas and brine, respectively. Increasing a
implies decreasing the peak frequency. In general, mesoscopic mod-
els of attenuation give a relaxation peak whose peak frequency
(maximum attenuation) obeys

fp ∝
κb
ηba2

(8)

Therefore increasing the size of the patch and fluid viscosity im-
plies a lower peak frequency, whereas increasing the permeability
implies a higher peak frequency.

Phase velocity and quality factor

The complex velocity is the key parameter to quantify the phase
velocity and seismic quality factor. The complex P-wave velocity is
predicted by the Johnson model as

vcðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðωÞ þ 4μ∕3

ρ

s
(9)

where μ is the dry-rock shear modulus, and ω is the angular fre-
quency. The bulk density is given by equation 6, which reduces to

ρ ¼ ð1 − ϕÞρs þ ϕρf; (10)

where ρs and ρf are, respectively, the effective densities of the min-
eral matrix and the pore fluid and ϕ is the porosity. The effective
density of the pore fluid is

ρf ¼ Sgρg þ Sbρb; Sb ¼ 1 − Sg; (11)

where Sb and Sg are the brine and gas saturations, respectively.
According to some studies such as Carcione (2014), the P-wave
phase velocity and seismic quality factor are

v ¼
�
Re

�
1

vc

��
−1

(12)

and

Q ¼ Reðv2cÞ
Imðv2cÞ

: (13)

Sensitivity analysis

RPTs are useful to construct sensitivity maps related to key seis-
mic properties, such as the P-wave dissipation factor and velocity,
acoustic impedance, and VP∕VS ratio. Combining synthetic seismo-
grams with the appropriate rock-physics models, Böhm et al. (2015)
show that petrophysical properties of a medium (e.g., porosity and
gas saturation) can be derived from velocity and quality factor
maps, determined from attenuation and traveltime tomography.
In contrast, the most significant seismic-loss mechanisms in hydro-
carbon reservoirs are a result of porosity variations and partial sat-
uration, where one of the fluids is significantly stiffer than the other
(e.g. Carcione and Picotti, 2006). Therefore, the estimation of the
sensitivity of the key seismic properties versus porosity and gas sat-
uration can be insightful in hydrocarbon seismic exploration.
The approach is the following. Let y ¼ fðx1; x2Þ be the relation

between a dependent variable y and two independent variables x1; x2.
The sensitivity function χi versus xi ði ¼ 1; 2Þ can be defined as

χi ¼
xi

fðx1; x2Þ
∂fðx1; x2Þ

∂xi
; i ¼ 1; 2 (14)

(Hamby, 1994), where the quotient xi∕fðx1; x2Þ is introduced to nor-
malize the function by removing the effects of the units. In our case,
the dependent variable y can be either the dissipation factor, the
P-wave velocity, the acoustic impedance, or the phase velocity ratio
VP∕VS, whereas the dependent variable xi can be either the porosity
ði ¼ 1Þ or the gas saturation ði ¼ 2Þ. It follows that the sensitivity
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versus porosity (or saturation) is not a simple coefficient but a func-
tion of the two independent variables.

ROCK-PHYSICS TEMPLATES AND RESULTS

As stated previously, Johnson mesoscopic model of patchy sat-
uration is used to describe the attenuation and the velocity

dispersion of the seismic waves (see Appendix A). The surface-
to-sample-volume ratio β, a free parameter describing the shape
of the patch, is assumed to be given by

β ¼ 3Sgζ

a
; ζ ≥ 1; (15)

where ζ is a dimensionless parameter, with ζ ¼ 1 giving the White
model. The fact that ζ is greater than one implies that the gas-brine
contact is rough and that the shape of the patch is not spherical. An
example of a 3D ellipsoidal patch is illustrated in Appendix A,
where β is given by equation A-20.
We consider the material and fluid properties given in Table 1.

The grain properties in this case are those of quartz (i.e., clean sand-
stone), but a mix of quartz and clay can be applied for a different
lithology. Figure 1a and 1b shows the P-wave velocity, whereas
Figure 1c and 1d shows the dissipation factor (reciprocal of Q)
(c and d) as functions of frequency for the White and Johnson
models, where ϕ ¼ 0.35, Sg ¼ 0.1, and ζ ¼ 10. The gas-brine

Table 1. Elastic properties.

Medium K (GPa) μ (GPa) ρ (g/cm3) η (Pa s)

Grain 39 40 2.65 —
Brine 2.25 0 1.03 0.0012

Oil 2.16 0 0.8 0.24

CH4 0.016 0 0.1 0.00001

a) b)

c) d)

Figure 1. Phase velocity (a and b) and dissipation factor (c and d) as a function of frequency for the White (spherical geometry) and Johnson
(rough geometry) models. The gas-brine (a and c) and gas-oil (b and d) cases are considered, where the mean radius a0 is 30 cm. The results
obtained by using the VRH average (solid lines) and the Hashin-Shtrikman bound average (dashed lines) are displayed. The curves for a single
patch radius (black curves) are also shown.
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(Figure 1a–1c) and gas-oil (Figure 1b–1d) cases are considered,
with the mean radius a0 ¼ 30 cm, Δa ¼ 30 cm, and σ ¼ 20 cm

in both cases. In the same figure, the same models are shown
for a constant radius equal to the mean radius. As can be observed,
the difference between one radius and J radii is less pronounced for
the Johnson model. This difference is more evident for the dissipa-
tion factor than for the phase velocity. Moreover, the relaxation peak
is located at lower frequencies for oil because of its higher viscosity
than brine. The results corresponding to the VRH average (solid
lines) and the HS bounds average (dashed lines) are displayed,
showing that the difference between these two approaches is almost
negligible at all frequencies.
In the following, the effective bulk modulus is given by the VRH

average, and the frequency is assumed to be f ¼ 50 Hz, a typical
value in the seismic exploration band. The liquid in the pore space is
brine, unless specified otherwise. The P-wave phase velocity and
dissipation factor are represented in Figure 2 as functions of per-
meability and porosity (the model is that of Johnson with a Gaus-
sian PDF). As the permeability increases with increasing porosity,
the phase velocity decreases and attenuation increases, such that
Q ¼ 11 at 0.5 D.
The templates are built using Q−1 ¼ Q−1

P , without considering
QS, since the shear waves are in principle not affected by the fluids.
Figures 3, 4, and 5 show the cases for gas in brine (a) and oil (b),
where the dissipation factor is represented as a function of the
P-wave velocity, the acoustic impedance, and the VP∕VS ratio,
respectively. We assume a mean radius a0 ¼ 30 cm and ζ ¼ 10. The
curves correspond to isolines of constant saturation and constant
porosity (i.e, constant permeability). In Figure 5, the S-wave veloc-
ity is given by vS ¼ ffiffiffiffiffiffiffiffi

μ∕ρ
p

. For the gas-brine case, the P-wave
velocity, acoustic impedance, and quality factor decrease with
increasing porosity at a fixed gas saturation (black curves), but they
increase or decrease in response to a variable gas saturation at a
fixed porosity (red curves). The VP∕VS increases and quality factor
decreases with increasing porosity at a fixed gas saturation (black
curves), but they increase or decrease as a function of gas saturation
at a fixed porosity (red curves). The gas-oil case exhibits similar
trends to those observed in the gas-brine case. However, the

a)

b)

Figure 2. The P-wave phase velocity (a) and dissipation factor
(b) as functions permeability and porosity for the gas-brine case.
The model is that of Johnson with a distribution of radii.

a) b)

Figure 3. Rock-physics templates for gas-brine (a) and gas-oil (b). The dissipation factor is represented as a function of the P-wave velocity,
including isolines of gas saturation and porosity (permeability). The rock-physics model is that of Johnson model with a distribution of radii.
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dissipation factor reaches lower values by about an order of mag-
nitude compared to the brine-gas case. This effect is particularly
evident in Figure 5.
We have considered specific relations to obtain the dry-rock

moduli and the permeability, namely, the Krief and Kozeny-Carman
equations, respectively. However, building a template requires cali-
bration of the model with seismic or well-log data. It is not common
to calibrate a RPT to seismic and well-log data simultaneously be-
cause seismic data and well-log data have vast differences in terms of
scale. There are several steps to calibrate and use the templates:
(1) Obtain the effective properties of the grain minerals and pore-infill
material, (2) determine the properties of the dry rock, (3) obtain the
wet-rock velocities, mass density, and attenuation with a suitable

model (Johnson model is used here), (4) perform pore-infill substi-
tution to determine the location of each specific pore-infill compo-
nent in the RPT, and (5) report the seismic properties on the templates
to create fluid saturation maps of the studied area, through saturation
isolines, as well as porosity and permeability isolines. There is ob-
viously a scaling issue when doing this step. There also could be
multiple scenarios of gas saturation and permeability/porosity that
satisfy a particular spatial distribution of seismic properties/attributes
such as VP and Q.
Figures 6 and 7 show the sensitivity maps for the gas-brine and

gas-oil cases, respectively. The results indicate that, in both cases,
the P-wave dissipation factor is the most sensitive property. Con-
sidering the maximum sensitivity values, all the seismic properties

a) b)

Figure 4. Rock-physics templates for gas-brine (a) and gas-oil (b). The dissipation factor is represented as a function of the acoustic imped-
ance, including isolines of gas saturation and porosity (permeability). The rock-physics model is that of Johnson model with a distribution
of radii.

a) b)

Figure 5. Rock-physics templates for gas-brine (a) and gas-oil (b). The dissipation factor is represented as a function of the VP∕VS ratio, in-
cluding isolines of gas saturation and porosity (permeability). The rock-physics model is that of Johnson model with a distribution of radii.
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are more sensitive to porosity than to saturation. Generally, the sen-
sitivity increases with increasing porosity, except for the dissipation
factor sensitivity versus saturation, which exhibits complex behav-
ior. The dissipation factor and VP∕VS ratio sensitivity versus poros-
ity increases with the decreasing gas saturation and increasing
porosity. The sensitivity to porosity maps of all the properties
are similar in the two cases. The maximum sensitivity values are
similar as well, except for the dissipation factor, which exhibits
a higher value for the gas-oil case. In contrast, the sensitivity to
gas saturation maps is quite dissimilar. These maps indicate a higher
sensitivity of the dissipation factor at high saturations and medium-
high porosities for the gas-brine case, whereas it is more sensitive at
low saturations or low porosities for the gas-oil case. Moreover, the
P-wave velocity, acoustic impedance, and VP∕VS ratio sensitivity
exhibit a maximum at approximately 10% gas saturation in the

gas-brine case, and more than 40% gas saturation in the gas-oil case.
The dissipation factor is more sensitive in the gas-brine case, while
the acoustic impedance and the VP∕VS ratio show higher values for
the gas-oil case. The other parameters show similar values.
When dealing with real data, the problem can be to determine the

size distribution of the gas patches. Well-log data, such as the sonic
velocity and the electrical resistivity profile, can provide this infor-
mation. Another uncertainty is the permeability, which can be based
on a calibrated Kozeny-Carman equation or on a fully empirical
formula as a function of porosity. For the calibration, knowledge
of the porosity (from the density and/or sonic logs) and clay content
(from gamma-ray logs) is essential. Moreover, another requirement,
to support the interpretation and the calibration, is laboratory ex-
periments on core samples to obtain the porosity, grain size, tortuos-
ity, mineral composition, and permeability.

a) b)

c) d)

Figure 6. Sensitivity maps for the gas-brine case by using the Johnson model with a PDF: (a) dissipation factor sensitivity versus gas sat-
uration, (b) dissipation factor sensitivity versus porosity, (c) P-wave velocity sensitivity versus gas saturation, and (d) P-wave velocity sensi-
tivity versus porosity.
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CONCLUSION

We propose a methodology to build RPTs for clastic rocks based
on seismic attenuation of P-waves in partially saturated media. The
loss/dispersion model is given by the Johnson mesoscopic theory
generalized to the case of varying patch sizes on the basis of a Gaus-
sian PDF. We consider a clean sandstone, but the rock-physics
model can be extended to more heterogeneous lithologies, such
as shaley sandstones, where the clay content affects the seismic
attributes as it is the case of fluids. The mesoscopic-loss theory
can be based on a composite three-phase Biot-type theory or the
White theory for periodic layering because in this case, a hetero-
geneous matrix can be modeled in addition to different pore fluids.
Moreover, other permeability laws and modulus average can be
implemented depending on the specific lithology.
The templates represent the seismic dissipation factor (reciprocal

of Q) versus P-wave velocity, acoustic impedance and VP∕VS ratio,

for isolines of saturation, porosity, and permeability. Two different
cases are considered, where the liquid is brine or oil. In both cases,
the P-wave velocity, acoustic impedance, and quality factor de-
crease with increasing porosity at a fixed gas saturation, while the
VP∕VS ratio increases. However, these properties may increase or
decrease as a function of gas saturation at a given porosity. The
dissipation factor shows higher values for brine.
Sensitivity maps of the P-wave dissipation factor, P-wave velocity,

acoustic impedance, and VP∕VS ratio versus gas saturation and poros-
ity are also derived from the templates. The main result is that all the
seismic properties are more sensitive respect to porosity than to sat-
uration, being the dissipation factor the most sensitive. Then, while the
sensitivity maps of the properties versus porosity are very similar for
brine and oil, the sensitivity maps versus saturation are quite dissimi-
lar. The gas-oil case is characterized by higher attenuation sensitivity
values versus porosity, and higher acoustic impedance and VP∕VS

sensitivity values versus saturation. Moreover, the gas-brine case

a) b)

c) d)

Figure 7. Sensitivity maps for the gas-oil case by using the Johnson model with a PDF: (a) dissipation factor sensitivity versus gas saturation,
(b) dissipation factor sensitivity versus porosity, (c) P-wave velocity sensitivity versus gas saturation, and (d) P-wave velocity sensitivity versus porosity.
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shows higher dissipation factor sensitivity values versus saturation.
These maps can be very useful for a fast and reliable evaluation of
the effectiveness of the seismic method in hydrocarbon exploration.
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APPENDIX A

JOHNSON MODEL

White (1975) assumes spherical gas patches much larger than the
grains but much smaller than the wavelength. He developed the
theory for a gas-filled sphere of porous medium of radius a located
inside a water-filled sphere (brine here) of porous medium of outer
radius b ða < bÞ. The saturation of gas is

Sg ¼
a3

b3
; Sb ¼ 1 − Sg: (A-1)

White (1975) assumed that the dry-rock and grain moduli and
permeability κ of the different regions are the same. For values
of the gas saturation higher than 52%, or values of the brine satu-
ration between 0% and 48%, the theory is not rigorously valid.
Johnson (2001) generalized White’s theory to patches of arbi-

trary geometries, where “arbitrary” means that the patch shape is
defined by the ratio surface of the patch to the total volume of the
sample (for more details, see Tserkovnyak and Johnson, 2003). The
dynamic bulk modulus KðωÞ is consistent with the Gassmann-Wood
(GW) modulus at low frequencies and to the Gassmann-Hill (GH)
modulus at high frequencies. When the pore space is partially satu-
rated with two very different fluids, such as gas and brine, a fast
P-wave traveling in the medium induces very different pore pressures
in the two regions, which tend to equilibrate through a diffusive phe-
nomenon governed by the so-called Biot acoustic slow wave.
The effective P-wave bulk modulus of the two regions is

KE ¼ EmM
EG

(A-2)

(Carcione and Picotti, 2006), where

Em ¼ Km þ 4

3
μ (A-3)

is the dry-rock P-wave modulus, and

EG ¼ KG þ 4

3
μ (A-4)

(Carcione, 2014) is the P-wave wet-rock modulus, KG is the Gass-
mann modulus (see below), Km is the dry-rock bulk modulus, and μ

is the dry-rock shear modulus. The fluid modulusM depends on the
bulk modulus of the pore fluids Ki and is given by

MðKiÞ ¼
�
α − ϕ

Ks
þ ϕ

Ki

�
−1
; i ¼ g or b; (A-5)

where Ks is the solid-grain bulk modulus, and α (also known as the
Biot-Willis coefficient) is defined as

α ¼ 1 −
Km

Ks
: (A-6)

The Gassmann bulk modulus for each fluid phase is given by

KG ¼ Km þ α2M: (A-7)

As shown by White (1975), slow-wave diffusion induces wave-
velocity dispersion and attenuation of the fast P-wave, which de-
pends mostly on the size of the gas pockets (saturation), frequency,
permeability, and porosity of the rocks. At very low frequencies,
there is enough time for pore pressure to equilibrate to a constant
value. Therefore, the fluid pressure is uniform (isostress state), and
the effective modulus of the pore fluid is given by Wood’s modulus
(e.g., Mavko et al., 2009), which is exact for the static modulus of
two fluids:

Kf ¼
�
Sg
Kg

þ Sb
Kb

�
−1
; (A-8)

In this case, the effective bulk modulus of the composite at the low
frequency limit is given by the Gassmann expression

KGW ¼ Km þ α2MðKfÞ (A-9)

and it is independent of the spatial distribution of the fluids. The
process of equilibration is governed by the diffusion equation
whose diffusivity constant is given by

DðKiÞ ¼
κKE

η
; i ¼ g or b; (A-10)

where η is the viscosity of the respective fluid phase and the critical
fluid diffusion relaxation length is given by Lc ¼

ffiffiffiffiffiffiffiffiffiffi
D∕ω

p
.

In contrast, when the frequency is sufficiently high (e.g. smaller
diffusion lengths) the pore pressures in the two phases do not have
enough time to equilibrate within one half cycle. Consequently, the
pressure is not uniform, but it can be assumed to be constant within
each phase. In such a situation, the fluid flow effect can be ignored
and Hill’s theorem (Mavko et al., 2009) gives the composite bulk
modulus at the high-frequency limit:

KGH ¼
�

Sg
EGg

þ Sb
EGb

�
−1

−
4

3
μ: (A-11)

Pride et al. (1993) and Johnson (2001) propose the following ex-
pression for the complex bulk modulus:

KðωÞ ¼ KGH −
KGH − KGW

1 − ξþ ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − iωτ∕ξ2

p ; (A-12)
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where

τ ¼
�
KGH − KGW

K2
GHβg

�
2

; ξ ¼ βgK2
GH

2KGWT

ffiffiffiffi
τ3

p
; (A-13)

g¼ κ

ηg
ffiffiffiffiffiffi
Dg

p þ ηb
ffiffiffiffiffiffi
Db

p

×
�ðRb þQbÞðKGg þ 4μ∕3Þ− ðRg þQgÞðKGb þ 4μ∕3Þ

ϕSgKGgðKGb þ 4μ∕3ÞþϕSbKGbðKGg þ 4μ∕3Þ
�
2

(A-14)

Q ¼ ð1 − ϕ − Km∕KsÞϕKs

1 − ϕ − Km∕Ks þ ϕKs∕Ki
; i ¼ gorb; (A-15)

R ¼ ϕ2Ks

1 − ϕ − Km∕Ks þ ϕKs∕Ki
: (A-16)

The parameter

β ¼ S∕V (A-17)

depends on the shape of the patches, being the ratio of the surface
area of a patch to the whole volume, whereas the parameter T is
governed by the mean size of the patch, which can be solved only
with certain simplifying geometries (Johnson, 2001). In the limit
when one fluid phase is a vacuum, the parameter T is the mean time
for diffusion across the fluid patch, or, in other words, the diffusion
time for equilibrating stress in the porous skeleton over the size of a
fluid patch. Tserkovnyak and Johnson (2002) show how to obtain β
and T from experimental data.

Ellipsoidal patches

To illustrate a simple but more general case than a spherical
patch, consider that the patch is a 3D ellipsoid with semiaxes aj
embedded in a sample ellipsoid of semiaxes bj. The area of the in-
ner ellipsoid is

S ≈ 4π

�ða1a2Þn þ ða1a3Þn þ ða2a3Þn
3

�
1∕n

; n ¼ 1.6075;

(A-18)

whereas the volume of the outer ellipsoid is

V ¼ 4

3
πb1b2b3: (A-19)

The parameter β, defined in equation A-17, is

β ¼ 3ð1−1∕nÞ
½ða1a2Þn þ ða1a3Þn þ ða2a3Þn�1∕n

b1b2b3
: (A-20)

For a1 ¼ a2 ¼ a3 ¼ a and b1 ¼ b2 ¼ b3 ¼ b, we obtain equa-
tion A-25 below. The gas saturation is

Sg ¼
a1a2a3
b1b2b3

: (A-21)

Assume that the outer ellipsoid is a uniform stretched version of
the patch or inner ellipsoid, with stretching value γ ≥ 1, such that
bj ¼ γaj. Then

β ¼ 3ð1−1∕nÞða−n1 þ a−n2 þ a−n3 Þ1∕nSg (A-22)

since Sg ¼ γ−3.
Consider that a2 ¼ a1 so that the ellipsoid becomes a spheroid.

Then,

β ¼ 3ð1−1∕nÞð2a−n1 þ a−n3 Þ1∕nSg; n ¼ 1.6075: (A-23)

If a3 < a1, the ellipsoid is an oblate spheroid, and β is greater than
that of a sphere with radius a1, whereas if a3 > a1, the ellipsoid is a
prolate spheroid, and β is smaller than that of a sphere with radius
a1. The spheroid can model penny-shaped patches if a1 ≫ a3 and
stick-shaped patches if a3 ≫ a1. In contrast, parameter T for
the spheroid requires a numerical calculation with equation 22 in
Johnson (2001). The semiaxes a1 and a3 are both much smaller
than the wavelength to satisfy the mesoscopic hypothesis. Assume
a1 ¼ 15 cm and vary a3 from 7.5 mm to 1.5 m, i.e., from an oblate
to a prolate spheroid. β varies from 5.5/m to 3.1/m, with β ¼ 4∕m
for the sphere ða3 ¼ a1Þ.

White model

Let us consider the concentric spherical geometry of White
(1975). The two Johnson parameters have the following expression:

β ¼ 3a2

b3
¼ 3Sg

a
;

T ¼ KGWϕ
2

30κb3
f½3ηbs2b þ 5ðηg − ηbÞsgsb − 3ηgs2g�a5

− 15ηbsbðsb − sgÞa3b2
þ 5sb½3ηbsb − ð2ηg − ηbÞsg�a2b3 − 3ηbg2bb

5g; (A-24)

where

s ¼ ð1 − Km∕KsÞð1∕Kf − 1∕KiÞ
1 − Km∕Ks − ϕKm∕Ks þ ϕKm∕Kf

; i ¼ g or b:

(A-25)
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