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Flexural waves in drill-string tubulars with variable loads
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ABSTRACT
We revisit the equations governing the bending motions in thin rods and analyse
the filtration of flexural waves in vertical drill strings pre-stressed by gravity. The
aim is to study transverse drill-string vibrations at seismic frequencies for acous-
tic communication purposes and provide an algorithm for processing reflected and
transmitted bending motions generated by downhole lateral vibrations. We obtain
the dispersion equation, including attenuation due to a gravity pre-stress gradient
and frequency-dependent reflection and transmission coefficients at the interface be-
tween subsequent tube intervals. We then develop a propagation-matrix algorithm
to simulate flexural waves in a drill string consisting in an assembly of multiple
tube sections of different dimensions. The deflection vibrations are obtained at any
arbitrary recording point in the drill string. The modelling is cross-checked with a
full-wave grid algorithm. The analysis shows that the waves produced by a concen-
trated force are partitioned in standing and propagating modes, which are calculated
by using the flexural impedance of the drill string. Moreover, the reflection coeffi-
cients weakly depend on the pre-stress conditions and pre-stress has important effects
for far-field signal transmission with variable weight on bit (WOB). We discuss the
approximations and limits of the method with respect to realistic drilling conditions.
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INTRODUCTION

Flexural waves in drill strings are easily generated during
normal drilling conditions. They develop as highly dispersive
modes governed by the bending properties of the drill pipes.
These vibrations have important effects in the drilling process.
They may be responsible for drill-string resonance and severe
functioning conditions (Chin 1994). The study of flexural vi-
brations is also important in seismic acquisition with Vibroseis
sources to eliminate the phase lag due to the baseplate flexure
in acceleration measurements (Lebedev and Beresnev 2005).

Downhole drill-string bending motions are generated by
bit whirling and stick slip (Vandiver, Nicholson and Shyu
1990) and it is reported that large lateral vibrations may cause
twist offs and premature drill-string failure for fatigue at criti-
cal rotary speeds (Mitchel and Allen 1985; Chin 1994). These
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phenomena are investigated for drilling diagnostics purposes
(Wolf, Zacksenhouse and Arian 1985; MacPherson, Mason
and Kingman 1993; Zannoni et al. 1993) and numerical mod-
elling is used to improve bending vibration analysis and pre-
dict the behaviour of drill strings (Mitchel and Allen 1985;
Vandiver et al. 1990; Chin 1994). Monitoring downhole lat-
eral vibrations by using surface drill-string vibration measure-
ments is generally difficult, because flexural waves generated
downhole are not easily observable at the surface (Chin 1988,
1994). Here, we discuss the propagation and attenuation of
downhole flexural waves and do not obtain the results of Chin
(1988, 1994) regarding trapping effects beyond a “focus lo-
cated close to the neutral point, defined as the transition point
between positive and negative axial stress” (see Chin 1994, p.
210). These effects or confinement of energy are negligible at
the frequencies used in our simulations.

Downhole and surface measurements of drill-string vi-
brations are performed for seismic-while-drilling (SWD)
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purposes, to obtain information about the drilled formations
(Poletto and Miranda 2004). In common practice, this in-
formation is obtained by axial modes, which in some cases
require downhole measurements to be better estimated. The
borehole signals may be significantly affected by events due to
bending moments and lateral vibrations of drill pipes, which
are governed by the flexural behaviour of the drill string.
This behaviour is revisited to determine wave propagation
and resonances in the drill pipes. Knowledge of the flexural
behaviour of the drill string at seismic frequencies is essential
for SWD purposes. In order to assess the dynamic structural
behaviour, we develop the analysis of the reflection proper-
ties of flexural waves in the drill string assumed as a layered
model.

The analysis of the dispersive flexural vibrations obtained
under realistic drilling conditions is a rather complex task, be-
cause different interactions and vibration phenomena occur
simultaneously (Vandiver et al. 1990). We study the flexural
motions in a vertical drill string composed of homogeneous
tubulars of different dimensions. We assume a vertical drill
string and neglect the conversion modes between flexural and
axial waves (Kolsky 1953; Graff 1975; Shyu 1989), which
may be important in curved drill strings (Drummheller 1993;
Lee, Mace and Brennan 2007). We neglect the effects of drill-
string rotation on bending vibrations (Mitchel and Allen 1985;
Shyu 1989), which is a good approximation for the vibration
signals modelled in the seismic bandwidth, the interaction
with the drilling mud (free-air approximation), as well as the
contacts of the drill string with the borehole wall, by assuming
a vertical well, where the wall contacts are typically less impor-
tant than in deviated wells. Also, other borehole modes are not
considered in this work (Sinha and Asvadurov 2004). In this
approximation, we neglect mud-buoyancy, which can easily
be introduced into the gravity model and mud viscous damp-
ing effects. Interactions with mud and wall friction effects
typically result in large energy dissipation and rapid attenua-
tion for downhole bending vibrations in drill strings operating
under realistic drilling conditions (Shyu 1989). These damp-
ing effects are not considered for the purposes of our analysis,
which aims to isolate the effect of gravity rather than provide
a fully realistic model of drill-string vibrations. Moreover, the
filtration effects from periodic structures of drill strings with
tool joints (Barnes and Kirkwood 1972; Carcione and Poletto
2000) are not considered in the examples, although they could
be modelled by the algorithm. The periodicity caused by the
presence of short and massive tool joints generates passband
and stopband filtration effects (Poletto and Miranda 2004).
Stopband effects for flexural and coupled waves in drill pipes

with tool joints have been simulated by Carcione and Poletto
(2000).

We use the thin-rod approximation, also known as
the Euler-Bernoulli approximation, which holds when wave-
lengths are much larger than the radial dimensions of the pipe.
The basic equations of motion of flexural waves in thin rods
are given, for instance, in Kolsky (1953) and Graff (1975). We
obtain the dispersion equations giving the propagating (far-
field) and the standing resonant (near-field) modes in drill-
string tubulars of different sizes. In this analysis, we include
static tensile axial forces (pre-stress) and calculate the time-
harmonic solutions of the dispersion equation at the neutral
point (Bourgoyne et al. 1991; Chin 1994; Poletto and Mi-
randa 2004). We compare the synthetic results obtained with
and without axial pre-stress and compute the waves gener-
ated by a transverse force. The forced vibrations modes are
determined by using the concept of flexural impedance (Mace
1984, 1992).

The analysis of the interaction between incident flexural
waves and structural discontinuities requires the determina-
tion of the coupling, reflection and transmission effects. The
approach without pre-stress loads is substantially similar to
that used by Mace (1984, 1992) to study wave reflection and
transmission in beams. A similar approach is used to study
the transmission of flexural waves through angled structural
joints of beams (Sablik 1982; Guo 1995). The structural prop-
erties of the drill string and the pre-stress conditions determine
the reflection and transmission coefficients at the interfaces
between different tubulars, where we equate the wavefields
obtained by summing the propagating and standing modes.
We calculate the reflection and transmission coefficients for
propagating and standing waves in drill strings of realistic di-
mensions and for special boundary conditions and show that
the reflection coefficients are independent of the frequency in
axially unstressed (unloaded) pipes and frequency dependent
in pre-stressed pipes. On the basis of the calculated reflection
coefficients and complex velocities, we design a propagation-
matrix algorithm to simulate flexural waves in a structural
drill string including attenuation, in the far-field approxima-
tion. The attenuation results from dispersion due to the geo-
metrical nature of the drill string with pre-loading, since we do
not include a damping parameter in the model. The near-field
effects at a given interface are derived from the analysis of the
arrival of waves obtained by using the propagation-matrix
method. Using this approach, we simulate the transmitted
and reflected wavefields in a realistic drill string composed of
bottom-hole assembly (BHA) and drill pipes pre-stressed by
gravity. The method is tested by comparison with simulations
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performed with the direct method of Carcione and Poletto
(2000).

The novelty of the present technique resides on the intro-
duction of gravity loads and a detailed reinterpretation of the
physics, including the reflection and transmission effects for
communication in drill strings of realistic geometry. In par-
ticular, we show how gravity pre-stress affects the wavefields
obtained with different weight on bit, working both in tension
and in compression.

THEORY OF FLEXURAL WAVES

Let us assume a drill pipe in a vacuum. This condition mod-
els a drill pipe in an empty borehole without wall contacts.
The aim is to study the effects of the drill-string geometry
and loading on wave propagation, neglecting dissipation by
damping, which might reduce the communication distance.
Let z be the axial coordinates and let w be the component of
the lateral displacement (deflection) (Fig. 1). We assume the
low-frequency approximation, which holds when the signal

z

R

f(z,t)

M

M
F

F

F

wdz

Figure 1 Pipe bending with deflection w in the (x, z)-plane. The pipe
element of length dz is subject to moment M and shear force F , while
f is an external force and F is an axial tensile force.

wavelengths are much longer than the pipe radial dimensions,
i.e, we adopt the thin-rod approximation.

Forces acting on the pipe

Constitutive equation

Let us consider a pipe element undergoing transverse motion,
subject to a couple moment M and shear force F (Fig. 1). The
bending moment can be expressed as M = −YIR−1 (Love
1952), where R is the (dimensionless) radius of curvature and
YI is the pipe stiffness, with Y and I the Young modulus and
transverse moment of inertia. In a uniform pipe of inner and
outer radii ri and ro, respectively, I = π

4 (r4
o − r4

i ). Using the
assumption that R is large with respect to the deflection, which
holds for ∂zw � 1, we have R = (∂2

zzw)−1 and the bending
moment can be written as

M = −YI∂2
zzw. (1)

If we neglect the rotational-inertia effect (Shyu 1989), the
shear force can be expressed as F = −∂zM (Graff 1975),
hence,

F = ∂z
(
YI∂2

zzw
)
. (2)

Force exerted by gravity

Assume that the pipe is axially pre-stressed by a gravity tensile
static force F , which is generated by the part of the pipe
hanging below the investigation point (Fig. 2). We assume
that axial inertia effects are negligible. The axial gravity force
in an uniform pipe of cross-section A is F = ρAgh, where
ρ is the density of the pipe, g is the gravity constant and
h = z − zNP is the height of the hanging pipe interval between
the investigation point and z = zNP, where the zero-tension
point, the neutral point, is located (Bourgoyne et al. 1991;
Chin 1994; Poletto and Miranda 2004). For convenience, we
set F/(YI) = 2b and c = Aρg/(YI), which gives

b = ch
2

. (3)

In the case of compression, i.e., a negative tensile force for
z < zNP, b is negative. We assume that the transverse force
due to gravity is proportional to the variation in the slope of
the pipe deflection

Fg = −F ∂zw (4)

(Carcione and Poletto 2000).
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Figure 2 Main drill-string components: drill collars (DC), heavy
weight drill pipes (HWDP) and drill pipes (DP), which have different
cross-sections. The weight of the drill-string interval of height h above
the neutral point (point where F = 0) causes the tensile axial force at
the recording point.

Equation of motion

Flexural bending waves in thin rods undergoing transverse
motion are governed by the following equation of motion

ρA∂2
ttw = −∂z(F + Fg) + f (5)

(Kolsky 1953; Graff 1975, Carcione and Poletto 2000), where
f is an external, distributed lateral force (Fig. 1). Substituting
equations (2) and (4) into equation (5) yields

ρA∂2
ttw + ∂2

zz

(
YI∂2

zzw
) − ∂z(F ∂zw) − f = 0, (6)

or

a2∂2
ttw + ∂4

zzzzw − c∂zw − 2b∂2
zzw = 0, (7)

where we have assumed a uniform pipe, f = 0, used equa-
tion (3) and defined

a =
√

ρA
YI

. (8)

Equation (6) is used to model flexural waves in drill strings of
realistic geometry with variable properties, while equation (7)
allows us to study the physics analytically.

Plane-wave analysis

A plane-wave solution is given by w(t, z) = exp[i(ωt − kz)],
where ω is the angular frequency, k is the wavenumber and i =√−1. Substituting this equation into equation (7), we obtain
the dispersion equation (Chin 1988)

k4 + 2bk2 + ick− a2ω2 = 0. (9)

Equation (9) has four solutions (see the Appendix) and due to
the term ick, all the solutions are complex. The phase velocity
and attenuation factor are given by

vp =
[
Re

(
1
v

)]−1

and α = −Im
(ω

v

)
, (10)

where v = ω/k is the complex velocity, while the group
velocity is vg = ∂κω. Even if we can assume that in ver-
tical wells damping due to borehole wall contact is weak
(Chin 1994), additional damping can easily be included to
model viscous dissipation effects in non-rotating pipes (see
Dunayewsky, Abbassian and Judzis 1993; Chin 1994, p. 223;
Connaire et al. 2008). In the following, we model non-viscous
attenuation.

Absence of gravity effects

In the absence of gravity effects (b = c = 0), the roots are

k1 = k0, k2 = −k0, k3 = ik0, k4 = −ik0, k0 = √
aω.

(11)

The first two roots correspond to progressive and regressive
waves (far-field modes), while k3 and k4 are static (or stand-
ing) modes. One root is an unstable diverging mode and the
other corresponds to standing energy stored in stable local
resonances, i.e., near-field effects (White 1965; Graff 1975;
Carcione and Poletto 2000). The standing stable waves van-
ish at distances for which |k0z| � 1. The standing modes are
localized in the near-field region defined by the condition
|z| ≤ 1/k0. The phase velocity of the propagating modes is
vp = ±(ω/k0) = ±√

ω/a when there is no attenuation and the
group velocity is vg = 2vp. The general harmonic solution in-
cluding near-and far-field terms has the form

w(t, z) = exp(iωt)[B1 exp(−ik0z) + B2 exp(ik0z)

+ B3 exp(−k0z) + B4 exp(k0z)]
(12)
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(Lindsay 1934; Graff 1975), where B1, B2, B3, B4 are con-
stant coefficients of progressive waves, regressive waves, local
stored (resonant) energy and an unbounded response for in-
creasing z > 0, respectively.

Gravity effects with a weak gradient

In several practical cases, as in pipe elements far from the neu-
tral point (see next section), the gradient of the tensile force is
negligible with respect to the tensile force itself, i.e., ∂zF � F
and c ∼= 0. When the pipe stiffness YI is negligible, we obtain
the well-known non-dispersive equation for transverse vibra-
tions in a string under tension (Graff 1975). Assume positive
tension, i.e., b > 0. Equation (9) has two real solutions

k1,2 = ±
√

−b+
√
b2 + a2ω2, (13)

which correspond to propagating modes without attenuation
and two imaginary solutions, given by

k3,4 = ±i
√
b+

√
b2 + a2ω2. (14)

Similar real and imaginary roots are obtained if we assume
negative tension, i.e., compression, i.e., b < 0. Note that in
compression and for real values of the frequency ω, the real
positive root assumes the lower limit

√
2|b| = √|F |/YI, rep-

resenting the wavenumber in an axially-loaded pipe section
under a critical-buckling condition. The group velocity of the
flexural wave in a pre-stressed pipe with a negligible pre-stress
gradient is

vg =
2
√

(b2 + a2ω2)(−b+ √
b2 + a2ω2)

a2ω
(15)

(Chin 1988). The group velocity vg(b) has the minimum
vg(bmin) = 3−3/4 2vg(0) ∼= 0.88 vg(0), where bmin = aω/

√
3.

We obtain that the minimum group velocity in a pipe under
tension is about 88% of that in an unstressed pipe.

Neutral point

A particular case in which the previous approximation of hav-
ing a negligible gradient of the tensile force with respect to the
tensile force itself is not valid, is when the axial loads pass
from tension to compression. This occurs at the neutral point
zNP and the tension F vanishes in equation (7). It is equivalent
to consider b = 0. The solutions of the dispersion equation
are given in the Appendix [equation (A4)]. All the solutions
are complex, so that there are attenuation effects in the prop-
agation through the neutral point.

MODES IN A UNIFORM PIPE

We now analyse the vibrations generated in a pipe by a point
source applied at z = 0, namely

s(t, z) = exp(iωt)δ(z). (16)

We study the solutions in a uniform, unstressed and un-
bounded pipe [equation (6) with F = 0]. Let wd and wu be the
harmonic solutions for z < 0 and z > 0, respectively. These
solutions include the regressive and progressive waves (far-
field terms) of amplitudes Ad and Au and the stable standing
modes (near-field terms) of amplitudes Bd and Bu, respec-
tively. We have

wd(t, z) = Ad exp[i(ωt + kz)] + Bd exp(iωt + kz),

wu(t, z) = Au exp[i(ωt − kz)] + Bu exp(iωt − kz),
(17)

where we have neglected the unstable diverging terms. Because
of the symmetry of the problem and because of the continu-
ity of the solutions wd(t, 0) = wu(t, 0) at the source location,
we can reduce the number of constants, thus obtaining the
amplitudes of the forced waves in equation (17) as

Af ≡ Ad = Au,

Bf ≡ Bd = Bu.
(18)

To solve for the unknown coefficients Af and Bf , we require
continuity in the slope of the solutions at z = 0 (Graff 1975).
The slopes are given by ∂zwd and ∂zwu. We obtain

−iAf − Bf = iAf + Bf . (19)

Another condition is obtained by integrating the equation of
motion in a small interval including z = 0 with width tending
to zero, which gives

∂3
zzzwu − ∂3

zzzwd = 1
YI

(20)

(see Graff 1975, p. 161) and

iAf − Bf = 1
2YIk3

. (21)

Solving equations (19) and (20), we obtain

Af = iBf and Bf = − 1
4YIk3

. (22)

Substituting these expressions into equation (17) yields

wd(t, z) = Bf exp(iωt)[i exp(ikz) + exp(kz)],

wu(t, z) = Bf exp(iωt)[i exp(−ikz) + exp(−kz)].
(23)

It follows that a point force δ(z) generates propagating and
standing waves of equal amplitude in an unbounded un-
stressed string.
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Characteristic mechanical impedance

To obtain a relationship between force and deflection, we use
the concept of characteristic mechanical impedance of flexural
waves, Z, which is defined as the shear force to the lateral
particle-velocity ratio (Lindsay 1934; Mace 1984; Drumheller
2002). For harmonic vibrations, we have

Z = F
ẇ

= F
iωw

=
(

1
iωw

)
∂zM, (24)

where the dot above a variable denotes a time derivative.
As the excitation force generates both propagating and

standing waves, the mechanical impedance is complex. This
condition corresponds to the fact that, in the far-field, the
force and particle velocity are in phase, so that the energy is
expended in the form of waves that are radiated away in an
unbounded pipe. Conversely, in the standing near-field modes,
the force and particle velocity are out of phase by ±π/2, so
that the average energy expended is zero. Substituting equa-
tion (22) into equation (17) and using equations (1) and (24),
we obtain the impedances

Zu = − (1 + i)IYk3

ω
and Zd = (1 + i)IYk3

ω
, (25)

which, in uniform unstressed pipes, can be written as Zu,d =
∓(1 + i)vpρA. We obtain opposite impedances because the
point force generates opposite shear forces and the same de-
flection at both sides. Using equations (8) and (11), we can
express the impedances for a uniform unstressed pipe as

Zu = −(1 + i)(Aρ)3/4(IY)1/4√ω and Zd = −Zu. (26)

This means that a point force with a constant amplitude spec-
trum generates a transverse particle velocity proportional to
1/

√
ω.

REFLECTION AND TRANSMISS ION
COEFF IC IENTS

A drill string of realistic geometry is an assembly composed
of tubes of different dimensions and properties (Fig. 2) (Bour-
goyne et al. 1991; Poletto and Miranda 2004). Starting from
the bit, these are the drill collars (DC), the heavy weight drill
pipes (HWDP, or more simply HW in the subscripts) and the
drill pipe (DP). DC and HWDP form the bottom-hole assem-
bly (BHA). The neutral point zNP is typically located in the
DC section, which is more massive and can work both under
tension and compression. The HWDP and DP sections work
in tension.

Table 1 Dimensions of the drill string

Pipe section do di Length
(in) (in) (m)

DC 8 2 13/16 145
HWDP 5 3 145
DP 5 4 3/4 2500

We assume, with a reasonable approximation, that
the modelled drill string is an assembly of uniform tubes
(Table 1). We then use the equation for homogeneous pipes
in the uniform sections and calculate explicit boundary con-
ditions at the interfaces between different pipes. Without loss
of generality, we first study the wave propagation in a pipe
made of two homogeneous semi-infinite tubes of different ra-
dial dimensions. Let these tubes be denoted by T1 and T2
(Fig. 3).

When a progressive (upgoing) flexural wave of unit am-
plitude, propagating in T1, hits the interface between T1 and
T2, a regressive (downgoing) flexural wave is reflected in T1
and a progressive flexural wave is transmitted in T2. The in-
cident wave also generates local resonant energy, which is

Figure 3 Reflection and transmission coefficients for axial waves in
a drill string made of two semi-infinite sections. When a unit input
signal hits the interface, a regressive signal Rw and a standing resonant
wave Rs are generated in T1. A transmitted progressive signal Tw and
a standing resonant mode Ts are generated in T2. R′

w , R′
s , T

′
w and T′

s

are the coefficients at the opposite side of the interface.
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stored in both tubes. We assume, without loss of generality,
that the interface is located at z =0. In T1, we have

w1 = exp[i(ωt − k1z)] + Rw exp[i(ωt + k1z)]

+ Rs exp(iωt + k1z),
(27)

where k1 is written for k01 [last term of equation (11)] in T1
and where Rw and Rs are reflection coefficients of the regres-
sive wave and the standing wave resulting in local stored en-
ergy (at z < 0), respectively. A similar relation can be written
for the energy transmitted in T2,

w2 = Tw exp[i(ωt − k2z)] + Ts exp(iωt − k2z), (28)

where Tw and Ts are the transmission coefficients of the pro-
gressive wave and of the standing wave resulting in local
stored energy (at z > 0), respectively.

We determine the four coefficients Rw, Rs , Tw and Ts by
using the boundary conditions at the interface. Coupled equa-
tions are obtained by requiring continuity of the deflection
w, the slope ∂zw, the bending moment M [equation (1)] and
the shear force F [equation (2)] (Graff 1975). At z = 0 we
have

w1 = w2,

∂zw1 = ∂zw2,

M1 = M2,

F1 = F2.

(29)

Combining equations (27), (28) and (29), we obtain

⎛
⎜⎜⎜⎜⎜⎜⎝

1

i

−1

−i

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 −1 1 1

i 1 iγ γ

1 −1 −ξγ 2 ξγ 2

−i 1 −iξγ 3 ξγ 3

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

Rw

Rs

Tw

Ts

⎞
⎟⎟⎟⎟⎟⎟⎠

, (30)

where

γ = k2

k1
and ξ = I2

I1
. (31)

In unstressed pipes we have, according to equations (8) and
(11),

γ =
(
I1A2

I2A1

) 1
4

, (32)

where it is assumed that the density and the Young modulus
are constant, while in pipes pre-stressed by the axial tensile
force F we have, according to equations (3) and (13),

γ =

√√√√√√
√
q2

2 + s2 − q2√
q2

1 + s1 − q1

, qi = F
2YIi

, si = ρω2Ai

YIi
. (33)

We obtain explicit solutions for the reflection and transmis-
sion coefficients as

Rw = −i(1 + 2iγ ξ − 2γ 2ξ − 2iγ 3ξ + γ 4ξ2)
1 + 2γ ξ + 2γ 2ξ + 2γ 3ξ + γ 4ξ2

,

Rs = (−1 + i)(−1 + γ 4ξ2)
1 + 2γ ξ + 2γ 2ξ + 2γ 3ξ + γ 4ξ2

,

Tw = 2(1 + γ )(1 + γ 2ξ )
γ (1 + 2γ ξ + 2γ 2ξ + 2γ 3ξ + γ 4ξ2)

,

Ts = 2(1 + iγ )(−1 + γ 2ξ )
γ (1 + 2γ ξ + 2γ 2ξ + 2γ 3ξ + γ 4ξ2)

.

(34)

From equations (32) and (33) it follows that these coefficients
are frequency independent and frequency dependent in un-
stressed and pre-stressed pipes, respectively. The fact that the
reflection coefficients are complex means that the presence of
local resonant effects produces a change in the phase of the
back-propagating reflected waves. Conversely, the transmis-
sion coefficient Tw is real, hence there is no change of phase
in the transmitted wave. The phase of the evanescent-mode
reflection coefficient Rs is equal to −π/4.

Coefficients at opposite sides of the interface

We apply a rule that relates the coefficients at the opposite
sides of the interface. They are obtained by exchanging k1

for k2, hence by taking γ ′ = γ −1 and ξ ′ = ξ−1 for γ and ξ ,
respectively. This gives

R′
w = −i(1 − 2 iγ ξ − 2γ 2ξ + 2iγ 3ξ + γ 4ξ2)

1 + 2γ ξ + 2γ 2ξ + 2γ 3ξ + γ 4ξ2
,

R′
s = (1 − i)(−1 + γ 4ξ2)

1 + 2γ ξ + 2γ 2ξ + 2γ 3ξ + γ 4ξ2
,

T′
w = 2γ 2ξ (1 + γ )(1 + γ 2ξ )

1 + 2γ ξ + 2γ 2ξ + 2γ 3ξ + γ 4ξ2
,

T′
s = −2γ 2ξ (i + γ )(−1 + γ 2ξ )

1 + 2γ ξ + 2γ 2ξ + 2γ 3ξ + γ 4ξ2
.

(35)

We may relate the mechanical impedances using equa-
tion (26). From equation (31), we have

ζ ≡ Z2

Z1
= γ 3ξ. (36)
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Therefore, the relations between the set of coefficients in the
unstressed case can be written as

R′
w = −R∗

w, R′
s = −Rs , T′

w = ζTw, T′
s = −iζT∗

s , (37)

where “∗” denotes a complex conjugate.

Special cases of reflecting boundaries

We study two special cases of reflection of flexural waves in
semi-infinite strings bounded at only one end (Graff 1975).

Fixed end

We assume the drill string fixed at its end, which is equiva-
lent to setting the radial dimensions of T2 much larger than
those of T1, the latter assumed to be a reference section with
constant properties. Taking the limits ξ → ∞ and γ → 0 in
equation (34), for infinite radial dimensions of T2, we have

Rw = −i, Rs = −1 + i, Tw = 0, Ts = 0. (38)

Free end

We assume the drill string free at its end, which is equivalent
to setting the radial dimensions of T2 negligible with respect
to those of T1. Taking the limits ξ → 0 and γ → ∞ in equa-
tion (34), for zero radial dimensions of T2, we obtain

Rw = −i, Rs = 1 − i, Tw = 2, Ts = −2i. (39)

Equations (38) and (39) can be used to model the boundary
conditions at the ends of a drill pipe.

PROPAGATION-MATRIX METHOD (FAR
FIELD)

We use a classical propagation-matrix method to simulate far-
field waves in a drill string of realistic geometry. We assume
that the reflecting interfaces along the drill string are sepa-
rated far away, in the sense that the local (near-field) standing
waves generated at a given interfaces are negligible at the
neighbouring interfaces. This is a realistic assumption, as far
as we model a drill string made of components having lengths
of the order of tens of metres, i.e., lengths � 1/k0, with signals
having frequencies of some tens of Hz or more. The layout of
the one-dimensional drill-string transmission line is shown in
Fig. 4, where j = 1, . . . , J is the interval index, l j = zj+1 − zj
is the interval length, Uj , Dj and U ′

j and D′
j are the upper-side

and lower-side upgoing and downgoing waves, respectively

Figure 4 Layered model used for the propagation-matrix method,
where j is the layer (interface) index and Uj , Dj and U′

j and D′
j

are propagating upgoing and downgoing wavefields at the top and
bottom of the j-th layer, respectively.

and Rj , Tj and R′
j and T′

j are the upper-side and opposite-side
coefficients, respectively, of the j-th interface connecting in-
tervals j − 1 and j at z = z j (see Fig. 3) (we omit the subindex
‘w’ in the coefficients for clarity). We propagate only reflected
and transmitted waves by using the coefficients R, T, R′ and
T′ at the j-th interface. We have

U ′
j = TjUj−1 + R′

j D
′
j

Dj−1 = RjUj−1 + T′
j D

′
j .

(40)

From equations (40) and (37) we obtain the relation between
waves at the opposite side of the j-th interface as

⎛
⎝U ′

j

D′
j

⎞
⎠ = 1

T′
j

⎛
⎝ 1 R′

j

−Rj 1

⎞
⎠

⎛
⎝Uj−1

Dj−1

⎞
⎠ , (41)

where we have used the property TjT′
j − Rj R′

j = 1, express-
ing conservation of energy for propagating waves (Muggleton
et al. 2007). The wavefields at the ( j + 1)-th interface are
computed from those at the j-th interface by means of the
propagation delays � j in the j-th interval,

� j (ω) =
∫ z j+1

z j

1

v
( j)
p (ω)

dz, (42)

C© 2013 European Association of Geoscientists & Engineers, Geophysical Prospecting, 61, 955–972



Flexural drill-string waves 963

where vp is the phase velocity defined in equation (10). We
obtain⎛
⎝Uj

Dj

⎞
⎠ = Q j

⎛
⎝Uj−1

Dj−1

⎞
⎠ , (43)

where

Q j = 1
T′
j

 j

⎛
⎝ 1 R′

j

−Rj 1

⎞
⎠ (44)

and

 j =
⎛
⎝ exp

(−iω� j
)

0

0 exp
(
iω� j

)
⎞
⎠ . (45)

In a string made of a cascade of intervals, the propagation
matrix is obtained as

Q(ω) =
⎛
⎝q11 q12

q21 q22

⎞
⎠ =

1∏
j=J

Q j (ω). (46)

With the pre-stress gradient not equal to zero, the delays � j

are complex and matrix Q includes (far-field) attenuation ef-
fects. With some modifications, by using equation (46), we
can calculate the propagating wavefields in every position of
the drill string. In the vicinity of the j-th interface standing
waves are generated by the arrival of the upgoing Uj−1 and
downgoing D′

j waves. These near-field modes are obtained as

(
D′

j R
′
s j +Uj−1Tsj

)
exp[−kj (z − z j )], (47)

and(
D′

j T
′
s j +Uj−1Rsj

)
exp[kj−1(z − z j )], (48)

in the intervals j and j − 1, respectively.

DRILL -STRING TIME-DOMAIN
WAVEFIELDS

Without loss of generality, we calculate the upgoing U and
downgoing D wavefields for the particle velocity, i.e., the
time derivative ẇ of the deflection w. In this example, the drill
string is assumed open at the lower side of the DC, i.e., the bit
is a free end [equation (39)], while at the upper side the drill
pipes are unbounded (DP of infinite length). Let s(ω) be the
source signal in the frequency domain. Note that this source
corresponds to the particle-velocity wavefield obtained from
the shear force F by impedance equation (24). This signal is
injected at the lower end of the string (see the propagation
model shown in Fig. 5). Let ẇT(ω) and ẇR(ω) be the particle-

Figure 5 Reflection model of the drill string corresponding to Table 1
used for the simulation of flexural wavefields. s(t) is an input signal
(only propagating wave) and ẇR(t) and ẇT(t) are the reflection signal
at the bit and the transmission signal recorded in the DP, respectively.

velocity signal transmitted at the recording point (Fig. 5) and
the signal reflected at the bit, respectively. We obtain

⎛
⎝ ẇT

0

⎞
⎠ = QHW,DPDC

⎛
⎝ s − iẇR

ẇR

⎞
⎠ , (49)

where we used equations (38), (45) and (46) and QHW,DP is the
propagation matrix in the HWDP and DP. Using the notation
qi j to denote the elements of the matrix QHW,DPDC, we obtain
the solutions

ẇT = (q11q22 − q12q21)s
q22 − iq21

(50)

and

ẇR = − q21s
q22 − iq21

. (51)

The time histories of the reflected and transmitted signals are
obtained as inverse Fourier transforms.
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EXAMPLES

The properties of the different sections of the drill string of
Fig. 5 are given in Table 1. The material properties of all the
components are the same (steel), i.e., ρ = 7840 kg/m3 and
Y = 206 GPa. This example corresponds, with a reasonable
approximation, to a drill string used in a borehole section
drilled by a drill bit with a diameter of 12 1/4 inches. In our
analysis, all these elements are assumed to be uniform tubes,
which differ essentially by their inner and outer diameters. In
this approximation we neglect the presence in the DC section
of the short-length elements (stabilizers), which act as wall-
contact tools. These elements can be taken into account in the
model for a more detailed analysis.

Phase velocity (10) corresponding to the DC, HWDP and
DP sections together with the group velocity of the DP section
are shown in Fig. 6(a), and the velocities corresponding to the
DP section, with and without gravity pre-stress, are shown in
Fig. 6(b). The tension is due to the weight exerted by a 2500 m
DP section and by a 145 m HWDP section. In this case, we
assume that the neutral point zNP is located at the DC/HWDP
interface, i.e., we have the limit case in which the weight on
bit (WOB) equals the weight of the DC.

Figure 7 shows the phase velocity versus length of the
hanging DP interval. A larger distance in the DP section cor-
responds to a higher tension at the recording point. The phase
velocity is calculated at frequencies of 10, 20 and 40 Hz in the
pre-stressed case and compared to that calculated at 10 Hz in
the unstressed case. This example shows that the effect of pre-
stress becomes dominant in the drill pipes at large distances
from the bottom hole.

In general, the tensile force in the drill string changes
with WOB. Dynamic effects due to variations in the WOB
may cause fluctuations of the neutral point position (Chin
1994; Poletto and Miranda 2004) and may affect the pre-
stress tensile forces and, hence, the flexural properties of the
drill string (Vandiver et al. 1990). A plot of the tensile force
versus distance (z) from the bit is shown in Fig. 8(a). In this
case, the WOB is 20 ton (200 kN) and the neutral-point po-
sition (Bourgoyne et al. 1991; Poletto and Miranda 2004) at
zNP = WOB/(9.81ρADC) ∼= 90 m is indicated by the arrow.
Figure 8(b) shows the real part of the wavenumber (see equa-
tion (A1)) in the pre-stressed pipes of Fig. 8(a). The data are
shown at frequencies of 50 Hz, 10 Hz and 1 Hz. We can
notice the different trend of the curves calculated at different
frequencies in the DC section, where the pre-stress gradient
is larger, relative to the trend of the curves in the HW and
DP sections. The interpretation of this result is that the grav-

Figure 6 Dispersion curves of flexural waves in the unstressed case
(a). The velocities are calculated for the drill-string sections of Table 1.
Dispersion curves of the flexural waves for the 5 in the DP section
of Table 1, pre-stressed by gravity, compared to the unstressed case
(b). The recording point is located at 2500 m above the HWDP/DP
interface (Fig. 2). The tension is assumed constant (with gradient
equal to zero).

ity gradient effect becomes relatively more important at low
frequencies for flexural dispersion in the DC section.

Let us analyse the attenuation of the propagating modes
(far-field). Figures 9 and 10 show the amplitude attenuation
coefficient exp(αz) [equation (10)], versus frequency and dis-
tance, respectively. The far-field attenuation is due to the axial
gradient of pre-stress that introduces an imaginary part in the
solutions of the dispersion equation. At 10 Hz, the amplitude
of the imaginary component of the wavenumber solutions is
small, about 1% that of the real part and the attenuation is
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Figure 7 Phase velocity in the DP with pre-stress. The velocity is
shown for different signal frequencies versus length of the DP above
the HWDP, i.e., the zero distance is set at the HWDP/DP interface.
In this example, the neutral point is located at this interface so that
the tension due to the HWDP section weight is not nil at z = 0 in
the DP section. For this reason, the pre-stressed and unstressed lines
calculated at 10 Hz do not coincide at z = 0.

not strong (Fig. 9). The cumulative far-field attenuation effects
become more important at large distances and lower frequen-
cies (Chin 1988, 1994). For example, at a distance of 2 km
and a frequency of 1 Hz, the amplitude decay is about 0.4
(Fig. 10).

The standing resonant modes, consisting in near-field vi-
brations, are strongly damped with increasing axial distance.
The attenuation distance beyond which the near-field effects
become negligible with respect to the far-field effects, is 1/k0,
where k0 is given in equation (11). Figure 11 shows the near-
field attenuation distances versus frequency, corresponding to
the unstressed drill pipe sections indicated in Table 1. The
near-field distance 1/k0 may be used as a reference distance
to determine the limit between the near-field and far-field ap-
proximations and, for instance, to evaluate the distance for
recording positions from contact tools (stabilizers), which can
be modeled in bottom-hole assemblies.

The attenuation of the standing modes versus distance
is shown in Fig. 12. We observe that at 10 Hz and 6 m, the
amplitude of the resonant modes in the HWDP section decays
by nearly 30 dB. Since we use the approximation that the
typical length of the uniform drill-string parts is of the order
of several tens of metres (in this case the length of the HWDP
is 145 m), the resonant modes vanish at these distances (at
145 m we obtain a decay of approximately 700 dB at 10 Hz in

Figure 8 Tensile force in a drill string composed of DC, HWDP and
DP (see Table 1) with WOB = 20 ton (a). The zero distance is set
at the bit position. The arrow indicates the neutral point at zNP.
Below this point, the DC is in compression. Buoyancy mud forces are
not included. Real part of the wavenumber in the pre-stressed drill
string corresponding to Fig. 8(a) (b). We can notice the variation of
the curves in the DC section, where the pre-stress gradient is larger,
relative to those in the HW and DP sections.

the HWDP). The implication is that we can calculate the wave
propagation using the reflection and transmission coefficients
at each interface by assuming two semi-infinite tube sections.

We validate this assumption and the propagation-matrix
method presented here by comparing the results with those
of a full-wave direct solver (Carcione and Poletto 2000). In
this algorithm, the flexural vibrations including the standing
modes are computed with a 4th-order Runge-Kutta technique
and the spatial derivatives are calculated with the Fourier
pseudospectral method by using the Fast Fourier Transform
(FFT) (Carcione 2007). These approximations are infinitely
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Figure 9 Attenuation of the far-field waves versus frequency for a sig-
nal of 10 Hz corresponding to the pre-stressed drill string of Fig. 8(a).
The recording points are simulated at the end of the DC section
(z = 145 m), at the end of the HWDP section (z = 290 m) and at
500 m in the DP section (z = 790 m).

Figure 10 Attenuation of the far-field waves versus distance in a drill
string with a pre-stress gradient for different frequencies (see Fig. 8a).
The zero distance is set at the bit position.

accurate for band-limited periodic functions with cut off spa-
tial wavenumbers that are smaller than the cut off wavenum-
bers of the mesh. We use a spatial grid with interval �z = 1 m,
a time step of 2.5 × 10−4 s and maximum propagation time
of 5 s. Let us consider the far-field in the pipe sections. We
make use of the relation between shear force F and transverse
particle velocity (time derivative of the deflection), given by
equation (24). We set the analytic input signal to match the
shear force of the direct solver with an injected source signal.
The injected source signal F is implemented by spatial integra-
tion of a zero-phase signal with a smooth and band-limited
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Figure 11 Near-field distances in the drilling pipes of Table 1 (un-
stressed). The linear relationship on the log-log plot is expected be-
cause of the proportionality between the distance 1/k0 and the recip-
rocal of the square root of frequency.

Figure 12 Attenuation of the standing resonant modes versus axial
distance from the excitation point in the drill-string sections of Table 1
(unstressed). The curves are calculated for a signal of 10 Hz.

amplitude spectrum between 10 and 50 Hz [Hanning win-
dow (Oppenheim and Schafer 1975)]. The time history of the
injected source signal is shown in Fig. 13(a), where its maxi-
mum amplitude is 1 kN. The injected signal is shown together
with the constitutive force response at the source location in
the uniform DC section, calculated by Hilbert transforming
the injected signal. The time history of the total shear force
(total F), sum of the injected signal and the pipe response,
is shown in Fig. 13(b), which compares the analytical source
signal (total F) and the constitutive force signal measured at
the source location obtained with the pseudospectral method.
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Figure 13 Input shearforce (F ) used to calculate the propagating
waves in the DC section (a). The injected signal is represented by
the black solid line. The dashed line represents the analytical consti-
tutive response of the DC pipe, obtained by Hilbert transforming the
injected signal. Total stress force in the DC section (b). The contin-
uous line is the sum of the analytical input and the response signals
of Fig. 13(a). The dotted line is the force measured at the source
point in the DC section of the model used to calculate the full-wave
(pseudospectral) solution.

The agreement is excellent. These signals are used later to test
the present algorithm with the pseudospectral method, i.e.,
to normalize the input source s(t) and for verification of the
method in the calculation of the transmitted ẇT and reflected
ẇR wavefields.

We now consider the DC/HWDP and HWDP/DP inter-
faces and compute the respective reflection and transmission
coefficients. Table 2 shows the reflection and transmission
coefficients determined with the unstressed drill string. Before
computing the wavefields in the drill string shown in Fig. 5,
we check the wave-mode coefficients Rw, Tw, R′

w and T′
w, veri-

fying the wave propagation in a drill string composed by only
two uniform tubes of different properties, as shown in Fig. 3.

Table 2 Reflection and transmission coefficients (unstressed case)

DC/HWDP interface

Coefficient Absolute value Phase (degrees)

Rw −0.066 − i 0.290 0.297 −103
Rs 0.431 − i 0.431 0.610 −45
Tw 1.963 1.963 0
Ts −0.598 − i 0.721 0.937 −130
R′

w 0.066 − i 0.290 0.297 −77
R′
s −0.431 + i 0.431 0.610 135

T′
w 0.464 0.464 0

T′
s 0.171 + i 0.141 0.222 40

HWDP/DP interface

Coefficient Absolute value Phase (degrees)

Rw 0.028 − i 0.069 0.074 −68
Rs 0.192 − i 0.192 0.271 −45
Tw 1.497 1.497 0
Ts −0.277 − i 0.261 0.381 −137
R′

w −0.028 − i 0.069 0.074 −112
R′
s −0.192 + i 0.192 0.271 135

T′
w 0.664 0.664 0

T′
s 0.116 + i 0.123 0.169 47

The source and the receiver are located at 250 m from the
interface between T1 and T2, at opposite sides to compute
ẇT and ẇR. The propagation-matrix results are compared to
those of the pseudospectral method. Before the comparison,
the data are scaled to normalize the amplitude of the source,
the total F shear force, to obtain a peak force of 1000 N.
The comparison (true amplitude) is shown in Fig. 14, which
includes transmitted waves, reflected waves and a test of the
reciprocity principle, to further verify the algorithm. Reci-
procity gives the same particle velocity in T2 and T1 when we
use the same input force in T1 and T2 (Mace 1984).

Using the wave-mode reflection and transmission coef-
ficients at the tubular interfaces, we calculate the wavefields
corresponding to the string shown in Fig. 5. We compute the
response given by equations (50) and (51). Figure 15 shows
the signals ẇT and ẇR in a drill string without axial gravity
loads and without boundary conditions at the bit obtained
with the pseudospectral method (a) and propagation-matrix
method (b), to test the far-field response of the structural sys-
tem with multiple reflecting layers. The source is located at
the bit and the receiver of the transmitted signal is located in
the drill pipe, 500 m above the HWDP/DP interface, while
the receiver recording the reflected signal is located at the bit
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Figure 14 Comparison of wavefields obtained by the propagation-
matrix and pseudospectral methods. Sources and receivers are located
at 250 m distance from the interface between two semi-infinite pipe
sections. a) Transmitted ẇT(t) signal from DC to HWDP through the
DC/HWDP interface (a). b) Reflected ẇR(t) signal in the DC from the
DC/HWDP interface (b). These signals satisfy reciprocity (c), where
the matrix-propagated signals from DC to HWDP and vice versa,
after normalizing the input forces, are compared.

Figure 15 Transmitted ẇT(t) and reflected ẇR(t) waves from a source
(shear force of Fig. 13a,b) applied in the drill collar section (DC) at the
bit location. The results are obtained with a receiver in the drill pipe
(DP) located 500 m above the heavy-weight (HWDP) pipe section in
the drill string of Fig. 5, without a free-boundary end at the bit and
without axial gravity loads. The result of the pseudospectral method
(a) is compared to that of the propagation-matrix method (b). The
agreement is excellent.

position. The upper side of the drill pipe is unbounded (DP of
infinite length). The event at 0.65 s group delay is the two-way
time reflection in the 145 m DC section and the event at about
2 s group delay is the transmitted signal through the 145 m
DC, 145 m HWDP and 500 m DP. The signals are presented
in true amplitude, after normalizing the source magnitude.
The match is excellent.

Next, the signals are calculated assuming reflection con-
ditions at the bit without pre-stress by axial gravity. In the fol-
lowing examples, we use a free boundary at the bit end. Other
responses can easily be modelled by changing the boundary
conditions at the string end. For example, assuming the fixed
boundary condition end at the bit (equation (38)), we obtain
Rw = −i as with the free end (equation (39)), which gives the
same propagation matrix but with a modified source signal
s due to the different impedances related to opposite near-
field responses Rs at the source location. Figure 16 shows
the time history of the transmitted and reflected waves in the
drill string with the free boundary condition at the bit (mod-
elled as a part of the DC), using the pseudospectral method
(a) and the propagation-matrix method (b) numerical results.
The free boundary is approximated in (a) by a very thin rod
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Figure 16 Transmitted ẇT(t) and reflected ẇR(t) waves from a source
(shear force of Fig. 13a,b) applied to the DC section at the bit loca-
tion in the drill string of Fig. 5. The bit is a free-boundary and the
signals are calculated without axial gravity loads, with a receiver in
the DP 500 m above the HWDP pipe section. Pseudospectral method
(a) and propagation matrix method (b). At the origin in (a) we can
see the source-signal reflection event and fluctuations due to the
free-boundary approximation. The agreement is very good beyond
0.5 s.

(with inner and outer diameters 0.01 m and 0.011 m) below
the bit. The initial spike (t < 0.5 s) for the reflection signal in
(a) is the source signature measured at the source recording
position, not modelled in the reflected analytic signal (b). The
agreement is very good.

Finally, we calculate the propagation in strings with axial
loads. We compute transient waves by integrating the delayed
signals in the frequency domain. Let zs and zr be the source
and receiver positions, respectively. The offset is defined as
the relative distance, zr − zs , between the receiver and source.
The propagation delay is obtained by integrating the recipro-
cal of the velocity (see equation (42)), where the lower and
upper limits are zs and zr , respectively. In the presence of an
axial pre-stress gradient, v is complex and we obtain a com-
plex delay, where the real and imaginary parts correspond to
pure delay and attenuation, respectively. An example of prop-
agation in a uniform DP without and with uniform load is
shown in Fig. 17. In (a) we can see the modification of the

Figure 17 Shear source (total constitutive force) in a uniform DP sec-
tion with and without uniform axial load (tension) (a). Pseudospec-
tral and propagation-matrix transmitted wavefields ẇT in an uniform
drill pipe (DP) with constant tension conditions F = 500 kN (b). The
agreement is very good. Propagation-matrix results with and without
pre-loading (c). The group velocity in the pre-loaded case is lower and
the group delay is higher (for a 500 kN axial force) compared to the
unloaded case (in agreement with Fig. 6).

source signal (total constitutive shear force) due to the vari-
ation in the tension condition. Figure 17(b) shows the trans-
mitted signals between the source and receiver at a distance of
500 m computed with the propagation-matrix and the pseu-
dospectral methods with a uniform axial pre-load (tension) of
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Figure 18 Absolute value of the ratio of the pre-stressed over
unstressed reflection Rw and transmission Tw coefficients at the
HWDP/DP interface (a). Phase of the reflection coefficient Rw at the
HWDP/DP interface with and without pre-stress (b).

500 kN. Figure 17(c) compares the transmitted signals calcu-
lated with the propagation-matrix method with and without
axial pre-loading. The effect of the axial tension (positive F )
is to increase the phase velocity and to decrease the group
velocity (see Fig. 6 b). Moreover, the reflection coefficients in
strings with pre-load are frequency dependent.

Figure 18(a) displays the reflection and transmission, Rw

and Tw, coefficients corresponding to the HWDP/DP interface
with pre-stress. The curves are normalized with respect to the
amplitude of the corresponding unstressed coefficients. The
pre-stress is caused by the weight of the 145 m HWDP section
(see Table 1). We observe that the variation in amplitude of
the reflection coefficient is less than two dB at 10 Hz, while
the variation in the amplitude of the transmission coefficient is
much smaller. Figure 18(b) shows the phase of the pre-stressed

Figure 19 Results of the propagation-matrix method obtained with a
receiver in the drill pipe (DP) 500 m above the heavy-weight (HWDP)
pipe section of Fig. 5. The source is the shear force of Fig. 13 with the
free boundary end at the bit. The waves represent transmitted signals
ẇT(t) in pre-stressed pipes with variable weight on bit (WOB). The
waves are calculated with frequency-dependent (pre-stressed case) re-
flection coefficients including attenuation effects due to an axial load
gradient (see Appendix). The group velocity decreases for lower pipe
tensions, corresponding to higher WOB.

and unstressed coefficients. For both amplitude and phase, the
effect is more important at lower frequencies. We include these
effects in the propagation-matrix model. However, this anal-
ysis shows that a reasonable high-frequency approximation
may be obtained using the unloaded reflection coefficients to
model the propagation in the pre-stressed pipes.

We compute the transmission response given by equa-
tion (50) in the drill string open at the bottom of the DC.
An equivalent result can be obtained for the reflection re-
sponse. The source applied to the DC at the bit is the
shear force of Fig. 13 in the bandwidth 10–50 Hz. The syn-
thetic wavefields are calculated by using the unstressed drill-
string model, including frequency dependent reflection coeffi-
cients and amplitude attenuation due to the gravity gradient.
Figure 19 shows a gather of the pre-loaded signals. These
traces are calculated with WOB ranging between 0–32 ton
(320 kN). When the WOB = 0, the tension at the pipe includes
the effect due to the weight of the 145 m DC section. Note that
in this case all the string works in tension. Higher WOB cor-
responds to lower tension in the pipes. When WOB is greater
than zero, part of the DC weight is unloaded and the lower
DC section below the neutral point zNP = WOB/(9.81ρADC)
works in compression.
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However, due to the massive properties of the DC, there
are no significant differences in the delays of the flexural waves
in the DC section with variable pre-loading at the investigated
frequencies. The variation in the propagation delay in the
remaining part of the drill string is more important. In this
figure, we can observe the variation in the signal waveform
versus WOB. Even if the differences in the waveforms and
delays of the signals are small for increments in WOB of a
few tons, these changes are of the order of 50 ms in the to-
tal WOB interval. These delays are not negligible when the
data are used for the analysis of events related to seismic
signals. The observed group delays are in agreement with the
calculated group velocity at the 30 Hz central frequency, rang-
ing approximately between the averaged values vg ∼ 385 and
vg ∼ 395 m/s. Similar calculations can be performed for the
reflection response at the bit contact for SWD purposes.

DISCUSS ION

In our analysis, no attenuation by viscoelastic effects – which
would be expressed by a transverse resistive-type force – is
included (however, the algorithm can easily be modified to
include attenuation from energy dissipation). With this sim-
plification, we neglect the coupling effects between the trans-
verse drill-string vibrations and the acoustic borehole waves
in the mud and surrounding formation (Malusa, Carcione
and Poletto 2004). Also, the coupling between the flexural
and axial vibration modes is neglected (Carcione and Poletto
2000). This effect is important in deviated wells (Drumheller
2002). Moreover, rotary and torsional effects on bending mo-
tions induced by rotation inertia of the pipes are neglected
as well (Shyu 1989). These may result in unbalanced drilling
conditions with bending resonances at critical rotary speeds
(Mitchel and Allen 1985; Dunayewsky et al. 1993). In our
model, the well is vertical, so that no bending forces are in-
duced in the pipes due to the stretching of the pipe rotating
in a borehole with curved trajectory (Vandiver et al. 1990;
Bourgoyne et al. 1991). No contacts with the borehole wall
are assumed, even if frequent contacts can be expected in
correspondence of the string contact tools (stabilizers) (Shyu
1989; Bourgoyne et al. 1991; Poletto and Miranda 2004).
Conversely, static tensile forces are included in the axial pre-
stress equations. Mud buoyancy effects can be accounted for
in the gravity tension as F = ρAgμh, where μ ≤ 1 is a mud-
buoyancy factor (Bourgoyne et al. 1991; Poletto and Miranda
2004). For simplicity, the mud buoyancy factor is μ = 1 in
our examples.

CONCLUSIONS

We present the results of a numerical approach for calculat-
ing the flexural reflection and transmission properties of drill
strings in the thin-rod approximation. We have developed an
analytical model and a propagation-matrix algorithm to sim-
ulate the drill-string flexural vibrations, to perform dispersion
analysis of the radiated and resonant modes and to calculate
the filtration of the reflections in vertical boreholes. The al-
gorithm includes the axial gravity loads and the attenuation
of far-field waves due to axial pre-stress gradients. Without
loss of generality, we perform the analysis for typical seismic
frequencies, such as those used for SWD purposes. This gives
useful results to evaluate borehole seismic measurements in
the presence of the drill string.

The dispersion equations are calculated for the different
drill-string sections with and without axial pre-stress. The
analysis shows that the reflection and transmission coeffi-
cients between different tubulars weakly depend on frequency
only in the pre-stressed pipes. The near-field effects, related
to the local resonant modes, can be neglected in the propaga-
tion model of a structural drill string with typical properties.
However, once the propagating waves are calculated, the local
resonant modes produced by the arrivals of the propagating
waves at the pipe discontinuities can be derived.

We have used the far-field approximation to simulate the
transmitted and reflected wavefields in a drill string of realistic
geometry composed of a bottom-hole assembly and drill pipes,
where we considered signals from sources acting in the seismic
frequency range. The method is tested with unbounded and
free boundary conditions at the bit end. The responses are
compared with those of a full-wave direct solver for valida-
tion purposes. The analysis shows that the gravity pre-stress
affects the wavefields obtained with different weight on bit
(WOB) acting on the same pipe, working both in tension and
compression. Increasing tension corresponds to an increase in
the group delay of the flexural waves.
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APPENDIX: COMPLEX WAVENUMBERS

Uniform pipe with a pre-stress gradient

The solutions of dispersion equation (9) with a pre-stress gra-
dient different from zero are:

k1,2,3,4 = ±1
2

√
−4b

3
+ �

± 1
2

√
−8b

3
− � + 2ic√−4b/3 + �

,

(A1)

where

� = χ

3(21/3)
+ 4(21/3)(b2 − 3a2ω2)

3χ
, (A2)

with

χ =
3

√
16b3 − 27c2 + 144ba2ω2 +

√
−4(4b2 − 12a2ω2)3 + (16b3 − 27c2 + 144ba2ω2)2.

(A3)

Solution at the neutral point

The solutions of the dispersion equation with a pre-stress gra-
dient (c �= 0) at the neutral point (b = 0) are

k1,2,3,4 = ±
√

�

2
± 1

2

√
−� + 2ic√

�
, (A4)

where

� =
3
√

−9c2 +
√

3(27c4 + 256a6ω6)

21/332/3

− 4(2/3)1/3a2ω2

3
√

−9c2 +
√

3(27c4 + 256a6ω6)
.

(A5)
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