Oscillatory numerical experiments in finely layered anisotropic viscoelastic media

Stefano Picotti, José M. Carcione, Juan E. Santos

1. Introduction

Many geological systems, as for instance fluvial and lacustrine depositional formations, are composed of very thin layers with varying viscoelastic properties and cannot be correctly described by isotropic rheological equations, requiring to be modeled as transversely isotropic media. This occurs when the dominant wavelength of the seismic signal is much larger than the thickness of the single layers. The medium is seen by the signal as transversely isotropic with a vertical axis of symmetry (Backus, 1962; Carcione, 2007).

Each single layer is transversely isotropic in many situations. For instance, the elastic properties of shales are strongly affected by the presence of clay minerals, controlling in particular the degree of anisotropy. In fact, monocrystals of clay minerals are very thin platelets whose aggregates may exhibit considerable anisotropy of elastic properties (Bayuk et al., 2007). During deposition at the sediment–water interface, clays have a high porosity because sedimentation occurs more commonly as flocculated clay aggregates having random orientation of clay particles. With increasing overburden pressures, mechanical compaction and dewatering processes reduce the porosity because the platy clay domains tend to collapse generating a preferred orientation (Revil et al., 2002), which is generally perpendicular to the direction of maximum compaction stress. Bottom currents can also reorient the grains to a more preferred orientation. Other examples of intrinsic anisotropic materials are biogenic carbonates. Having studied many sediment samples from core drilling sites, Carlson and Christensen (1979) suggested that in chalks and limestones the phenomenon results from the preferred orientation of calcite grains, rather than the alignment of cracks and pores in the sediment. Carlson et al. (1984) concluded that carbonate-bearing deep-sea sediments may be regarded as transversely isotropic media with symmetry axes normal to bedding. Moreover, the system studied in this work can be of interest in the theory of composites, where fibers in the form of sheets or material variations are usually used to deliberately make the composite anisotropic along a given direction to induce maximum stiffness (Amirkhiz et al., 2010).

To our knowledge, the first researcher to study the anisotropic character of finely layered media was Bruggeman (1937). Others analyzed the problem using alternative approaches, e.g., Riznichenko (1949) and Postma (1955), who considered a two constituent periodically layered medium. Later, Backus (1962) showed that a system composed of several thin layers is equivalent (each layer is assumed thin relative to the dominant wavelength) to a homogeneous, transversely isotropic medium, and that the properties of this equivalent medium can be derived using appropriate averaging techniques. Backus also obtained the average elasticity constants in the more general case when the single layers are transversely isotropic with the symmetry axis perpendicular to the layering plane. Moreover, he assumed...
stationarity, i.e., in a given length of composite medium much smaller than the wavelength, the proportion of each material is constant (periodicity is not required).

Schoenberg and Muir (1989) extended Backus approach to single layers of arbitrary anisotropic layers using a matrix formalism. However, this generalization has been questioned by Hudson and Crampin (1991), who state that the theory cannot be applied to oblique sets of layers or cracks (even for weak anisotropy), since the structure is no longer one-dimensional and Backus’s assumptions are invalidated. In this paper, we consider single transversely isotropic viscoelastic layers with a vertical symmetry axis. The test of Schoenberg and Muir’s theory in the lossless and anelastic cases is a topic of future research.

Backus averaging for the lossless case has been verified numerically by Carcione et al. (1991), who found that the minimum ratio between the P-wave dominant pulse wavelength and the spatial period of the layering depends on the contrast between the constituents. For instance, for a periodic sequence of epoxy-glass it is approximately 8, and for sandstone-limestone (which has a lower reflection coefficient) it is between 5 and 6. In any case, an optimal ratio can be found for which the equivalence between a finely layered medium and a homogeneous transversely isotropic medium is valid. Carcione (1992) generalized Backus averaging to the anelastic case, obtaining the first model for Q-anisotropy (see Carcione, 2007), hereafter referred to as the Backus–Carcione theory. Other alternative models of Q-anisotropy were proposed by Carcione and Cavallini (1994, 1995) and Carcione et al. (1998). A brief description of all these models can be found in Carcione (2007).

Picotti et al. (2010) and Santos et al. (2011) were the first to test Backus–Carcione theory, introducing a novel method to obtain the complex and frequency-dependent stiffnesses from numerical simulations of oscillatory (harmonic) tests. They applied the methodology to a shale-limestone and epoxy-glass periodic sequence of thin layers, and computed the quality factor and wave velocities as a function of frequency and propagation direction. This analysis indicates that attenuation anisotropy due to thin-layering is more pronounced for shear waves than for compressional waves. Moreover, attenuation is higher in the direction perpendicular to layering or close to it. Using a similar approach, Picotti et al. (2010) and Santos et al. (2011) considered isotropic layers, while Carcione et al. (2011) and Križkalla and Müller (2010) extended the methodology to poroelastic media, obtaining the five complex and frequency-dependent stiffnesses of the equivalent viscoelastic medium.

In order to test the general Backus–Carcione theory for Q-anisotropy, we perform numerical simulations using an upscaling procedure to obtain the complex stiffnesses of the effective viscoelastic transversely isotropic medium. This is the generalized version to the TIV case of the procedure used by Picotti et al. (2010) and Santos et al. (2011). It consists of the simulation of oscillatory compressibility and shear tests based on a space–frequency domain FE method. First, we use the FE method at a single frequency to approximate the solutions of the associated boundary value problems and obtain the effective complex stiffnesses versus frequency. Then, quality factors and energy velocities as a function of frequency and propagation angle are computed, using the complex stiffnesses obtained numerically and analytically. Finally, we compare the two results and validate the theory, discussing the differences with the results using isotropic layers (Picotti et al. 2010).

2. Generalized viscoelastic Backus averaging

We consider that each thin layer is a TIV medium that can be described by the model developed by Carcione (1990). The complex stiffnesses, in Voigt’s notation, are given by (Carcione, 2007)

\[p_{ii} = c_{ii} - \frac{\bar{c}}{c_{ij}}, \]

(2.1)

\[p_{ij} = c_{ij} - \frac{\bar{c}}{c_{ij}}, \quad i \neq j. \]

(2.2)

\[p_{aa} = c_{aa} - \frac{\bar{c}}{c_{aa}} - \frac{\bar{c}}{c_{ab}}, \]

(2.3)

where \(\bar{c} = \frac{\bar{c}}{c_{ij}} \).

Here, \(M_i \) and \(M_j \) are frequency-dependent complex functions corresponding to dilatational and shear deformations, respectively, and \(c_{ij} \) are the unrelaxed (high-frequency limit) stiffness components.

To quantify the anisotropy of each thin layer, we use Thomsen’s (1986) coefficients:

\[\epsilon = \frac{c_{11} - c_{33}}{2c_{33}}, \]

\[\gamma = \frac{c_{66} - c_{55}}{2c_{55}}, \]

\[\delta = \frac{(c_{13} + c_{55})^2 - (c_{33} - c_{55})^2}{2c_{55}(c_{33} - c_{55})}. \]

(2.6)

If \(c_{p} \) and \(c_{s} \) are the elastic high-frequency limit compressional- and shear-wave velocities, and \(\rho \) is the density, the coefficients \(c_{55} \) and \(c_{66} \) are given by

\[c_{33} = \rho c_{p}^2, \quad c_{55} = \rho c_{s}^2. \]

(2.7)

The other three coefficients, \(c_{11}, c_{66} \) and \(c_{13} \), can be obtained from Eq. (2.6). According to Carcione (1992), the equivalent TIV is defined by the following complex stiffnesses:

\[\bar{p}_{11} = \left(p_{11} - p_{12}^2 p_{33} \right) + \left(p_{33} \right)^{-1} \left(p_{33} \right)^{-1} \left(p_{13} \right)^{-1}, \]

\[\bar{p}_{33} = \left(p_{33} \right)^{-1}, \]

\[\bar{p}_{13} = \left(p_{13} \right)^{-1} \left(p_{13} \right)^{-1} \left(p_{33} \right)^{-1}, \]

\[\bar{p}_{55} = \left(p_{55} \right)^{-1}, \]

\[\bar{p}_{66} = \left(p_{66} \right)^{-1}. \]

(2.8)

where the thickness weighted average of a quantity \(a \) is defined as

\[\langle a \rangle = \sum_{l=1}^{n} q_l a_l, \]

(2.9)

where \(q_l \) is the relative thickness of material \(l \). In the case of a periodic sequence of two alternating layers, Eq. (2.8) are similar to those of Postma (1955), who considered lossless layers.

The method is valid for any complex modulus describing the anelastic properties of the medium. Here, we assume constant quality factors over the frequency range of interest (until about 100 Hz). Such behavior is modeled by a continuous distribution of relaxation mechanisms based on the standard linear solid (Liu et al., 1976, Ben-Menahem and Singh, 1981, p. 909; Carcione, 2007). The dimensionless dilatational and shear complex moduli for a specific frequency can be expressed as

\[M_v(\omega) = \left(1 + \frac{2}{\pi Q_v} \ln \left(\frac{1 + i \omega T_v}{1 + i \omega T_1} \right) \right)^{-1}, \quad v = 1, 2, \]

(2.10)
where \(\omega \) is the angular frequency, \(i = \sqrt{-1} \), \(\tau_1 \) and \(\tau_2 \) are time constants, with \(\tau_2 < \tau_1 \), and \(Q_{0\nu} \) defines the value of the quality factor which remains nearly constant over the selected frequency range.

An alternative model describing the relaxation mechanism is a single Zener element. The complex moduli associated with bulk and shear deformations of a Zener element can be expressed as

\[
M_i = \frac{1 + i\omega \tau_i^{(0)}}{1 + i\omega \tau_i^{(0)}}, \quad v = 1, 2,
\]

(2.11)

where \(\tau_i^{(0)} \) and \(\tau_i^{(0)} \) are relaxation times. They are given by

\[
\tau_i^{(0)} = \frac{\tau_0}{Q_{0\nu}(1 + 1)}, \quad \tau_i^{(0)} = \frac{2\tau_0}{Q_{0\nu}}.
\]

(2.12)

where \(\tau_0 \) is a relaxation time such that \(1/\tau_0 \) is the center frequency of the relaxation peak and \(Q_{0\nu} \) are the minimum dilatational and shear quality factors.

3. Determination of the stiffnesses

In order to determine the coefficients in Eqs. (B.9)–(B.14) we proceed as follows (see also Picotti et al., 2010; Santos et al., 2011; Carcione et al., 2011). We solve Eq. (B.8) in the 2D case on a reference square \(\Omega = (0, L)^2 \) with boundary \(\Gamma \) in the \((x_1, x_3)\)-plane. Set \(\Gamma = \Gamma^L \cup \Gamma^R \cup \Gamma^T \cup \Gamma^\gamma \), where

\[
\Gamma^L = \{(x_1, x_3) \in \Gamma : x_1 = 0 \}, \quad \Gamma^R = \{(x_1, x_3) \in \Gamma : x_1 = L \},
\]

\[
\Gamma^T = \{(x_1, x_3) \in \Gamma : x_3 = 0 \}, \quad \Gamma^\gamma = \{(x_1, x_3) \in \Gamma : x_3 = L \}.
\]

Denote by \(\nu \) the unit outer normal on \(\Gamma \) and let \(\chi \) be a unit tangent on \(\Gamma \) so that \(\{\nu, \chi\} \) is an orthonormal system on \(\Gamma \). The sample is subjected to time-harmonic compressions \(\Delta P e^{i\omega t} \), where \(P \) denotes pressure, and time-harmonic tangential forces \(\Delta G e^{i\omega t} \), where \(G \) is the shear stress (see Fig. 1). Moreover, denote by \(u \) and \(\sigma \) the displacement and stress vectors.

It follows how to obtain the stiffness components.

(i) \(\mathbf{P}_{33} \): We solve Eq. (B.8) in \(\Omega \) with the following boundary conditions:

\[
\sigma(u) \cdot v = -\Delta P, \quad (x_1, x_3) \in \Gamma^T,
\]

(3.1)

\[
\sigma(u) \cdot \chi = 0, \quad (x_1, x_3) \in \Gamma,
\]

(3.2)

\[
u \cdot v = 0, \quad (x_1, x_3) \in \Gamma^L \cup \Gamma^R \cup \Gamma^\gamma.
\]

(3.3)

In this experiment \(e_{11}(u) = e_{22}(u) = 0 \) and from Eq. (B.11) we see that this experiment determines \(\mathbf{P}_{33} \) as follows.

Denoting by \(V \) the original volume of the sample and by \(\Delta V(\omega) \) its (complex) oscillatory volume change, we note that

\[
\frac{\Delta V(\omega)}{V} = \frac{-\Delta P}{\mathbf{P}_{33}(\omega)}.
\]

(3.4)

valid in the quasi-static case. After solving Eq. (B.8) with the boundary conditions (3.1)–(3.3), the vertical displacements \(u_{1}(x, L, \omega) \) on \(\Gamma^T \) allow us to obtain an average vertical displacement \(\bar{u}_{1}^{(\omega)}(\omega) \) at the boundary \(\Gamma^T \). Then, for each frequency \(\omega \), the volume change produced by the compressibility test can be approximated by \(\Delta V(\omega) = \bar{L}_{33}(\omega) \), which enable us to compute \(\mathbf{P}_{33}(\omega) \) by using the relation (3.4).

(ii) \(\mathbf{P}_{11} \): The boundary conditions are

\[
\sigma(u) \cdot v = -\Delta P, \quad (x_1, x_3) \in \Gamma^R,
\]

(3.5)

\[
\sigma(u) \cdot \chi = 0, \quad (x_1, x_3) \in \Gamma,
\]

(3.6)

\[
u \cdot v = 0, \quad (x_1, x_3) \in \Gamma^L \cup \Gamma^R \cup \Gamma^T.
\]

(3.7)

In this experiment \(e_{11}(u) = e_{22}(u) = 0 \) and from Eq. (B.9) we have that this experiment determines \(\mathbf{P}_{11} \) in the same way indicated for \(\mathbf{P}_{33} \).

(iii) \(\mathbf{P}_{55} \): The boundary conditions are

\[
\sigma(u) \chi = g, \quad (x_1, x_3) \in \Gamma^T \cup \Gamma^L \cup \Gamma^R,
\]

(3.8)

\[
u = 0, \quad (x_1, x_3) \in \Gamma^R.
\]

(3.9)

where

\[
g = \begin{cases} (0, -\Delta G), & (x_1, x_3) \in \Gamma^L, \\ (0, \Delta G), & (x_1, x_3) \in \Gamma^R, \\ (\Delta G, 0), & (x_1, x_3) \in \Gamma^T. \\ \end{cases}
\]

The change in shape of the rock sample allow us to compute \(\mathbf{P}_{55}(\omega) \) by using the relation

\[
\tan[\theta(\omega)] = \frac{-\Delta G}{\mathbf{P}_{55}(\omega)},
\]

(3.10)

where \(\theta(\omega) \) is the angle between the original positions of the lateral boundaries and the location after applying the shear stresses (Kolsky, 1963).

The horizontal displacements \(u_{1}(x_1, L, \omega) \) at the top boundary \(\Gamma^T \) are used to obtain, for each frequency, an average horizontal displacement \(\bar{u}_{1}^{(\omega)}(\omega) \) at the boundary \(\Gamma^T \). This average value allows us to approximate the change in shape suffered by the sample, given by \(\tan[\theta(\omega)] \approx \bar{u}_{1}^{(\omega)}(\omega)/L \), which from Eq. (3.10) yields \(\mathbf{P}_{55}(\omega) \).

(iv) \(\mathbf{P}_{66} \): Since this stiffness is associated with shear waves traveling in the \((x_1, x_3)\)-plane, we take the layered sample, rotate it 90° and apply the shear test as indicated for \(\mathbf{P}_{55} \).

(v) \(\mathbf{P}_{13} \): The boundary conditions

\[
\sigma(u) \cdot v = -\Delta P, \quad (x_1, x_3) \in \Gamma^R \cup \Gamma^\gamma,
\]

(3.11)

\[
\sigma(u) \cdot \chi = 0, \quad (x_1, x_3) \in \Gamma,
\]

(3.12)

\[
u \cdot v = 0, \quad (x_1, x_3) \in \Gamma^L \cup \Gamma^R.
\]

(3.13)
Thus, in this experiment $\epsilon_{22} = 0$, and from Eqs. (B.9) and (B.11) we get
\[
\tau_{11} = P_{11}\epsilon_{11} + P_{13}\epsilon_{33},
\]
\[
\tau_{33} = P_{13}\epsilon_{11} + P_{33}\epsilon_{33},
\]
(3.14)
where ϵ_{11} and ϵ_{33} are the strain components at the right lateral side and top side of the sample, respectively. Then from Eq. (3.14) and using $\tau_{11} = \tau_{33} = -\Delta P$ [cf. Eq. (3.11)], we obtain $P_{13}(\omega)$ as
\[
P_{13}(\omega) = \frac{P_{11}(\omega) - P_{33}(\omega)}{\epsilon_{11} - \epsilon_{33}}.
\]
(3.15)

To estimate the effective complex stiffnesses, we use a FE procedure to approximate the solution of the equations of motion (B.8) under the boundary conditions described above. We use bilinear functions to approximate the solid displacement vector. The variational formulation for the boundary-value problems defined in this section, as well as the FE method is analogous to that stated in Santos et al. (2011). The results on the existence and uniqueness of the solution of the continuous and discrete problems presented in that reference can be extended to the TIV case here analyzed. Also, a generalization of the argument given in Santos et al. (2011) would yield a priori error estimates of order $h^{3/2}$ in the L^2-norm and $h^{1/2}$ in the H^1-energy norm, h being the size of the computational mesh.

4. Example

The example considers the shale-limestone periodic layered medium described in Carcione (1992), where each layer is a TIV medium. The properties are given in Table 1, where the anisotropic coefficients are taken from Thomsen (1986) and Wang (2002). Let the time constants in Eq. (2.10) be $\tau_1 = 0.16$ s and $\tau_2 = 0.3$ ms, so that the quality factor of each single isotropic layer is nearly constant over the exploration seismic band (from about 10 Hz to 100 Hz). In the long-wavelength limit, the medium is

<table>
<thead>
<tr>
<th>Medium</th>
<th>ρ (kg/m3)</th>
<th>c_p (m/s)</th>
<th>c_s (m/s)</th>
<th>Q_01</th>
<th>Q_02</th>
<th>ϵ</th>
<th>γ</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shale</td>
<td>2250</td>
<td>2074</td>
<td>869</td>
<td>60</td>
<td>20</td>
<td>0.110</td>
<td>0.165</td>
<td>0.090</td>
</tr>
<tr>
<td>Limestone</td>
<td>2700</td>
<td>5443</td>
<td>3043</td>
<td>80</td>
<td>40</td>
<td>0.056</td>
<td>0.067</td>
<td>0.003</td>
</tr>
</tbody>
</table>

![Fig. 2](image_url). q_P-wave phase and energy velocities (a) and quality factor (b) as a function of frequency obtained with the oscillatory tests (symbols) and Backus–Carcione theory (solid line). The propagation angle is $\theta = 60^\circ$. We observe an excellent agreement until about 300 Hz. The dashed curves represent the results obtained by Picotti et al. (2010) using isotropic layers, while (c) and (d) show the same curves obtained using a single Zener element with a relaxation frequency of 30 Hz to describe the anelastic properties of the medium.
described by the Backus averaging relations (2.8), the phase velocities (A.2), the energy velocities (A.3) and (A.7), and the quality factors (A.10). In order to validate the Backus theory we perform the numerical compressibility and shear oscillatory tests described in the previous section. The stratified medium is a 50 cm side sample composed by 100 alternating plane layers of shale and limestone of equal thickness. The spatial period of the layering is then 1 cm. The simulations use a uniform mesh of 100 × 100 elements.

Fig. 2 shows the qP-wave phase and energy velocities (a) and quality factor (b) as a function of frequency obtained with the oscillatory tests (symbols), compared to Backus theory, generalized to the lossy case by Carcione (1992) (solid line). The dashed curves represent the results obtained by Picotti et al. (2010) using isotropic layers, while (c) and (d) show the same curves obtained using a single Zener element [cf. Eq. (2.11)] with a relaxation frequency of 30 Hz to describe the anelastic properties of the medium. These figures show how the model for the relaxation mechanism influences the velocity and attenuation plots versus frequency.

Fig. 3 displays the same results obtained for the shear waves. The propagation angle corresponding to the phase velocity is \(\theta = 60^\circ \) (dashed line). The corresponding energy angles are \(\psi = 83.8^\circ \) for the qP wave, \(\psi = 26.3^\circ \) for the qSV wave and

![Fig. 3](image_url)
ψ = 81.8° for the SH wave. It is seen that anisotropy implies quite different phase and energy velocity curves. We observe an excellent agreement between the theoretical and numerical results until about 300 Hz.

Fig. 4 shows polar representations of the phase velocity (a), energy velocity (b) and quality factor (c) at 30 Hz. The polar curve for the quality factor is given by \(\sin \psi, \cos \psi/Q \). Both the phase and energy angles are indicated. As before, the agreement is excellent. This plot shows that attenuation anisotropy due to fine-layering is more pronounced for shear waves than for compressional waves. Moreover, the intrinsic layer anisotropy affects more the quality factors than the velocities, in particular for qSV and qP waves (compare to the isotropic case). In this case, the qP-, qSV- and SH-wave wavelengths along the symmetry axis (θ = 0) are 92 and 42 m, respectively. Therefore the dominant wavelength (at 30 Hz) to spatial period ratio is 9200 and 4200, respectively, i.e., well within the long-wavelength limit which, in theory, is between 5 and 8 for P waves approximately, and depending on the single constituents).

5. Conclusions

The general Backus–Carcione theory describes the stiffnessness and the anisotropic attenuation features of finely layered media at long wavelengths, when each layer is a transversely isotropic viscoelastic medium. The effective medium has the same material symmetry. These systems can be found in many geological environments, as for instance fluvial, lacustrine, and deep marine sediments, where shales and carbonates are generally found to be intrinsically anisotropic, and in man-made composites, designed for specific purposes.

To test the theory, we have adapted a numerical method based on oscillatory experiments introduced by the same authors in previous works, i.e., we obtain the complex and frequency-dependent stiffnesses which allow us to compute the wave velocities and quality factors as a function of frequency and propagation angle. The methodology is based on a finite-element solution of the equations of motion in the space–frequency domain to simulate harmonic compressibility and shear tests. We consider a periodic sequence of shale and limestone anisotropic layers. The agreement between the numerical and theoretical results is excellent. The method validates the anelastic theory for Q-anisotropy and, in addition, the expressions of the wave velocities and Q factors for homogeneous viscoelastic body waves in anisotropic media. Moreover, the results of the experiments show that layering anisotropy is more pronounced for shear waves than for compressional waves, while intrinsic layer anisotropy affects more the quality factors than the velocities, in particular for qSV and qP waves.

Since attenuation anisotropy is more pronounced than velocity anisotropy, Q-anisotropy estimation may provide more reliable information about the orientation of layering and fractures. Shear-wave experiments can provide useful information, since it is seen that attenuation anisotropy due to fine-layering and intrinsic anisotropy is more pronounced for shear waves than for compressional waves. In poroelasticity, attenuation anisotropy provides additional information for hydrocarbon reservoirs characterization, because it may be used as an indicator of permeability and fluid saturation.

The theory and numerical solver proposed in this work can be applied to more complex geological systems and man-made composite (lower symmetries, stochastic heterogeneities, fractures, cracks, etc.).

Appendix A. Propagation properties

We consider homogeneous viscoelastic waves for which the propagation and attenuation directions coincide (e.g., Carcione, 2007). The complex velocities are the key quantity to obtain the wave velocities and quality factor of the equivalent anisotropic medium. They are given by

\[
V_{qP} = (2\overline{\rho})^{-1/2} \sqrt{\overline{P}_{11} l^2 + \overline{P}_{13} + \overline{P}_{55} + A},
\]

\[
V_{qSV} = (2\overline{\rho})^{-1/2} \sqrt{\overline{P}_{11} l^2 + \overline{P}_{66} l^2 + \overline{P}_{55} - A},
\]

\[
V_{qSH} = (2\overline{\rho})^{-1/2} \sqrt{\overline{P}_{11} l^2 + \overline{P}_{66} l^2 + \overline{P}_{55}},
\]

where \(A = \sqrt{\{\overline{P}_{11} - \overline{P}_{55} l^2 + \overline{P}_{33} l^2\}^2 + 4\{\overline{P}_{13} + \overline{P}_{55} l I_{13}\}^2} \) (A.1)

(Auld, 1990; Carcione, 2007, Eq. (1.79)), where \(\overline{\rho} = \langle p \rangle, l_1 = \sin \theta \) and \(l_2 = \cos \theta \) are the directions cosines, \(\theta \) is the propagation angle between the wavenumber vector and the symmetry axis, and the three velocities correspond to the qP, qSV and SH waves, respectively. The phase velocity is given by

\[
V_p = \left(\frac{\text{Re} \left(\frac{1}{\rho}\right)}{\text{Re} \left(\frac{\overline{P}_{66}}{\overline{P}_{55}}\right)}\right)^{-1},
\]

where \(\nu \) represents either \(V_{qP}, V_{qSV} \) or \(V_{qSH} \). The energy velocity vector of the qP and qSV waves is given by

\[
\frac{V_e}{V_p} = (l_1 + l_2 \cot \psi) - e_1 + (l_1 \tan \psi + l_2)^{-1} e_2 \quad \text{(A.3)}
\]

(Carcione, 2007; Eq. (6.158)), where

\[
\tan \psi = \frac{\text{Re} (\frac{\overline{P}_{66} \overline{P}_{55}}{\overline{P}_{55} \overline{P}_{55}} W^2 + \overline{P}_{55} \overline{P}_{55} Z^2)}{\text{Re} (\overline{P}_{66} \overline{P}_{55} W + \overline{P}_{55} \overline{P}_{55} Z)}
\]

defines the angle between the energy velocity vector and the z-axis, and

\[
\beta = \nu \sqrt{A + B},
\]

\[
\zeta = \nu \sqrt{A - B},
\]

\[
B = \overline{P}_{11} l_1^2 - \overline{P}_{33} l_2^2 + \overline{P}_{55} \cos 2\theta.
\]

(A.5)

where the upper and lower signs correspond to the qP and qSV waves, respectively. Moreover, \(W = \overline{P}_{55} (l_1 + \beta l_2) \).

\[
X = \beta \overline{P}_{11} l_1 + \zeta \overline{P}_{13} l_3,
\]

\[
Z = \beta \overline{P}_{11} l_1 + \zeta \overline{P}_{33} l_3
\]

(Carcione, 2007; Eqs. (6.121)–(6.123)), where “\(\nu \nu \)” denotes the principal value, which has to be chosen according to established criteria (e.g., Sidler et al., 2008).

On the other hand, the energy velocity of the SH wave is

\[
V_e = \frac{V_p}{\text{Re} (\frac{\overline{P}_{66}}{\overline{P}_{55}})} \left[l_1 \text{Re} (\overline{P}_{66} \overline{P}_{55}) \overline{e}_1 + l_2 \text{Re} (\overline{P}_{55} \overline{P}_{55}) \overline{e}_1 \right]
\]

(A.7)

and

\[
\tan \psi = \frac{\text{Re} (\frac{\overline{P}_{66} \overline{P}_{55}}{\overline{P}_{55} \overline{P}_{55}})}{\text{Re} (\overline{P}_{66} \overline{P}_{55})} \tan \theta
\]

(A.8)
Appendix B. The stress–strain relation

Let \(\sigma \) and \(\varepsilon(u) \) denote the time Fourier transform of the stress and strain tensors of the viscoelastic material, where \(u \) is the displacement vector. For a medium composed of a sequence of TIV layers, \(\chi^\nu, \nu = 1, \ldots, N \), the frequency-domain stress–strain relations on each \(\chi^\nu \) are (Carcione, 1992, 2007)

\[
\sigma_{11}(u) = p_1^{11}e_{11}(u) + p_1^{12}e_{22}(u) + p_1^{13}e_{33}(u), \tag{B.1}
\]

\[
\sigma_{22}(u) = p_1^{22}e_{11}(u) + p_1^{22}e_{22}(u) + p_1^{32}e_{33}(u), \tag{B.2}
\]

\[
\sigma_{33}(u) = p_1^{33}e_{11}(u) + p_1^{33}e_{22}(u) + p_1^{33}e_{33}(u), \tag{B.3}
\]

\[
\sigma_{12}(u) = 2p_1^{55}e_{12}(u), \tag{B.4}
\]

\[
\sigma_{13}(u) = 2p_1^{55}e_{13}(u), \tag{B.5}
\]

\[
\sigma_{23}(u) = 2p_1^{55}e_{23}(u), \tag{B.6}
\]

where \(p_1^{\nu}(\omega) \) are the complex coefficients for the \(\nu \)-layer. The conversion between the Voigt stiffnesses and the stiffnesses of the 4th-rank tensors is

\[
p_{11} = p_{55}. \tag{B.7}
\]

I = \delta_{ij} + (1 - \delta_{ij})(9 - j),

J = \delta_{ij} + (1 - \delta_{ij})(9 - k - i),

where \(\delta_{ij} \) denotes the Kronecker delta. The equation of motion is

\[
\omega^2 p_{ij}(x, \omega) + \nabla \cdot (\sigma(x, \omega)) = 0,
\]

where \(\sigma \) is given by (B.1)–(B.6).

Let us consider \(x_1 \) and \(x_2 \) as the horizontal and vertical coordinates, respectively. As shown in Schoenberg and Muir (1989) the medium behaves as a homogeneous TIV medium at long wavelengths. Denoting by \(\tau \) the stress tensor of the equivalent TIV medium, the corresponding stress–strain relations, stated in the space–frequency domain, are (Carcione, 1992, 2007)

\[
\tau_{11}(u) = \mathcal{F}_{11} e_{11}(u) + \mathcal{F}_{12} e_{22}(u) + \mathcal{F}_{13} e_{33}(u), \tag{B.9}
\]

\[
\tau_{22}(u) = \mathcal{F}_{12} e_{11}(u) + \mathcal{F}_{11} e_{22}(u) + \mathcal{F}_{13} e_{33}(u), \tag{B.10}
\]

\[
\tau_{33}(u) = \mathcal{F}_{13} e_{11}(u) + \mathcal{F}_{12} e_{22}(u) + \mathcal{F}_{13} e_{33}(u), \tag{B.11}
\]

\[
\tau_{21}(u) = 2\mathcal{F}_{55} e_{12}(u), \tag{B.12}
\]

\[
\tau_{13}(u) = 2\mathcal{F}_{55} e_{13}(u), \tag{B.13}
\]

\[
\tau_{12}(u) = 2\mathcal{F}_{55} e_{12}(u), \tag{B.14}
\]

where \(\epsilon \) is the effective strain tensor and \(\mathcal{F}_{55} \) are the complex and frequency-dependent Voigt stiffnesses given by Eq. (2.8), to be determined with the harmonic experiments.

References

