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ABSTRACT

We obtain the wave velocities and quality factors of clay-bearing sandstones as a
function of pore pressure, frequency and partial saturation. The model is based on a
Biot-type three-phase theory that considers the coexistence of two solids (sand grains
and clay particles) and a fluid mixture. Additional attenuation is described with the
constant-Q model and viscodynamic functions to model the high-frequency behav-
iour. We apply a uniform gas/fluid mixing law that satisfies the Wood and Voigt
averages at low and high frequencies, respectively. Pressure effects are accounted for
by using an effective stress law. By fitting a permeability model of the Kozeny—
Carman type to core data, the model is able to predict wave velocity and attenuation
from seismic to ultrasonic frequencies, including the effects of partial saturation.

Testing of the model with laboratory data shows good agreement between predic-

tions and measurements.

INTRODUCTION

Wave velocities and attenuation are two important properties
which can give information about lithology, saturation and
the in situ conditions of rocks. It is therefore important to
obtain a relationship between these properties and clay con-
tent, porosity, pore and confining pressures, frequency and
pore-fluid saturation.

Modelling of the acoustic properties of shaley sandstones
was achieved by Carcione, Gurevich and Cavallini (2000) in
the framework of Biot’s theory of poroelasticity. Unlike pre-
vious theories, this approach uses a Biot-type three-phase
theory that considers the coexistence of two solids (sand
grains and clay particles) and a fluid. The theory is general-
ized here to include the effects of pore pressure, partial
saturation and the presence of a different type of dissipation
mechanism.

Pressure effects are introduced by using an effective stress

law. As is well known, at constant effective pressure the
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acoustic (or transport) properties of the rock remain con-
stant. The effective pressure depends on the difference be-
tween the confining and pore pressures, the latter multiplied
by the effective stress coefficient. In general, this coefficient is
not equal to 1 and, therefore, the Terzaghi effective pressure
law (i.e. the differential pressure) is not an appropriate quan-
tity to describe the acoustic properties of the rock and vary-
ing pore pressure. However, a proper determination of the
effective stress coefficient requires measurements of wave
velocity as a function of confining and pore pressure. As
Zimmerman (1991, p. 43) shows, if the rock is composed
of a linear elastic grain material and the properties do not
depend on the length scale of the pore structure, the dry-rock
effective stress coefficient is equal to 1.

The effect of partial saturation on velocity and attenuation
depends on the frequency range. At low frequencies, the fluid
has enough time to achieve pressure equilibration (relaxed
regime). In this case, the Wood model for the bulk modulus
of the fluid mixture yields results that agree with the experi-
ments (Mavko and Mukerji 1998). On the other hand, at
high frequencies the fluid cannot relax and this state of

unrelaxation induces a stiffening of the pore material,
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which increases the wave velocity considerably (Cadoret,
Marion and Zinszner 1995). This effect implies an uneven
distribution of fluids in the pore space, which is normally
termed patchy saturation. In this case, Wood’s model is not
appropriate and, in general, a Hill average is used to model
the wave velocities at ultrasonic (laboratory) frequencies.
No microstructural theory is able to predict the behaviour
at intermediate frequencies. In the present model we use a
modified empirical fluid mixing law proposed by Brie et al.
(1995), which gives the Wood modulus at low frequencies
and the Voigt modulus at high frequencies.

Attenuation is described by using a constant-Q model for
the dry-rock moduli (Kjartansson 1979; Carcione et al.
2001a). This approach is phenomenological, since a theory
describing all the attenuation mechanisms present in a real
sandstone is difficult, if not impossible, to develop. The
constant-Q kernel is the simplest model based on only one
parameter. We assume that the lower the frame modulus, the
lower the quality factor (i.e. the higher the attenuation).
Using this property, we assign a Q factor to the sandstone
bulk modulus, and obtain the Q factor associated with the
shear modulus. The Biot attenuation mechanisms are mod-
elled by the original theory (Carcione et al. 2000), and, here,
we introduce high-frequency viscodynamic effects, based on
an optimal viscodynamic function obtained by Johnson,
Koplik and Dashen (1987).

Pointer, Liu and Hudson (2000) described three distinct
mechanisms of wave-induced fluid flow (see also Hudson,
Liu and Crampin 1996): flow between cracks, flow within
cracks and diffusion from cracks to the background porous
medium. These mechanisms can be incorporated into the
present theory by using Zener models of attenuation. The
effects of partial saturation were investigated, for instance,
by Hudson (1988). Under compression, the liquid is driven
into the space previously occupied by gas. This movement is
of a local fluid-flow nature and introduces a relaxation peak
of the Zener type — or Maxwellian type, according to Pointer
et al. (2000). Local fluid flow is modelled in the present
theory by using a Zener element (e.g. Carcione 2001b, p. 65).

The sand/clay acoustic model for shaley sandstones, de-
veloped by Carcione et al. (2000), yields the seismic velocities
as a function of clay (shale) content, porosity, saturation,
dry-rock moduli, and fluid and solid-grain properties. As
stated in previous work (Carcione and Gangi 2000a,b), the
large change in seismic velocity is mainly due to the fact that
the dry-rock moduli are sensitive functions of the effective
pressure, with the largest changes occurring at low differen-

tial pressures. The major effect of porosity changes is implicit

in the dry-rock moduli. Explicit changes in porosity and
saturation are important but have less influence than changes
in the moduli. In this sense, porosity-based methods can be
highly unreliable. In fact, variations of porosity for Navajo
sandstone (11.8%), Weber sandstone (9.5%) and Berea
sandstone (17.8%) are only 0.2%, 0.7% and 0.8% porosity
units, respectively, for changes of the confining pressure
from 0 to 100 MPa, while the corresponding increases in
bulk moduli are in the range 15-20 GPa (Coyner 1984;
Berryman 1992). The bulk and shear moduli of the sand
and clay matrices versus porosity are obtained from a rela-
tionship proposed by Krief et al. (1990). To obtain the ex-
pression of the dry-rock moduli versus effective pressure, the
model requires calibration based on well, geological and
laboratory data, mainly sonic and density data, and porosity

and clay content inferred from logging profiles.

EQUATION OF MOTION

The theory developed by Carcione et al. (2000) explicitly
takes into account the presence of three phases: sand grains,
clay particles and fluids, with v=1,2 and 3 denoting sand,
fluid and clay, respectively. The equation of motion can be

written in matrix form as
R grad div u — p curl curl u = pii + Bu, (1)

where u is the displacement field,

Ryt Rip Rgp3 1 0 3
R = R12 R22 R23 and = 0 0 0 (2)
Ri3 Ra; Rz iz 0 a3

are the bulk and shear stiffness matrices, respectively, while

P11 P12 P13
P=1 P12 P P23 3)
P13 P23 P33

is the mass density matrix, and

b1 —bn b3
B=| —bi1 bi1+bsz —bss (4)
b1z —b33 b33

is the friction matrix, where b3, which describes interaction
between the sand and clay matrices, is a free parameter (no
model theory was proposed by Carcione et al. 2000). A dot
above a variable denotes time differentiation. All the param-
eters with the subindex (13) describe the interaction between
the two solid components. The elements of these matrices are
obtained with the use of Lagrange’s equations. For brevity,

the form of the different coefficients as a function of the
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properties of the single constituents is not given here. Their
expressions have been given by Carcione et al. (2000).

The input quantities that play a role in the generalization
to include pressure, attenuation and saturation effects are:
the porosity ¢; the sand fraction ¢; the clay fraction ¢ the
clay content C; the dry-rock bulk and shear moduli of the
sand matrix, K, and up,, respectively; the coupling modulus
between the frame and the fluid, R{,; the fluid-mixture bulk
modulus, Ky the fluid-mixture viscosity 5 the tortuosity for
the fluid mixture flowing through the sand matrix 7; the
tortuosity for the fluid mixture flowing through the clay
matrix 7 3; the permeability of the sand matrix xq; the per-
meability of the clay matrix i3; the average diameters of sand
and clay particles, d; and d,, respectively.

The following relationships hold:

and C= P &)

¢+¢5+¢C:1 ¢C+¢S’

PORE PRESSURE EFFECTS

We consider the model of Krief et al. (1990) to obtain an
estimation of the dry-rock moduli K, ptsm (sand matrix),
Kem and pem (clay matrix) versus porosity and clay content.
The porosity dependence of the sand and clay matrices
should be consistent with the concept of critical porosity,
since the moduli should vanish above a certain value of the
porosity (usually from 0.4 to 0.5). This dependence is deter-
mined by the empirical coefficient A (see equation (6)). This
relationship was suggested by Krief et al. (1990) and applied
to sand/clay mixtures by Goldberg and Gurevich (1998). The
bulk and shear moduli of the sand and clay matrices are

respectively given by

Kan(2) = K1 — C(2)][1 — ()] A/
Kem(2) = KcC(2)[1 — ¢ (z)]HA/0-0G)

tan(2) = Kan (D)1, K-,

tem (2) = Kem (2) e /K, (6)

where z is depth, K, and p are the bulk and shear moduli of
the sand grains and K. and p. are those of the clay particles.
Krief et al. (1990) set the A parameter to 3 regardless of the
lithology and Goldberg and Gurevich (1998) obtained values
between 2 and 4, while Carcione et al. (2000) used A =2.
Alternatively, the value of A can be estimated by using re-
gional data from the study area.

We assume the following functional form for the dry-rock

moduli as a function of depth and effective pressure:
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Kin(z,p) = BKus[1 — exp(=pe(p)/ Pk (2))];
Hsm (2, P) = Bras[1 — exp(=pe(p) /P, (2))]; (7)

where p*(z) is obtained (for each modulus) by fitting Krief
et al’s (1990) expressions (6). The effective pressure at depth
z is assumed to be p.=p.—np, where p. is the confining
pressure, p is the pore pressure, and the effective stress coef-
ficient n =1, according to Zimmerman (1991, p. 33). More-
over, Kygs and ups are the Hashin-Shtrikman (HS) upper
bounds (Hashin and Shtrikman 1963; Mavko, Mukerji and
Dvorkin 1998, p. 106), given by
-1 }

(8)

-1
Kissd) = {K e {(1 —pe)(K+3n) -k

and

PN
trs(z) = 1 1+ 5¢(2) {2(1 f¢(Z))(Ks+2ug)<Ks+§us> 5} .
)

Note that the HS lower bounds are zero, and that the Voigt
bounds are (1 — ¢) K, and (1 — ¢) s, respectively. For quartz
grains with clay, K;=39 GPa and p,=33 GPa (Mavko et al.
1998, p. 307), and if the limit porosity is 0.2, the HS upper
bounds for the bulk and shear moduli are 26 GPa and 22 GPa,
compared with the Voigt upper bounds of 31GPa and
26 GPa, respectively. However, the HS bounds are too wide
to model the moduli of in situ rocks. These contain clay and
residual water saturation, inducing a chemical weakening of
the contacts between grains (Knight and Dvorkin 1992;
Mavko et al. 1998, p. 203). Therefore, these bounds are
multiplied by the parameter < 1, which can be obtained by
fitting regional data (Carcione et al. (2001b) used f=0.8).
An alternative evaluation of the dry-rock moduli can be
obtained from laboratory experiments. The seismic bulk
moduli K, and pg, versus confining pressure can be
obtained from laboratory measurements on dry samples. If
Vp (dry) and Vs (dry) are the experimental compressional and
shear velocities, the moduli are given approximately by

Ko = (1= 9)p, (Vildry? = S Vtary ).
= (1= 9)p Vs (dry)”, (10)

where pg is the grain density. We recall that K, is the rock
modulus at constant pore pressure, i.e. the case when the
bulk modulus of the pore fluid is negligible compared with

the dry-rock bulk modulus, as, for example, air at room
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conditions. For C<0.5 and C>0.5, the clay- and sand-
matrix moduli are simply given by Krief et al’s (1990)

expressions.

EFFECTIVE FLUID MODEL FOR PARTIAL
SATURATION

The mixture hydrocarbon/water behaves as a composite fluid
with properties depending on the constants of the constitu-
ents and their relative concentrations. This problem has been
discussed by Berryman, Thigpen and Chin (1988) and the
results are given by the formulae

-1
(B 8) -
(Wood’s law),

Pt = Sepg + Swpy (12)
and

Su
Mg = g <:77—W) (13)
g

(Teja and Rice 1981a,b), where K, and K,,,, p, and py,, 1, and
Nlw> Sg and S, are the bulk moduli, densities, viscosities and
saturations of hydrocarbon and water, respectively. In the
examples, we compare (13) to the linear law n¢= Sy 1w + Sgg-
Equation (11) corresponds to the low-frequency range.
When the fluids are not mixed in the pore volume, but
distributed in patches, the effective bulk modulus of the
fluid mixture at high frequencies is higher than that predicted
by (11). We use an empirical mixing law introduced by Brie
et al. (1995). The effective fluid bulk modulus is given by

K = (Kw — Kg)Sy, + Kq, (14)

where e = (fo/f)°3* is an empirical parameter, with 7, being a
reference frequency. The exponent 0.34 fits the sonic-band
data provided by Brie et al. (1995). Equation (14) gives
Voigt’s mixing law for e=1 and Wood’s law for e =40.

In the case of gas saturation, the gas density and bulk
modulus as a function of pressure and temperature are calcu-
lated using van der Waals’ equation (see Carcione and Gangi

2000b).

PERMEABILITY AND PARTIAL SATURATION

The acoustic model requires partial permeabilities. The per-
meability for a rock of mixed particle size can be expressed

by the Kozeny—Carman relationship (Dullien 1991),

k=B(p—,)d T, (15)

where B is a geometrical factor, 7 is the tortuosity of the

mixture and d is the effective grain size defined by

- /1-c c\!
d:< - 73) , (16)

with d and d3 being the grain diameter of the sand and clay

particles, respectively. Following Mavko and Nur (1997), we
have introduced a percolation porosity ¢,. The tortuosity is
given by

1-Cc c\!
ro (e gy )

Equation (17) indicates that the tortuosity of the rock can be

obtained by using an analogy with electric circuits. It is given
by a parallel connection of resistances, where the resistances
are the tortuosity through the sand matrix, 7., and the
tortuosity through the clay matrix, 7.. We then have
T <7 and T <7.. This analogy uses the fact that increas-
ing tortuosity increases the resistance to fluid flow.

Carcione et al. (2000) obtained the following expressions
for the partial permeabilities:

K = K1¢, + K30, (18)

and

oL

For a partially saturated medium, the effective permeability
is given by the following generalization of (15):

K= B(§ — ) d T [icruSu + 1erg (1 — 4], (20)
where K., and k., are normalized relative permeabilities
given by
/ 1/my \ w12 SW_Swi

Krw = Swe[1 - (1 - Swe W) “] ’ Swe = 1_—&7 (21)
and

S Sy — Sy
Keg = 1/ Sge[l — (1 — Sée{ )P, Sge = ﬁ (22)

g1

(Van Genuchten 1978; Bear and Bachmat 1990, p. 360). In
(21) and (22), Sy and Sg; are the irreducible water saturation
and entrapped gas, respectively (Bear and Bachmat 1990,
p. 344) and we set m,=1.1 and S,,;=0.2 for water, and
my=1.5 and S,;;=0.1 for gas by fitting experimental data
from a North Sea reservoir (Fig. 2a). The partial permeabil-
ities are then obtained from (18), (19) and (20). Equation (20)
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is not restricted to any particular model of the pore space.
The information about the pore geometry and grain sizes is
contained in the parameters B, d and 7. This description of
permeability assumes an even distribution of the clay par-
ticles in the elementary volume. In this sense, the description
is consistent with the model of interpenetrating sand and clay
matrices on which the Biot-type theory of Carcione et al.
(2000) is based.

ATTENUATION AND VISCODYNAMIC
EFFECTS

In natural porous media such as sandstone, discrepancies
between Biot theory and measurements are due to complex
pore shapes and the presence of clay, which are not present in
synthetic media. This complexity gives rise to a variety of
relaxation mechanisms that contribute to the attenuation of
the different wave modes. Stoll and Bryan (1970) showed
that attenuation is controlled by the anelasticity of the skel-
eton (friction at grain contacts) and by viscodynamic causes.
The latter involve local (squirt) flow and global (Biot) flow.
Global flow is implicit in Biot’s theory and squirt flow
is modelled by using a single relaxation mechanism based
on the Zener model (Bourbié, Coussy and Zinszner 1987,
p- 227; Dvorkin, Nolen-Hoekksema and Nur 1994; Carcione
1998,2001b, p. 65).

Losses due to scattering are not explicitly described by the
present model, which is based on an effective-medium theory
(the wavelength of the signal is much larger than the pore
size). However, when laboratory measurements and sonic
logs are used to infer the behaviour of acoustic properties
at seismic frequencies, the frequency dependence of these
properties is a key factor. As demonstrated by White
(1975), wave velocity and attenuation are substantially
affected by the presence of partial (patchy) saturation, mainly
depending on the size of the gas pockets (saturation),
frequency and permeability. These effects are implicitly
described by Biot-type theories, when using full-wave model-
ling codes to obtain synthetic seismograms in inhomogeneous
media.

Constant-Q models provide a simple parametrization of
seismic attenuation in rocks in oil exploration and in seis-
mology. By reducing the number of parameters they allow an
improvement in seismic inversion. Moreover, there is phys-
ical evidence that attenuation is almost linear with frequency
(therefore Q is constant) in many frequency bands. Bland

(1960) and Kjartansson (1979) discussed a linear attenuation
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model with the required characteristics, but the idea is much
older (Scott-Blair 1949).

The constant-Q kernel is the simplest model based on only
one parameter. Keller (1989) used this kernel to model frame
anelasticity in Biot’s theory for isotropic saturated media. He
obtained a good fit of experimental P-wave attenuation and
velocity of sediments. The attenuation kernel corresponding
to a constant Q over all frequencies is

. 2y
i\~ 1 1
M =(— =—tan'( = 23
©.0= () y=tan(g): 23)
where wy is a reference frequency. Attenuation is modelled by
making the frame bulk and shear moduli viscoelastic, where
by frame we mean the sandstone skeleton. Then,

Kom — KsmM(wv QK)v (24)
where

_ Kim(z:p)
Ok = m@m (25)

where Qy is the given loss parameter for the sand skeleton,
and K,(z) is given by (6) for a reference rock with porosity
¢o and clay content Cy at a reference pressure po. K (2, p) is
given by (7). The corresponding Q factors for the shear and
coupling moduli are given by

_ K (2,P) _ Ru(zp)
Q.= Ken(@.p) Ok and Or= Kan@.p) Ok, (26)
and
Hgm — MsmM(wa Q#) and R12 - RTZM(wa QR) (27)

Equations (26) imply that the lower the modulus, the higher
the attenuation.

High-frequency viscodynamic effects imply the substitu-
tion in (4),

b — nfd)z
ii K;

where F; and F3 are viscodynamic functions corresponding

)E@m i=1,3, (28)

to the interaction between the sand and clay matrices with
the fluid, respectively (Biot 1962). Johnson et al. (1987)
obtained an expression for the viscodynamic function,
which provides a good description of both the magnitude
and phase of the exact dynamic tortuosity of large networks
formed from a distribution of random radii.

The viscodynamic function is

2.
Fio) = \[1 i = P
xiL2¢ WK;pPg

i=1,3, (29)
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where «; are permeabilities, defined by Carcione et al.
(2000), and L; is a geometrical parameter, with 2/L; being
the surface-to-pore volume ratio of the pore/solid interface.
The following relationship between 7, i; and L; can be used:
ET i/ pLE =1, where & describes the shape of the pore
network, with values & =12 for a set of canted slabs of
fluid and &;=8 for a set of non-intersecting canted tubes.

PHASE VELOCITY AND QUALITY FACTOR

The three compressional velocities of the three-phase porous

medium are given by

Vo = [Re(@)]q, m=1,2,3, (30)

where Re denotes the real part, and A,,, are obtained from the
generalized characteristic equation, det(AR — p) = 0, which
yields
A3 det(R) — A%tr(Rp) + A tr(Rp) — detp = 0,
where tr is the trace, the overbar denotes the cofactor matrix
(e.g. Fedorov 1968), and the effective density matrix,
is defined in the frequency domain.

Similarly, the two shear velocities Vs, are given by

1

b = ()]

where Q,, are the complex solutions of the equation,

m=1,2, (31)

QLer(ip) — Qr(pp) + det(p) = 0.

The P and S quality factors for homogeneous viscoelastic

plane waves are given by the following approximations:

B Re(Ay) B
QPm__Im(Am)’ m=1,2,3, (32)
and

~ Re(Q) B
QSm = —Im(Qm), m = 1,2 (33)

(Carcione 2001a).

EXAMPLES

We consider a sandstone saturated with water and gas. Table 1
shows the properties of the different constituents. The poros-
ity in most of the examples is ¢ =0.246 (Berea sandstone, see
King, Marsden and Dennis 2000) and the value of the other

quantities are as follows: the effective stress coefficient

Table 1 Material properties of the clay-bearing sandstone

Sand Bulk modulus, Kj 35 GPa
Shear modulus, g 35 GPa
Density, ps 2650 kg/m?
Average diameter, d 100 um

Clay Bulk modulus, K. 20 GPa
Shear modulus, g 10 GPa
Density, p. 2650 kg/m>
Average diameter, d. 2 um

Pore fill Bulk modulus, K,, 2.4 GPa
Density, py, 1030 kg/m3
Viscosity, 7y 1.798 cP
Bulk modulus, K, 0.01 GPa
Density, pg 100 kg/m?
Viscosity, 1, 0.02 cP

ng=0.75 at pg=40MPa; Krief et al’s (1990) parameter
A=2.8; the diameters of the sand and clay particles,
ds=0.1mm and d.=2pm; residual saturations, Sy,=0.4
and S,,, = 0.1; the reference frequency in Brie et al.’s (1995)
equation, fo=1MHz; the percolation porosity, ¢,=3.5%;
the geometrical factor in the Kozeny—Carman equation,
B =15; the relative permeability parameters, m,, =0.8 and
mg=1.8; the loss parameters, Qo=60 and wo=2n MHz;
the friction coefficient, b3 = 0; and the parameters describing
the shape of the pore network, &, =¢&;=38.

Figure 1 shows the tortuosity (a) and the permeability (b)
(equation (15)) versus porosity and clay content, for various
values of the clay content and porosity, respectively. We fit
experimental data published by Klimentos and McCann
(1990) (their Table 1, and plotted in their Fig. 23) (permea-
bility versus clay content). Our plot is on a log-linear scale
while their plot is on a linear—linear scale, hence the scatter in
the data is more prominent in our Fig. 1(b) than in their
Fig. 23. In general, permeability (and porosity) data from
core measurements reveal a scattered appearance; the reasons
for this are several (Worthington 1991) but mainly related to
the core handling and the methods of measurements. This
problem was also discussed by Helle, Bhatt and Ursin (2001).
In view of this, we consider the fit of our model to the data to
be acceptable. Note the strong decrease in permeability due
to the addition of a small amount of clay. The normalized
relative permeabilities (a) and the viscosity of the water/gas
mixture (b) are shown in Fig. 2 as a function of water
saturation. Both permeabilities decrease for decreasing satur-
ation of the corresponding fluid. In particular, there is
practically no water flow below 50% water saturation.
Figure 2(b) compares the linear mixing law (dashed line)

© 2002 European Association of Geoscientists & Engineers, Geophysical Prospecting, 50, 615-627



with the more realistic mixing law of Teja and Rice
(1981a, b) (continuous line). The linear relationship overesti-
mates the viscosity of the mixture. Figure 3 shows the bulk
modulus of the water/gas mixture versus water saturation (a)
and frequency (b). Brie et al.’s (1995) model is in good
agreement with the Voigt and Wood bounds.

Figure 4(a,b) compare the P- and S-wave velocities pre-
dicted by our model with experimental data obtained by
King et al. (2000). In (b), the velocities are represented for
several frequencies, from the seismic to the ultrasonic band.
The P-wave velocity obtained by using Hill’s equation
(Mavko et al. 1998, p. 115) is also shown. We average the
reciprocal of the P-wave modulus (pV3) in the absence of

00 01 02 03 04 05

¢

(b)
Porosity: ¢ %
1000- m 0-5 * 15-20
¢ 5-10 B 20-25
> A 10-15 ¥ 25-35
100' X
~ 104
o
E |
A%
0.1+
0.01- "

0.0 0.1 0.2 0.3 0.4
C

Figure 1 Tortuosity (a) and permeability (b) versus porosity and clay
content. The experimental data are taken from Klimentos and
McCann (1990).
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attenuation. The use of Brie ef al.’s (1995) model, although
empirical, allows us to model the acoustic properties of the
sandstone in the whole frequency range. It must be empha-
sized that not every input parameter has been measured, so
no prediction in the conventional sense has been made.

Three-dimensional plots of the P-wave velocity (a) and the
dissipation factor (b) versus differential pressure (confining
pressure minus pore pressure) and water saturation are
shown in Fig. 5. The clay content is 5% and the frequency
is 30 Hz.

As in Carcione (1998), we have modelled the squirt-flow
mechanisms with a single relaxation peak based on the Zener
mechanical model. The generalization of the coupling modu-
lus M in Carcione (1998) is K,, in Carcione et al. (2000).
This modulus is generalized to a complex Zener modulus

(@)

Relative Permeability

Figure 2 Fitted curves of normalized relative permeabilities using
data from a North Sea reservoir (a) and viscosity of the water/gas
mixture (b) as a function of water saturation. The dashed line is the
linear viscosity law.
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Figure 3 Bulk modulus of the water/gas mixture versus water satur-
ation (a) and frequency (b).

(e.g. Carcione 2001b, p. 65). For partial saturation, the
centre of the peak is given by

fO :ng(l 7SW)+fOWSW7 (34)

where fo,=40kHz and fy,, =3 kHz. The maximum quality
factors associated with gas and water are equal to 10 for
both fluids.

Note the strong decrease in the velocity and the Q factor
with decreasing differential pressure (Fig. 5b). This effect is
mainly due to the fact that the dry-rock moduli are sensitive
functions of the effective pressure. (At very low effective
pressures, the rock becomes unconsolidated.) Figure 6
shows the same properties as in Fig. 5, but versus water
saturation and frequency. In this case, the differential pres-
sure is 40 MPa (p.=70MPa and p=30MPa), and we
assume that the temperature is 90°C in van der Waals’

equation (Carcione and Gangi 2000b), corresponding to a

Berea Sandstone
Data from King et al. (2000)

8.4 C=5%, 9, = 24.6%, p,= 40 MPa ® 0.7 MmHz
—
L 33
£7] o
< 32
> —— Modified Brie et al.'s average

- - ~-- Hill's average

oo 21

2.0 0.5 MHz

C=5%, ¢,= 24.6%

p,=40 MPa

Figure 4 (a) P- and S-wave velocities predicted by the present model
compared with the experimental data of King et al. (2000) at ultra-
sonic frequencies. (b) The same properties as in (a) but for all
frequencies. The P-wave velocity obtained by using Hill’s equation
is also shown (dashed line).

reservoir at 3 km depth. Figure 6(b) agrees qualitatively with
a similar plot, based on experimental data from Massilon
sandstone, published by Murphy (1982). The dissipation
factor has a maximum value at the squirt-flow relaxation
peak. A secondary maximum corresponds to the Biot peak.
The losses at full water saturation are stronger than the losses
at full gas saturation. The behaviour of attenuation agrees
qualitatively with experimental data published by Yin, Batzle
and Smith (1992).

The S-wave velocity and the S-wave dissipation factor as a
function of saturation and frequency are shown in Figs 7(a)
and (b), respectively. The S-wave velocity increases with
frequency and, in general, with decreasing water saturation.
Attenuation has a maximum at approximately the location of

the Biot peak and 100% water saturation.
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Figure 5 Three-dimensional plots of P-wave velocity (a) and dissipa-
tion factor (b) versus differential pressure (confining pressure minus
pore pressure) and water saturation. The clay content is 5%, the
helium core porosity is 24.6% (at atmospheric pressure) and the
frequency is 30 Hz.

Figure 8 shows the wave velocities (a) and the dissipation
factors (b) and (c) versus water saturation and different
values of the clay content C at 10kHz. The permeability
corresponding to each value of C is indicated on the curves.
In general, attenuation increases with increasing clay content
and decreasing permeability (decreasing fluid-flow length).
Finally, the 3D plots in Figs 9 and 10 show more clearly
the effect of clay and saturation on the dissipation factors for
frequencies of 10 kHz (a), 100 kHz (b) and 1 MHz (c).

In the sonic range, we can see the Biot relaxation peak for
high gas saturation and high clay content, and the squirt-flow
peak at high water saturation (a). The linear increase in
attenuation at full water saturation and 1 MHz agrees with
the empirical equation obtained by Klimentos and McCann

An acoustic model for shaley sandstones 623

Figure 6 Three-dimensional plots of the P-wave velocity (a) and
dissipation factor (b) versus water saturation and frequency. The
clay content is 5%, the helium core porosity is 24.6% and the
differential pressure is 40 MPa.

(1990). The Biot peak gradually moves towards higher water
saturation as the frequency increases (b and c), while the
squirt-flow peak disappears. Moreover, at higher frequencies
(c), the attenuation reveals stronger dependence on the
clay content at high water saturation. For a fully saturated
rock (S,=1) at 1MHz, i.e. under standard laboratory
conditions, the attenuation increases monotonously with the
clay content (c), in agreement with the experimental results
of Klimentos and McCann (1990) and Best, McCann and
Sothcott (1994).

The presence of clay increases the surface area and de-
creases the permeability, increasing the attenuation of the
slow wave (Klimentos and McCann 1988). Furthermore,
the presence of the slow wave constitutes an attenuation
mechanism for the fast P-wave, due to mode conversion at
heterogeneities. This effect is implicit in the computation of
synthetic seismograms when using a full-wave modelling
method (e.g. Carcione 1998).
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C=5% 9,=24.6%
P, =40 MPa

S
MO Log Frequency (H)

Figure 7 As Fig. 5 but for S-waves.

CONCLUSIONS

We have developed a model of the acoustic properties — wave
velocity and quality factor — of sandstone as a function of
clay content, pore pressure, frequency and partial saturation.
The theory includes poroviscoelasticity and viscodynamic
effects to model the realistic attenuation values observed in
rocks from low to high frequencies. The limitations of the
model are mainly with regard to the use of the constant-Q
model to describe attenuation mechanisms, which are not of
viscodynamic nature (local and global fluid-flow losses).
However, this limitation is a consequence of the absence of
experimental data in the sonic and seismic bands. The con-
stant-Q model could be substituted by a generalized Zener
model (parallel or series connection of Zener elements),
which can be used to fit a general functional behaviour of
quality factor (and velocity dispersion) versus frequency. In

this sense, the model is not a predicting tool. Furthermore,
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821 %__./———/V
1 p
0 ————
2.8 - C=03 x= 4mD

= ¢ =24.6% p, =40 MPa
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f=10 kHz
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Figure 8 Wave velocities (a) and dissipation factors (b and ¢) versus
water saturation for different values of the clay content C at a
frequency of 10 kHz. The permeability corresponding to each value
of C is indicated on the curves.

the model requires calibration to obtain estimates of the dry-
rock moduli and geometrical features of the pore space, such
as tortuosity, grain size and permeability.

The model predicts the behaviour of real sandstones in
many respects. For instance: (i) There is a strong decrease
in permeability due to the addition of a small amount of clay.
(i1) Wave velocity increases considerably at high frequencies
compared with low frequencies (at low frequencies, the fluid
has enough time to achieve pressure equilibration, while at

high frequencies, the fluid cannot relax and the bulk and
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Figure 9 Three-dimensional plots of P-wave dissipation factor versus
water saturation S, and clay content C for 10kHz (a), 100 kHz
(b) and 1MHz (c). Porosity ¢=24.6% and differential pressure
pa=40 MPa.

Figure 10 As Fig. 9 but for S-waves.
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shear moduli are stiffer than at low frequencies). (iii) There is
a strong decrease in the velocity and the Q factor with
decreasing differential pressure (this effect is mainly due to
the fact that the dry-rock moduli are sensitive functions of
the effective pressure). (iv) For a Berea sandstone the attenu-
ation has a maximum at approximately the location of
the Biot peak and 90% water saturation. (v) In general,
attenuation increases with increasing clay content and de-
creasing permeability (decreasing fluid-flow length). How-
ever, attenuation is strongly dependent on both clay content
and fluid saturation. For a shaley sandstone with gas, the
attenuation has a peak in the sonic frequency band, while
the partially saturated sample has its relaxation peak at

ultrasonic frequencies.
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