
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

A viscoelastic representation of wave attenuation in porous media
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a b s t r a c t

The theories developed by White and co-workers describe the complex moduli of a medium partially

saturated with spherical gas pockets and those of stratified layers composed of two heterogeneous

porous media. A generalization to gas patches of arbitrary shape has been given by Johnson. These

models represent the mesoscopic-loss mechanism, which is one of the most significant causes of

attenuation of seismic waves in reservoir rocks. Comparison of White’s and Johnson’s models show that,

as the patch shape complexity increases, the patch geometry affects much more the relaxation

frequency than it affects the maximum loss. The simulation of synthetic seismograms requires solving

Biot’s differential equations with very small grid spacings, because the loss mechanism involves the

conversion of fast P-wave energy to diffusion energy in the form of the Biot slow wave. Because the

wavelength of this wave can be very small, the poroelastic solution requires a very large amount of

storage and computer time. An efficient approach is to approximate White’s moduli by the Zener model

and then solve the single-phase viscoelastic differential equations.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the effects of saturation and fluid type on wave
propagation, particularly in the case of reservoir rocks, requires
the modeling of rocks as porous media. Recent studies (e.g., Pride
et al., 2004) have shown that the major cause of attenuation and
velocity dispersion at seismic frequencies in porous media is
wave-induced fluid flow at the mesoscopic scale, larger than the
pore size but smaller than the wavelength (typically tens of
centimeters). White (1975) and White et al. (1975) were the first
to introduce the mesoscopic-loss mechanism based on approx-
imations in the framework of Biot theory of poroelasticity
(Biot, 1956a, b; Biot, 1962). Biot’s theory, originally formulated
for a single-fluid system, was further refined and generalized for
two-fluid systems by many authors (Brutsaert, 1964; Berryman
et al., 1988; Santos et al., 1990a, b; Tuncay and Corapcioglu, 1996;
Lo et al., 2005).

White’s models predict the dependence of wave velocity and
attenuation as a function of frequency and dimension of the
mesoscopic-scale heterogeneities of the medium. The model given
in White et al. (1975) considers a periodically stratified medium
and describes the amount of attenuation (and velocity dispersion)
caused by different types of heterogeneities in the rock properties,
namely, porosity, grain and frame moduli, permeability and fluid
properties. In this case, the complex modulus obtained with this

theory is the one perpendicular to the layering plane. Carcione
and Picotti (2006) find that the most significant loss mechanisms
are a result of porosity variations and partial saturation, where
one of the fluids is very stiff and the other is very compliant. On
the other hand, White (1975) describes a medium partially
saturated with water and spherical gas pockets. In both models,
the fluid effects on wave velocity and attenuation depend on the
frequency range. At low frequencies, the fluid has enough time to
achieve pressure equilibration (relaxed regime), and Gassmann’s
modulus properly describes the saturated bulk modulus. At high
frequencies, the fluid cannot relax, and this state of unrelaxation
induces pore-pressure gradients. Consequently, the bulk and
shear moduli have larger values than at low frequencies.

Attenuation and velocity dispersion are caused by fluid flow
between patches of different pore pressures. The critical fluid-
diffusion relaxation length is proportional to the square root of the
ratio of permeability to frequency. At seismic frequencies the
relaxation length is very large, and the pressure is nearly uniform
throughout the medium. As frequency increases, differences in
pore-pressure can cause a significant increase in P-wave velocity.
The theory, based on Biot’s theory of poroelasticity, predicts that
increasing fluid viscosity or decreasing permeability shifts the
relaxation peaks towards lower frequencies. Dutta and Seriff
(1979) solved the problem exactly by using Biot theory and
confirmed the accuracy of White’s results. They point out a
mistake in White (1975), where White uses the P-wave modulus
instead of the bulk modulus to derive the complex bulk modulus.

The situation in real porous material is obviously more
complex. In Johnson (2001) and Müller and Gurevich (2005) a
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generalization of the White periodic model for patches of
arbitrary shape is given. Besides the usual parameters of White
theory, the model developed by Johnson (2001) has two other
geometric parameters: the specific surface area S=V and T. The
parameter S=V depends on the shape of the patches, whereas the
parameter T is related to the mean size of the patches. Müller and
Gurevich (2005) developed a theory for elastic wave propagation
in a fluid-saturated porous medium with a random distribution of
3-D inhomogeneities. Applying the method of statistical smooth-
ing to Biot’s equations of poroelasticity, they derived an explicit
expression for the effective wave number of a P-wave that
accounts for the effect of wave-induced flow. These models show
that, in a complex 3-D space, the observed frequency dependency
of attenuation due to fluid flow is independent of the type of
disorder (periodic or random). In other words, the shape of the
attenuation and dispersion curves are those typical of a relaxation
mechanism. Moreover, if o is the angular frequency, the predicted
dissipation factor 1=Q for the random model is proportional to o
and 1=

ffiffiffiffiffi
o
p

at the low- and high-frequency limits, respectively.
These asymptotes coincide with those predicted by the periodi-
city-based approaches, so the qualitative aspects of the physics
obtained using these simple models have a quite general validity.

It is very common, in reservoir problems, that the gas is
distributed in patches whose sizes are in the mesoscopic scale.
Cadoret et al. (1995) investigated the phenomenon in the
laboratory at the frequency range 1–500 kHz. Two different
saturation methods result in different fluid distributions and
yield two different values of velocity for the same saturation.
Imbibition by depressurization produces a very homogeneous
saturation, whereas drainage by drying produces heterogeneous
saturations at high water saturation levels. In the latter case, the
experiments show considerably higher velocities, as predicted by
White’s model.

Picotti et al. (2007) solved the Biot equations of motion for a
two-fluid system and showed that the results are in good
agreement with the theoretical values predicted by the White
theory. However, the computation of synthetic seismograms in
the presence of mesoscopic heterogeneities requires solving Biot’s
differential equations with very small grid spacings (Picotti et al.,
2007). Because this solution implies a very large computational
effort, we approximate White’s relaxation peaks by the Zener
model (Carcione, 2007) in order to reduce the problem to
the solution of equivalent single-phase viscoelastic differential
equations.

2. The dynamic bulk modulus

The dynamic bulk modulus ~K ðoÞ describes the crossover from
Gassmann–Wood’s (GW) result at low frequencies to the
Gassmann–Hill (GH) result at high frequencies. When the pore
space is partially saturated with two very different fluids, such as
gas and water, a fast P-wave traveling in the medium induces very
different pore pressures in the two regions, which tend to
equilibrate. This process is governed by the so-called Biot acoustic
slow wave, a diffusive phenomenon in which the diffusivity is
given by

DðKfjÞ ¼
k
Zf2

 !
PR� Q2

Pþ2QþR
; j¼ 1;2 ð1Þ

(Johnson, 2001; Carcione, 2007), where Kfj is the bulk modulus of
the j-th fluid that diffuses away from the interface separating the
two regions. Omitting the subindex j for clarity the explicit
expressions for P, Q and R are given by

P¼Mða� fÞ2þKmþ
4
3mm;

Q ¼fMða� fÞ;

R¼Mf2
ð2Þ

(Biot and Willis, 1957; Carcione, 2007), where Km is the dry-rock
bulk modulus and mm is the dry-rock shear modulus. The
parameter a (also known as the Biot–Willis coefficient) and M

are given by

a¼ 1�
Km

Ks
;

MðKf Þ ¼
a�f

Ks
þ

f
Kf

� ��1

; ð3Þ

where Ks is the solid-grain bulk modulus. The effective P-wave
bulk modulus of the two regions is

KE ¼
EmM

EG
ð4Þ

(Carcione and Picotti, 2006), where

Em ¼ Kmþ
4
3mm ð5Þ

is the dry-rock P-wave modulus, and

EG ¼ KGþ
4
3mm: ð6Þ

The Gassmann bulk modulus KG is given by

KG ¼ Kmþa2M: ð7Þ

As shown by White (1975), slow-wave diffusion induces wave-
velocity dispersion and attenuation of the fast P-wave, which
depends mostly on the size of the gas pockets (saturation),
frequency, permeability and porosity of the rocks. At very low
frequencies, there is enough time for pore pressure to equilibrate
to a constant value. Therefore, the fluid pressure is uniform
(isostress state), and the effective modulus of the pore fluid is
given by Wood’s (1955) modulus, KW , which is exact for the static
modulus of two fluids:

KW ¼
S1

Kf 1
þ

S2

Kf 2

� ��1

; ð8Þ

where Sj; j¼ 1;2, is the saturation of the j-th fluid. In this case, the
effective bulk modulus of the composite at the low frequency
limit is given by the Gassmann expression

KGW ¼ Kmþa2MðKW Þ ð9Þ

(Johnson, 2001; Dutta and Odé, 1979), and it is independent of the
spatial distribution of the fluids. The process of equilibration is
governed by the diffusion equation whose diffusivity constant is
given by (1). After some algebra, Eq. (1) may be rewritten in a
more simple form:

DðKf Þ ¼
kKE

Z
ð10Þ

and the critical fluid diffusion relaxation length is given by

Lc ¼
ffiffiffiffiffiffiffiffiffiffi
D=o

p
: ð11Þ

On the other hand, when the frequency is sufficiently high
(e.g. smaller diffusion lengths) the pore pressures in the two
phases do not have enough time to equilibrate within one half
cycle. Consequently, the pressure is not uniform, but, it can be
assumed to be constant within each phase. In such a situation, the
fluid flow effects can be ignored and Hill’s theorem (Hill, 1964;
Norris, 1993) gives the composite bulk modulus at the high-
frequency limit:

KGH ¼
S1

EG1
þ

S2

EG2

� ��1

�
4

3
mm: ð12Þ
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The high-frequency P-wave modulus is given by

E1 ¼ KGHþ
4
3mm: ð13Þ

3. Models and wave properties

3.1. White’s and Johnson’s models

To illustrate the frequency dependence of the crossover
phenomenon we consider White’s and Johnson’s approaches with
a regular distribution of patches, which are more extensively
outlined in the appendices. White (1975) and White et al. (1975)
were the first to introduce the mesoscopic-loss mechanism based
on approximations in the framework of Biot theory. They
considered a periodic ensemble of gas pockets in a water-
saturated porous medium. Their first model consisted of porous
layers alternately saturated with water and gas, respectively. Then
they proposed a model consisting of a periodic ensemble of water-
saturated cubic cells each containing a sphere saturated with gas
in which the fluid flow occurs at the sphere’s interface. For
simplicity in the calculations, White considered an outer sphere
instead of a cube. Thus, the system consists of two concentric
spheres, where the volume of the outer sphere is the same as the
volume of the original cube. Johnson (2001) developed a general-
ization of the White model for periodic ensembles of fluid patches
of arbitrary identical shape. In addition to the usual parameters of
White theory, this model has two other geometric parameters: the
specific surface area S=V and T. The parameter S=V depends on
the shape of the patches, whereas the parameter T is governed by

the mean size of the patches (Johnson, 2001). For these reasons,
we refer to S=V as the shape factor and to T as the size factor. For a
given shape, Johnson (2001) derived asymptotic solutions for low
and high frequencies. The solution for intermediate frequencies
was proposed using the simplest function that ensured causality
of the solution.

3.2. Phase velocity and quality factor

Once we have determined ~K ðoÞ, the complex P-wave velocity
is given by

vðoÞ ¼

ffiffiffiffiffiffiffiffiffiffi
EðoÞ
r

s
; ð14Þ

where EðoÞ is the complex P-wave modulus

EðoÞ ¼ ~K ðoÞþ4
3mm: ð15Þ

The dry-rock shear modulus, mm is assumed frequency-
independent and everywhere constant. Moreover, r¼ ð1�
fÞrsþfrf is the bulk density, rs is the grain density, and f is
the porosity. The density of the fluid mixture is

rf ¼ S1rf 1þS2rf 2; S2 ¼ 1� S1; ð16Þ

where rf 1 and rf 2 are the densities of fluids 1 and 2 (gas and
water in White’s theory). The complex bulk modulus (15) can be
expressed as E¼ jEjexpðiyÞ, where y is the loss angle. We use the
concept of complex velocity to obtain the phase velocity and loss
angle as a function of angular frequency o. They are simply given
by

vp ¼ Re
1

v

� �� ��1

ð17Þ

and

y¼ tan�1 Imðv2Þ

Reðv2Þ

� �
¼ tan�1 1

Q

� �
; ð18Þ

where Re and Im denote real and imaginary parts, respectively.
Then, the relation between the loss angle and the standard
definition of quality factor in viscoelasticity is Q�1 ¼ tany.

3.3. The Zener model

To obtain the phase velocity and quality factor of the
equivalent viscoelastic medium, we use the Zener model
(Carcione, 2007). The dimensionless complex modulus of a Zener
element can be expressed as

CðoÞ ¼ ts
te

� �
1þðpteÞ
1þðptsÞ

� �
; ð19Þ

where p¼ io is the imaginary frequency and ts and te are
relaxation times. The quality factor associated with C is equal to
ReðCÞ=ImðCÞ. Its minimum value is located at

o0 ¼
1ffiffiffiffiffiffiffiffiffiffitste
p ð20Þ

and is equal to

Q0 ¼
2x

x2 � 1
; x¼

te
ts

� �1=2

; ð21Þ

where f0 ¼o0=ð2pÞ is the central frequency of the relaxation peak,
and 1=Q0 is the maximum dissipation factor (e.g., Carcione, 2007).
Using o0 and Q0 as parameters, we have

te ¼
x

o0
; ts ¼

1

xo0
; ð22Þ

where x is a solution of Eq. (21):

x¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

0

q
Q0

: ð23Þ

The complex velocity v is the key quantity to obtain the phase
velocity and quality factor of the equivalent viscoelastic medium.
Assuming that there is no shear relaxation, the complex P-wave
modulus is

E¼ ðE1 � 4
3 mmÞCðoÞþ4

3mm; ð24Þ

where o is the angular frequency and E1 is the high-frequency P-
wave modulus given by (13). If mm is not constant, it is necessary
to set E¼ E1CðoÞ.

4. Matrix and fluid properties

We consider a uniform porosity f¼ 0:3 and permeability
k¼ 1 D, which are typical values for reservoir rocks (Bear, 1972).
Permeability is related to porosity by the Kozeny–Carman relation

k¼ Bf3D2

ð1� fÞ2
ð25Þ

(Mavko et al., 1998), where D is the grain diameter ðD¼ 80mm for
a sandstone), and B¼ 0:003 is a geometric factor. We use the
model of Krief et al. (1990) to obtain the dry-rock moduli Km and
mm. The porosity dependence is consistent with the concept of
critical porosity because the moduli should be small above a
certain value of the porosity (usually from 0.4 to 0.6). The moduli
are given by

Km ¼ Ksð1� fÞ3=ð1�fÞ;

mm ¼ Kmms=Ks; ð26Þ

where Ks and ms are the bulk and shear moduli of the solid grains.
The mesoscopic-loss effect is enhanced when the stiffnesses of the
two fluids in the pore space are quite different, such as gas and
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water. The properties of the fluids, which correspond to those of
water and methane (CH4) at 1-km depth given in Carcione and
Picotti (2006), depend on temperature and pressure, which in turn
depend on depth z (Friedman, 1963; Morse and Ingard, 1986). The
material properties of matrix and fluids are given in Table 1.

5. Examples

In order to compare the White and Johnson models, we
consider the following two simple geometries of the patches:
(a) the concentric spheres geometry wherein a gas-saturated
sphere of radius a is surrounded by an outer sphere of radius b,
and (b) the plane layer geometry in which a gas-saturated layer of
thickness d1 and a water-saturated layer of thickness d2 are
periodically repeated as in White et al. (1975). Thus, we have a
total of four cases: White layered, White spherical, Johnson
layered and Johnson spherical. We compare patches of the same

Table 1
Material properties.

Matrix

Grain bulk modulus; Ks 37 GPa

Grain shear modulus; ms 44 GPa

Grain density;rs 2650 kg=m3

Dry� rock bulk modulus; Km 8 GPa

Dry� rock shear modulus; mm 9.5 GPa

Porosity; f 0.3

Permeability; k 1 D

Water

Bulk modulus; Kf 2.25 GPa

Density;rf 1040 kg=m3

Viscosity;Z 3 cP

Gas

Bulk modulus; Kf 0.012 GPa

Density; rf 78 kg=m3

Viscosity; Z 0.15 cP

Fig. 1. Phase velocity (a) and loss angle (and quality factor) (b) curves corresponding to four cases: White layered, White spherical, Johnson layered and Johnson spherical.

Material properties are shown in Table 1 and gas saturation is 50%. Period of the layered model L¼ d1þd2 is set equal to outer radius of spherical model: L¼ b¼ 40 cm.

Models are in good agreement.

S. Picotti et al. / Computers & Geosciences 36 (2010) 44–53 47
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size setting the period of the layered model L¼ d1þd2 equal to the
outer radius of the spherical model: L¼ b¼ 40 cm.

Fig. 1 shows the corresponding phase velocities (a) and loss
angles (b) of the four cases, all at the gas saturation S2 ¼ 50%. It is
immediately apparent that, even if the geometry of the patches
are completely different, the shapes of both the velocity and loss
angle curves are quite similar in all the four cases. Also, the values
of the crossover frequency and maximum loss (i.e., the position of
the attenuation peak) are very close to each other. This result is in
agreement with the fact that the shape and size factors have
almost the same values for the two geometries: S=V ¼ 5:0, 4.72
and 1000T ¼ 0:397;0:363 for the layered and spherical geo-
metries, respectively.

In order to evaluate the sensitivity of the model to a change in
the mobility of the fluid, we computed the curves using a
permeability of 300 mD. In this case, the porosity is not related to
permeability by Eq. (25), and it is the same of the previous case.
Permeability and viscosity describe the mobility of the fluid in the
pore space. As shown in Carcione and Picotti (2006), a decrease in
permeability (or increase in viscosity) decreases mobility. The
relaxation peak moves towards low frequencies for decreasing

permeability, in agreement with Eq. (A.5). For a permeability of
300 mD, the relaxation peak is downshifted to a frequency
of about 23 Hz, while the maximum loss does not change.

Fig. 2 shows the corresponding phase velocities (a) and loss
angles (b) for a gas saturation S2 ¼ 10%. With respect to Fig. 1, we
note that the shapes of both the velocity and loss angle curves are
still similar in all the four cases, but the position of the
attenuation peak is different for the two geometries. In
particular, the relaxation frequency is lower and the maximum
loss is slightly higher for the spherical geometry. This result
reflects the fact that the shape and size factors have different
values: S=V ¼ 5:0;1:62 and 1000T ¼ 0:198;0:629 for the layered
and spherical geometries, respectively. For both geometries, the
White and Johnson models are in good agreement. This downshift
of the relaxation frequency is in agreement with Eqs. (A.5) and
(B.4). Comparing the two equations, we find that the relaxation
frequency is the same for the two geometries when b� a�

d2=ð2
ffiffiffi
2
p
Þ. This condition is satisfied for S2 ¼ 50%, whereas for

S2 ¼ 10% we have b� abd2=ð2
ffiffiffi
2
p
Þ.

In the previous two examples we considered two geometries of
the patches, varying only the saturation of gas and water. Let us

Fig. 2. Phase velocity (a) and loss angle (and quality factor) (b) for a gas saturation of 10%.

S. Picotti et al. / Computers & Geosciences 36 (2010) 44–5348
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keep the saturation and the size factor constant, in order to
examine how the shape of the patches affects the attenuation
curves. We start from a spherical patch of radius b¼ 40 cm,
saturation S2 ¼ 50%, size factor 1000T ¼ 0:363 and shape factor
S=V ¼ 4:72. Then we deform gradually the patch from a sphere to a
fractally rough shape, by simply changing only the shape factor.
The values considered are the following: S=V ¼ 9:44;23:6 and 47.2,
which correspond, respectively, to twice, five times and ten
times the initial spherical shape factor. Fig. 3 shows the phase
velocities (a) and loss angles (b) corresponding to the four values
considered. We note that the shapes of the curves are similar, but
when S=V increases (i.e., the irregularity of the shape increases),
the relaxation peak moves towards higher frequencies, whereas
the maximum loss decreases. In particular, starting from the
sphere, we observe that if S=V doubles, both the relaxation
frequency and the maximum loss change by the same percentage
(about 20%). However, when S=V increases from twice to five
times the initial value, the maximum loss decreases by 20%, while
the relaxation frequency increases by 500%. Finally, when S=V

increases from five times to ten times the initial value, the

maximum loss decreases only by 8%, while the relaxation
frequency increases by 400%. In other words, when the shape
factor becomes twice the initial value for a sphere (regular
shapes), the relaxation frequency and the maximum loss are
affected in the same way. When the shape factor becomes five
times and ten times the initial value (very irregular shapes) the
patch geometry affects the relaxation frequency much more than
it affects the maximum loss.

With the purpose of obtaining the parameters of an equivalent
viscoelastic medium, we fit both the phase velocity and loss angle
curves relative to the White layered case of Fig. 1, using the Zener
model. The result is shown in Fig. 4, where the best fit is obtained
with the parameters f0 ¼ 77:1 Hz and Q0 ¼ 11:8. In the same figure
we also show the Zener best fit of both the phase velocity and loss
angle curves relative to the White spherical case of Fig. 2, obtained
with the parameters f0 ¼ 8 Hz and Q0 ¼ 6:3. We note that the
Zener model fits, in both cases, better the loss-angle curve than
the velocity curve. Moreover, the loss-angle curve is more reliable
at seismic frequencies (f o250 Hz) in the first case, and in the
range 1–50 Hz in the second case. This is because the Zener model

Fig. 3. Phase velocity (a) and loss angle (and quality factor) (b) corresponding to patches of arbitrary shape (Johnson’s model) and a gas saturation of 50%. These curves

correspond to the following shape factor values: S=V ¼ 4:72;9:44;23:6: and 47.2.
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is only an approximation of the mesoscopic-loss effect. The Zener
model provides enough reliable approximations also for irregular
geometries.

6. Conclusions

One of the major causes of wave attenuation in heterogeneous
porous media is wave-induced flow of pore fluid at mesoscopic
scales. In complex real media the behavior of attenuation as a
function of frequency depends on the distribution and shape of
inhomogeneities. We compared White’s and Johnson’s models in
order to study how the shape of the patches influences the
attenuation curves. The two models are in good agreement in
the layered and spherical cases at a given saturation, and the
geometry appears to affect only the position of the attenuation
peak. Considering patches of arbitrary shape, the patch geometry
affects both the relaxation frequency and the maximum loss. For
regular geometries they are affected in the same way, whereas for

fractally rough geometries, the former is much more affected than
the latter.

The mesoscopic models can be effectively approximated by
using the Zener viscoelastic model. The Zener model provides
accurate fits when the patches have a regular geometry. On the
other hand, despite that the fit is not mathematically perfect, the
Zener model provides a good approximation also for irregular
geometries. For practical purposes, the approximation is good
enough to obtain synthetic seismograms in heterogeneous media.
The advantages are that the use of very small grid spacings due to
the presence of the Biot slow wave can be avoided. This implies
that one can use a coarse grid, saving computer storage,
particularly in three dimensions. Moreover, the viscoelastic
modeling algorithm uses fewer material properties and field
variables than the corresponding poroelastic modeling. Hence
further storage saving and reduction of computer time can be
achieved.

This research is of particular relevance for the simulation of
wave propagation in reservoir rocks.

Fig. 4. Best fit of both phase velocity (a) and loss angle (and quality factor) (b) curves relative to White layered case of Fig. 1 and White spherical case of Fig. 2 using Zener

model. Parameters of Zener model are f0 ¼ 77:1 Hz;Q0 ¼ 11:8 in first case, and f0 ¼ 8 Hz;Q0 ¼ 6:3 in the second.
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Appendix A. White’s model of a layered porous medium

Let us consider a periodic layered system composed of porous
media 1 and 2 with thickness dl, period d1þd2 and saturation
Sl ¼ dl=ðd1þd2Þ; l¼ 1;2. White et al. (1975) obtained the complex
bulk modulus for a P wave traveling along the direction
perpendicular to the stratification. It is given by

EðoÞ ¼ 1

E1
þ

2ðr2 � r1Þ
2

ioðd1þd2ÞðI1þ I2Þ

" #�1

: ðA:1Þ

Omitting the subindex l for clarity, we have for each medium:

r¼
aM

EG
: ðA:2Þ

This is the ratio of fast P-wave fluid tension to total normal stress.
Moreover,

I¼
Z
kk

coth
kd

2

� �
ðA:3Þ

is an impedance related to the slow P-wave, where Z is the fluid
viscosity, k is the permeability, and

k¼

ffiffiffiffiffiffiffiffiffi
ioZ
kKE

s
ðA:4Þ

is the complex wavenumber of the slow P-wave. The parameters
E1, M, KE and EG are given by Eqs. (13), (3), (4) and (6),
respectively. In this model the fluid pressures will equilibrate if
the Biot slow-wave relaxation length Lc , given by (11), is
comparable to the period of the stratification. The approximate
transition frequency separating the relaxed and unrelaxed states
(i.e., the approximate location of the relaxation peak) is

oc ¼
16kKE2

Z2d2
2

ðA:5Þ

(Dutta and Seriff, 1979; Carcione et al., 2003), where the subindex
2 refers to water for a layered medium alternately saturated with
water and gas. At this reference frequency, the critical length Lc

equals the mean layer thickness or characteristic length of the
inhomogeneities (Gurevich and Lopatnikov, 1995). Eq. (A.5)
indicates that the mesoscopic-loss mechanism moves towards
the low frequencies with increasing viscosity and decreasing
permeability.

Appendix B. White’s model of spherical gas pockets

White (1975) assumed spherical patches much larger than the
grains but much smaller than the wavelength. He developed the
theory for a gas-filled sphere of porous medium of radius a located
inside a water-filled sphere of porous medium of outer radius b

(aob). Let us denote the saturation of gas and water by S1 and S2,
respectively. Then

S1 ¼
a3

b3
; S2 ¼ 1� S1: ðB:1Þ

Assuming that the dry-rock, grain moduly and permeability of the
different regions are the same, the dynamic bulk modulus as a

function of frequency is given by

~K ðoÞ ¼ KGH

1�WKGH
; ðB:2Þ

where KGH is given by (12). Moreover

W ¼
3iakðR1 � R2Þ

b3oðZ1Z1 � Z2Z2Þ

M1

KG1
�

M2

KG2

� �
;

R1 ¼
ðKG1 � KmÞð3KG2þ4mmÞ

KG2ð3KG1þ4mmÞþ4mmðKG1 � KG2ÞS1
;

R2 ¼
ðKG2 � KmÞð3KG1þ4mmÞ

KG2ð3KG1þ4mmÞþ4mmðKG1 � KG2ÞS1
;

Z1 ¼
1� expð�2g1aÞ

ðg1a� 1Þþðg1aþ1Þexpð�2g1aÞ
;

Z2 ¼
ðg2bþ1Þþðg2b� 1Þexp½2g2ðb� aÞ�

ðg2bþ1Þðg2a� 1Þ � ðg2b� 1Þðg2aþ1Þexp½2g2ðb� aÞ�
;

gj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ioZj=ðkKAjÞ

q
;

KAj ¼
Km

KGj
Mj; j¼ 1;2; ðB:3Þ

where Ks is the bulk modulus of the grains, Kfj are the bulk moduli
of the fluids, Zj are the fluid viscosities, KGj are the Gassmann
moduli given by (7) and the parameter Mj is given by (3). Finally,
the approximate transition frequency separating the relaxed and
unrelaxed states is given by

oc ¼
2kKE2

Z2ðb� aÞ2
ðB:4Þ

(Dutta and Seriff, 1979; Carcione et al., 2003), where KE2 is the
effective P-wave bulk modulus of the water saturated region (the
subindex 2 refers to water) given by (4). We should be aware of
the limitations of the theory. For simplicity in the calculations,
White considered an outer sphere of radius b (b4a), instead of a
cube. Thus, the system consists of two concentric spheres, where
the volume of the outer sphere is the same as the volume of the
original cube. The outer radius is b¼ l=ð4p=3Þ1=3, where l is the
size of the cube. The distance between pockets is l. When a¼ l=2
the gas pockets touch each other. This happens when
S1 ¼ p=6¼ 0:52. Therefore, for values of the gas saturation higher
than this critical value, or values of the water saturation between
0 and 0.48, the theory is not rigorously valid. Another limitation to
consider is that the size of gas pockets should be much smaller
than the wavelength, i.e., a5cr=f , where cr is a reference velocity
and f is the frequency.

Appendix C. Johnson’s model of patchy saturation

In recent studies (Johnson, 2001; Müller and Gurevich, 2005) a
generalization of White’s model for patches of arbitrary shape was
developed. In particular, Johnson developed a simple model for
the dynamic bulk modulus ~K ðoÞ, which describes the crossover
between the two frequency limits. In addition to the usual
parameters of Biot theory, this model has two other parameters,
depending on the patch geometry. These parameters are S=V , the
ratio of the surface area of a patch to the sample volume, and T,
which is related to the geometry of the patches. These two
parameters appear in the expressions for the high and low
frequency limits. Because it is assumed that the saturation of the
pore space occurs in patches, there are two different fluids that
occupy different regions, which shall be denoted as regions 1 and
2. Because ~K ðoÞ is the Fourier transform of a real-valued response
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function, it is constrained by the reflection symmetry

~K ð�o�Þ ¼ ~K
�
ðoÞ: ðC:1Þ

Moreover, general considerations on the expression for the
dynamic bulk modulus allows us to infer that ~K ðoÞ must have
the following expansions:

lim
o-0

~K ðoÞ ¼ KGW ½1� ioTþ � � ��;

lim
o-1

~K ðoÞ ¼ KGH½1� Gð�ioÞ�1=2
þ � � �� ðC:2Þ

(Johnson, 2001). The real valued coefficient G is

G¼
Dpf

Pe

����
����
2

S

V

ffiffiffiffiffiffi
D�
p

; ðC:3Þ

where the effective diffusivity D� is

D� ¼
kKGH

Z1

ffiffiffiffiffiffi
D1

p
þZ2

ffiffiffiffiffiffi
D2

p
" #2

: ðC:4Þ

The resulting discontinuity in pore pressure Dpf , relative to the
applied external stress Pe, is constant along the interface between
the two regions and is given by

Dpf

Pe
¼
ðR2þQ2ÞEG1 � ðR1þQ1ÞEG2

fS1KG1EG2þfS2KG2EG1
: ðC:5Þ

Sj is the saturation of the j-th fluid, the diffusivity Dj is given by
(1), the coefficients Rj, Qj are given by (2) and the Gassmann
moduli of the j-th region KGj and EGj are given, respectively, by (7)
and (6). Pride et al. (1993) suggested for ~K ðoÞ the following
expression:

~K ðoÞ ¼ KGH �
KGH � KGW

1� xþx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� iot=x2

q ; ðC:6Þ

where consistency with Eqs. (C.1) and (C.2) requires

t¼ KGH � KGW

KGHG

� �2

ðC:7Þ

and

x¼
KGH � KGW

2KGW

t
T

� 	
: ðC:8Þ

Because the parameters x and t are calculated from S=V and T

separately, they are not fitting parameters; rather, they have a
precise physical significance: x is a shape parameter, whereas t
sets the frequency scale. When xo1 the crossover region is quite
broad, whereas when x41 it is quite narrow. Finally, the concepts
of high- and low-frequency limits allow a more reasonable
definition of the transition frequency separating the relaxed and
unrelaxed states. It may be defined as the frequency where the
high and low frequency asymptotes for the attenuation
jImð ~K ðoÞÞ=Reð ~K ðoÞÞj intersect:

oc ¼
G

2T

� �1=3

: ðC:9Þ

It is clear that the parameter S=V depends on the shape of the
patches. However, the parameter T depends on the geometry of
the patches in a complicated and non-local way, which can be
solved only with certain simplifying geometries. Essentially, T is
governed by the mean size of the patch (Johnson, 2001). Let us
consider, as in the previous section, the concentric spherical
geometry (White, 1975), wherein region 1 is a gas-filled sphere of
porous medium of radius a surrounded by region 2 of outer water-
filled sphere of radius b (aob). The two Johnson’s parameters

have the following expression:

S=V ¼ 3
a2

b3
;

T ¼
KGWf2

30kR3
b

f½3Z2g2
2þ5ðZ1 � Z2Þg1g2 � 3Z1g2

1 �a
5

� 15Z2g2ðg2 � g1Þa
3b2þ5g2½3Z2g2 � ð2Z1 � Z2Þg1�a

2b3

� 3Z2g2
2b5g;

where

gj ¼
ð1� Km=KsÞð1=KW � 1=KfjÞ

1� Km=Ks � fKm=KsþfKm=KW
; j¼ 1;2: ðC:10Þ

Analogously, if region 1 is a layer of thickness d1 ¼ 2l1 and region 2
is a layer of thickness d2 ¼ 2l2 periodically separated as in White
et al. (1975), we have

S=V ¼
1

l1þ l2
;

T ¼
KGWf2

6kðl1þ l2Þ
fZ1g2

1 l31þ3Z1g1g2l21l2þ3Z2g1g2l1l22þZ2g2
2 l32g ðC:11Þ

(Johnson, 2001). The physical significance of the parameter T can
be more easily understood when one phase ‘‘gas’’ is much more
compressible and much less viscous than the other phase ‘‘fluid’’,
i.e., as if the gas phase may be approximated as a vacuum. In this
special case T represents the diffusion time for equilibrating stress
in the porous skeleton over the size of the fluid patch. In other
words, it is the mean lifetime for diffusion across the fluid patch
(Johnson, 2001).
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