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Few problems in elastodynamics have a closed-form analytical solution. The others can be
investigated with semianalytical methods, but in general one is not sure whether these methods
give reliable solutions. The same happens with numerical techniques: for instance, finite
difference methods solve, in principle, any complex problem, including those with arbitrary
inhomogeneities and boundary conditions. However, there is no way to verify the quantitative
correctness of the solutions. The major problems are stability with respect to material properties,
numerical dispersion, and the treatment of boundary conditions. In practice, these problems
may produce inaccurate solutions. In this paper, the study of complex problems with two
different numerical grid techniques in order to cross-check the solutions is proposed. Interface
waves, in particular, are emphasized, since they pose the major difficulties due to the need to
implement boundary conditions. The first method is based on global differential operators where
the solution is expanded in terms of the Fourier basis and Chebyshev polynomials, while the
second is the spectral element method, an extension of the finite element method that uses
Chebyshev polynomials as interpolating functions. Both methods have spectral accuracy up to
approximately the Nyquist wave number of the grid. Moreover, both methods implement the
boundary conditions in a natural way, particularly the spectral element algorithm. We first solve
Lamb’s problem and compare numerical and analytical solutions; then, the problem of dispersed
Rayleigh waves, and finally, the two-quarter space problem. We show that the modeling
algorithms correctly reproduce the analytical solutions and yield a perfect matching when these
solutions do not exist. The combined modeling techniques provide a powerful tool for solving

complex problems in elastodynamics,
PACS numbers: 43.20.Fn, 43.20.Hq, 43.20.Ks

INTRODUCTION

In geophysical problems, it is important to properly
simulate the different types of waves generated at inter-
faces, as for instance, Rayleigh waves at the surface and
Stoneley waves propagating between geological formations.
Lamb’s problem,’ i.e., the response of an elastic half-space
bounded by a free surface to an impulsive force, has an
analytical solution, but others, like the propagation of sur-
face waves in wedge surfaces, or the problem of a quarter-
space and two welded quarter-spaces, are difficult if not
impossible to attack with analytical methods. They present
very complex and interesting phenomena, such as diffrac-
tions at corners, and mode coupling and conversion, which
generate Rayleigh and interface waves, and whose behavior
is very dependent on the material properties. Even Lamb’s
problem, after many years of research, has not been com-
pletely unraveled (for example, the behavior of the non-
geometrical modes, and extension to complex rhmlogicsz).

To ensure reliable results, a modeling technique has to
take care of various aspects, namely, accuracy, proper sim-
ulation of boundary conditions, and the ability to model
surface topography and irregular interfaces. Accuracy de-
pends mostly on the spatial approximation. Low-order fi-
nite element and finite difference schemes have the problem
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of spatial numerical dispersion. Even fourth-order differ-
ential operators do not simulate Rayleigh waves properly,
in part due to numerical dispersion and in part because the
implementation of the free-surface condition is less accu-
rate than the solution in the interior regions of the
model.*~ This work presents two different approaches to
simulating surface and interface waves in elastic media.
The techniques are both based on a Chebyshev expansion
of the wave field. The first algorithm solves the elastody-
namic equations in differential form by computing the spa-
tial derivatives with the Fourier and Chebyshev pseu-
dospectral methods. The second algorithm uses the
Chebyshev polynomials as an interpolant basis in a varia-
tional formulation, and is called the Spectral Element
Method. Both techniques possess spectral accuracy and are
suitable for treating interface problems, particularly the
second, for which boundary conditions and arbitrary inter-
face geometries are naturally taken into account. The rea-
son for using two different approaches is for cross-checking
the results, Most wave propagation problems have no an-
alytical solution, and if two different techniques give the
same solution, one is sure that this solution is free of nu-
merical artifacts.

This paper is organized as follows: the first two sec-
tions describe the modeling algorithms, namely, the spatial
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approximation and the time integration techniques, The
numerical simulations are given in Secs. III, IV, and V.
The first example compares numerical and analytical solu-
tions of Rayleigh waves propagating along the surface of
an homogeneous half-space. This test confirms the accu-
racy of the numerical algorithms. The second example sim-
ulates the dispersed train of Rayleigh waves caused by a
surface layer overlying an elastic half-space. Finally, the
last simulation compares the numerical results of an inter-
face wave generated by a Rayleigh wave at a vertical in-
terface touching the surface (two-quarler-spaces problem).

I. GLOBAL PSEUDOSPECTRAL METHOD (GPM)

The pseudospectral modeling scheme used in this
work was first introduced by Kosloff et al.® for the elastic
wave equation. For computing spatial derivatives, the
scheme is based on the Fourier and Chebyshev differential
operators in the horizontal and vertical directions, respec-
tively, These operators have infinite accuracy (within ma-
chine precision) up to two points per wavelength (the Ny-
quist wave number) and 7 points per wavelength,
respectively, To balance spatial accuracy, the modeling
uses fourth-order time integration techniques, like for in-
stance, the Runge-Kutta method or Taylor expansion of
the evolution operator. The modeling scheme developed by
Kosloff efal has been extended to the isotropic-
viscoelastic rheology by Carcione’ and to the anisotropic-
elastic case by Tessmer ez al.® However, in this paper we
will restrict our analysis to elastic surface and interface
waves. For completeness, the following subsections briefly
describe the modeling algorithm.

A. The wave equation

The wave equation is based on the equation of momen-
tum conservation combined with the constitutive relations
for two-dimensional (2-D) isotropic and elastic media.’
The boundary treatment requires a velocity-stress formu-
lation which takes the following matrix form:

dv dv _dv

it A e T vk 1

at A6x+BBy+S' (1)
where

V7= (V430,000 T3, Oyl (2a)

is the vector of unknown variables,
8'=[ f./;:0,0,0] (2b)

and
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(0 0 p' 0 0]
00 0 0 p!
A=|E 0 0 0 o0 |
A O 0 0 0
0O p 0 0 0
: ’ (3)
(0 0 0 0 p!
000 p' 0
B=0 A 0 0 0|
0 EO0 0 0
e 0 0 0 0 |

where £=A+ 2u, with A(x) and p(x) the Lamé constants.
In the preceding equations, x= (x,y) are the Cartesian co-
ordinates, v.(x,/) and v,(x,) are the particle velocities,
ox(x%,0), 0,,(x,1), and o,,(x,t) are the stress components,
p(x) denotes the density, and f(x,1)=(f,,f,) are the
body forces per unit volume, The superscript T denotes the
transpose of a vector or matrix.

B. Spatial differentiation and boundary conditions

The field variables forming vector v in Eq. (2) are
expanded in terms of a finite sequence of orthogonal func-
tions (truncated series) {¢,} as

u= 2, . (4)
In the x direction we use the set of trigonometric functions

¢;(xj)=€m"xf, (5)
where the discrete distance and wave number are

x;=jdx, j=0,.,N,—1 (6)
and

2arl N, N,
=— = ey 7
kf Nxdx 1 1 ) yeiey 2 lr ( )

respectively, with N, the number of grid points, and dx the
(uniform) grid spacing. The transform pair is

f 1 Moo ’

— 1 —2wijl/N,

U= U e s

! Nx jgo /
(8)
N/2-1

U= z i“"’eimﬂfol

| l=—N/2

Differentiation of # is done in the wave number domain by
simply multiplying each Fourier coefficient by the corre-
sponding wave number. The expansion equations (8), are
evaluated by using the fast Fourier transform (FFT). In
short, the differentiation process is

FFT du FFT! Ju

U Tki=— =« —. 9
U - U ikl e I (&)

Priola et al: Numerical simulation of interface waves 682




In the vertical direction we have to distinguish between
computational domain and physical domain. The former is
defined by the Gauss-Lobatto points which are densely
concentrated at the boundaries of the mesh. Directly com-
puting the solution in this domain requires time steps of
the order O(N, %), making the algorithm highly inefficient.
This problem is solved by a mapping transformation of the
collocation points such that in the physical domain the
minimum grid size is O(N,'). This transformatton re-
duces the computer time by one order of magmtude..
In the y direction the basis functions are

&/(y)) =T(p;) =cos(l arccos y;), (10)

where T'(p) are Chebyshev polynomials, In this case, the
grid points are defined by

. 3(711)—8'“)
y.l""(g(_l)__g(l))ymum (11)

where
]
ﬂj=ms?&;t j=0!'"!Ny (12)

are the Gauss—Lobatto collocation points, and g is a map-
ping transformation given by

glm)y=—|r| =12 arcsin(%glﬁ)
= —4r)’

where r=0.5a"2(B"2+1)—1 and s=0.5a"*(B"*—1)
Since

d

it can be seen that the amount of grid stretching at 5= —1
is dg/dn=a, and that the stretching at n=1 is dg/dy
=afi. The Gauss—Lobatto points have a maximum spacing
at the center of the grid equal to dy,,, =0.5p,,,/sin(7/N,)
which is conserved by the mapping transformation g(7).
Note that this coordinate transformation implies that we
are no longer using a polynomial approximation for the
solution in the physical space. In the computational space,
the transform pair is

(13)

(14)

- 2 % 1 w!
"'HJCOS
N ¢ N
L j=0 € ' (15)
ajl
uy= %n,cos N, (15)
where
= 2, j=0or N,
=11, 1<j<N,—1. (16)

The spatial derivative of a field variable in the physical
domain is then given by
du dudn [g(—1)—g(1) dﬂﬁ
ayan d.v_( dg an’

The first-order derivative of i in the computational domain
can be deduced from the following recurrence relation:

(17)

ymnx

683  J. Acoust. Soc. Am., Vol. 85, No. 2, February 1994

1 1

ZT ‘|+lTH~1 1— IT;—U Jl;‘i- (18)
Assuming that

u X

— 3 T (19)

aﬂ jgﬂ 1 !
from Eqs. (15) and (18) we get

it =w+ 201+ iy, 0<ISN,—1, (20)

2, if I=0
=11, if I, 2D

Since #§" =0 for I>N,, Eq. (20) gives an efficient way of
computing the derivative coefficients in decreasing order.
The transforms [Eqs. (15)] can be computed by using the
FFT algorithm. A more detailed analysis of these differen-
tial operators, together with the FORTRAN codes, can be
found in the book by Canuto et al."’

The Chebyshev operator allows the implementation of
arbitrary boundary conditions. Each time the right-hand
side of Eq. (1) is computed, the boundary conditions are
implemented. However, a direct application of these con-
ditions gives unstable solutions. This problem is solved by
decomposing the wave field into one-way modes (or char-
acteristics) perpendicular to the boundaries, and modify-
ing these modes according to the boundary conditions.
This process implies that for every time step the vector of
field variables are modified at the boundary according to
the following equations (Kosloff er al®'*'): at the free
surface (upper boundary),

1 1
(ncw]_ (old) , = _(old) (new) __ (Dld) olod)
!J +zs U xy ] Uy + yJ,l ]
(22)
(new) _ (nld) (old) (new) __ (new)
Tyx Oxx B 7% Ty =0, Txy 0,

where Zp = /(A+2u)pand Zg = Jip are the compres-
sional and shear impedances of the medium. At the bottom

(open radiation condition),

1
u,scn‘:“')=i (u;old}_fs ai;ld)).

1 1
(new) __ _ [, (old) (old)
DJ.' ---.:2 (Uy Z.P Uyy );

a;:,:w):o_mm) ( (Dld)'f‘zﬁ'”;nld))’ (23)
(l'l!-‘w) ( (Old) (Uld])
?

(new) 1 1d ) (old)
UJGJ' =3 (Uﬁ; —Zsu;’ )

Since for nonvertical incidence the incoming waves may
not be eliminated completely, an absorbing strip is added
to improve the efficiency.® Similar absorbing regions are
placed along the boundaries in the horizontal direction to
avoid wraparound caused by the periodic properties of the
Fourier method.
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FIG, 1. Lamb's problem. Comparison between analytical and numerical solutions, where (a) and (¢) correspond to the v, component, and (b) and (d)
correspond to the ¥y component. The coordinates give the position of the receivers relative to the source (the value between parcntheses refers to the
GPM modeling). The leading pulse is the compressional wave followed by the Rayleigh wave.

The wave field is propagated in time by means of a
fourth-order Runge-Kutta method, whose details can be
found in Carcione.” As mentioned before, a favorable sta-
bility condition is achieved with dt=0(N =13,

Il. SPECTRAL ELEMENT METHOD (SPEM)

The Spectral Element Method (SPEM) is a high-
order finite element technique. Priolo and Seriani,'® and
Seriani and Priolo'®! first developed and investigated the
method for the acoustic wave equation, and Seriani et al.'®
extended the modeling to the elastic wave equation. In this
work, we decompose the physical domain into rectangular
subdomains, where the solution is expressed by a truncated
expansion of Chebyshev polynomials. As in the global
modeling, the SPEM is practically free of spatial numerical
dispersion. The number of grid points per minimum wave-
length depends on the degree of the polynomial; for in-
stance, degree & resolves 4.6 points per minimum wave-
length (note that low-order finite element and standard
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finite difference schemes need from 15 to 30 points per
wavelength). The modeling algorithm is described in the
subsections that follow.

A. The wave equation

Let us denote the physical domain by {} and its bound-
ary by I', and express, for brevity, the partial derivatives
with respect to x and y by d, and d,, respectively. Using
abbreviated subscript notation we define the differential
operator

a, 0
D=|0 4,|. (24)
d, d;
Then, the equation of motion, in terms of the displacement
field u(x,7), can be writlen as

d*u .
PEI"D o(u)=f, (25)
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FIG, 2. Lamb's problem, Snapshots of the particle velocity vector at 0.75
s, where (a) is the GPM simulation and (b) is the SPEM simulation.
Since the vector is plotied at the grid points, it is evident from the pictures
the distribution of the grid points, in particular, the size and distribution
of the single elements (each containing 77 nodes) in the SPEM snap-
shot.

where
0" =[041,0,,04] (26)

is the stress vector. The stress-strain relation is

o(u)=Ce(u), (27)
where
ET= [Exx Epy rE.t,v] (28 }

is the strain vector and C is the elastic stiffness matrix
given by

E A 0
C=|4 E 0f, (29)
0 0 pn

The components of the strain vector are related to the
displacement field by

e(u)=Du. (30)

If we look for sufficiently regular solutions u, and no forces
are imposed on the boundary, an equivalent variational
formulation of Eq. (25) is to find the solution u(x,t) of
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FIG. 3. Lamb's problem. Seismograms recorded at the surface corre-
sponding to the GPM modeling algorithm, where (a) is the ¥, component
and (b) is the v, component. The coherent events are the compressional
and Rayleigh waves. The SPEM seismograms are completely identical
and for this reason are not represented.

d*
pr. (w,pu) g +al(wu)g=(w,fq, (31)

for all weight functions w(x) which vanish on the bound-
ary I', and which, together with their first derivatives, are
square integrable over (). The quantities a(+,*)q and
(+,*)q are symmetric, bilinear forms defined by

(w,pu)q= J‘“ ow" 1 d0y, (32)

a(wu)g= fn e(w) or(u)dQ= J-n w'D'CDu dQ,
(33)

(w,f) = fn w'fda, (34)
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FIG. 4. Lamb's problem. Vertical seismograms (VSP) recorded at a
distance of 930 m from the source, corresponding to the GPM modeling
(a) and SPEM modeling (b) techniques. The symbols R, P, 8, and HS
stand for Rayleigh, compressional, shear, and head shear waves, respec-
tively,

where Eqs. (27) and (30) have been used.

B. Discretization of the physical domain

We decompose the physical domain {) into nonover-
lapping quadrilateral elements {},, where e=1,...,n,, with
n, the total number of elements. Let us denote the decom-
position of £} by {1 On each element, the field is approxi-
mated by Chebyshev polynomials of degree N in both co-
ordinates x and y. A function u(£)=u(£,n), defined on
the square interval [—1,1]¢[—1,1], can be approximated
by a truncated expansion using the following tensor prod-
uct of Chebyshev polynomials:

N N N N
Q)= 2 X &= 2 ¥ i),
{=0 j=0 =0 j=0

(35)

where #/,;=u(§,)) are the values of u at the grid points, and
@;(£) are Lagrangian interpolants satisfying the relation
(&) =8y, within the interval [—1,1] and identically zero
outside. Here, 8, denotes the Kronecker delta symbol and
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& stands for £ or 7. The Lagrangian interpolants are given
by

1
E—@, To(5) Ty(E), (36)
where T', are the Chebyshev polynomials, £; are the Cheby-
shev Gauss—Lobatto quadrature points {,=cos(mi/N) for
i=0,...,N, and ¢ is defined in Eq. (16). The coordinates
£;=1{&;m,} of the internal nodes for the discretization of
the quadrilateral domain [—1,1][—1,1] are obtained as
Cartesian products of the £; points. In order to apply these
interpolants and construct the approximating function
space, we need to  define the  mapping
A (x)xe,—-£e[—1,1]* between the points
x€la,,a,4,1X[b,,b,,1] of each element £, of the decom-
position £ in the physical domain and the local element
coordinate system {£,1} by

AW (x)= {é-(e)m(e)}

5 N
%(Q)EN ,En

2 2
= A_i(x_HE)_IJK;(y_bP)_I s (37)
with Al=a,, —a,and Aj=b,, ,— b, the dimensions of the
element {1,. Then, the global approximating function is
formed by the sum of the elemental approximating func-
tions [Eqs. (35)] defined on each element.

C. Discretization of the wave equation

In the decomposed physical domain {1 we define the
trial functions Wi(x,7) and the weight functions w(x) fol-
lowing the previous approach, and denote with @, and W,
the restrictions to each {2, of i and W, respectively (Seriani
et al.'®). 1t can be shown that the 2D wave propagation
problem is equivalent to finding 1, such that, for all %,, the
following equations are satisfied on each element {),:

d* s
_d_t'z (Wcrpﬁa)ﬁ"'atﬁevﬁe)i\fﬁ (Welfe)N, (38)

enforcing the continuity condition for the solution on the
element boundaries, and where a(+,-)y and (-, )y are
symmetric, bilinear forms computed according to the def-
initions, Eqs. (32)—(34), at the element level. Using the
definition of ¢,(£) given in Eq. (36), we compute the de-
rivative matrix D;;=dg,(£;)/d and the semidiscrete dif-
ferential operator I;; defined on each element {2, by

N N
Di(60)= 2 2 Dy (). (39)
=0 j=0
We can now evaluate each term of Eq. (38) using the
mapping A and Eq. (39). Requiring that the variational
equation be satisfied for all W,, the spectral element ap-
proximation of the original equation finally yields a set of
linear differential equations

MU+KU=F, (40)

with U(0)={U,}, U(0)={U,} as initial conditions,
where the unknown vector U contains the values of the
discrete  solution @ at all Chebyshev points
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FIG. 5. Dispersed Rayleigh waves problem, Comparison between numerical solutions at different receivers, where (a) and (c) correspond to the v,
component, and (b) and (d) correspond ta the v, component. The position of the solid-solid interface is 123 m from the surface.

x{) =[A]~ g for i,j=0,..N and for all e=0,...,n,. A
dot above a variable denotes time differentiation. In Eq.
(40), M is the mass matrix, K is the stiffness matrix, and F
is the force vector obtained after a global nodal renumber-
ing and assembly of all the elemental matrices and force
vector contributions. They can be computed using the ma-
trix element summation or “stiffness” summation over all
the elements of M‘“, K™ and F'), which are the elemen-
tal matrices and force vector, respectively. The contribu-
tions from nodes which are common to an element pair are
summed to enforce the continuity requirement of the solu-
tion on the element boundaries. The elemental mass matrix
is given in block form by

(#) 0

where 0, the zero matrix, and M'” have dimension
(N+1)*X (N41)* with
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" ACAS
MYy my = .[n bijpbim d=—"7= pAiA jn,
" (42)

and the quantities A are given below. The elemental stiff-
ness matrix is given by

Rse) Réé’)
K{g)‘= J‘ﬂ, [DIJCDhH]dQE l_cge)T Rge)]l (43)
where the (N+1)%x (N+1)? submatrices K'® are
A‘ e
- X
[K‘l:c)](a'j)(fm} =E A_i CHAjm“f'p EAIJCJHH
* y
[Rge) Voipyoimy=ABuBpj+1ByB s (44)

e [

I~ AL 5
[K3 ](Ij){hﬂ)zE"FAfpjm"'“ A CyA jm s
g X

and [l_{é"”]wm,,,} = [f(%“;um)w). Finally, the force vec-
tors, of dimension (N--1)7, are given by
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F) = {F{)},

ATAt ¥
E;)—J' ']bi;fdn— 4_? 2 AlF’jmﬁm’ (45)

Lm=0

where fj,, are the grid values of the forcing term, and the
quantities 4, B, and C are defined by

4
-7z 9_2_“ a8 Tcgf)r,,(g,)f
(46)
Bij= E Dydy, Cy= Z DyD A iy (47)

Lm0

Time integration of Eq. (40) is performed numerically by
the implicit Newmark scheme, which is a two-step a]go-
rithm, unconditionally stable and second-order accurate.'?
The solution at time (rn+1)dr is obtained by solving the
sparse, symmetric system of linear equations

dr . dr .
=T F"“"+M(U"+dt U"+—4 U,
48)

with the Conjugated Gradient method preconditioned by
the Incomplete Cholesky Factorization.?® Although the
method is unconditionally stable, accuracy imposes

dr*
(M+T K)UI'HI
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min(dx,dy)

1< ; (49)
(bl

where dx and dy are the grid spacings in the x and p
directions, respectively. Note that the minimum grid spac-
ing occurs at the interval end points of the Chebyshev
interpolator, and is given by d,,;, =A%/ (4N?). Although
this spacing is O(N~?), it is not very restrictive, since
spectral accuracy is achieved with N<8.

lil. LAMB'S PROBLEM

This example verifies the numerical solutions with the
analytical solution of Lamb’s problem, that is, the response
of an elastic half-space bounded by a free surface to an
impulsive vertical force.! Since Lamb’s work, this problem
has been investigated by many researchers, in particular,
Khun? recently published a detailed numerical analysis of
the different waves. The global pseudospectral modeling
uses a grid size of N,=135 and N,=81, with grid spacings
of dx=20 m and dy,,,,= 20 m. The parameters of the map-
ping transformation are @=2.583 and ff=2, so that the
second and third grid points are at 1.01 and 4.02 m from
the surface (first grid point), respectively. At the sides and
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surface corresponding to the GPM madeling algorithm, where (a) is the
v, component and (b) is the v, component. The main event is the Ray-
leigh wave which shows velocity dispersion compared to Lamb’s problem,

at the bottom of the mesh, we implement absorbing strips
of 18 points length. The numerical solution is propagated
to 2 5 with a time step of 1 ms.

The SPEM domain is composed of 65331 elements.
Each element has a size of 60 m in the horizontal and
vertical directions, and contains 49 nodes defined by the
N+ 1 quadrature points of a Chebyshev polynomial of or-
der N=6. Considering that the elements have common
boundary points, the total number of nodes is 73 117. In
practice, the actual model is contained in an inner region
bounded by the free surface and composed of 34X 16 ele-
ments. In the outer region, the elements are gradually
stretched towards the boundaries of the computational
mesh in order to simulate open radiation conditions. The
minimum distance between grid points is 4.02 m, occurring
at the interval end point of the elements. This minimum
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grid size and the material properties impose a time step of’
1.25 ms, The source function is given by

[i=0, [,=8(x—x0)8(y—yo)h(0), (50)

where p,=4.02 m (the value of x, is not relevant). The
time history of the source is

h(1) = e"/ol=0 cos[m(t—10)], (51)

where £,=0.06 s, and f,=22 Hz is the cutoff frequency.
Since the spectral element modeling solves for the displace-
ment field, and the global modeling solves for the time
derivative of the displacements, the former uses the time
derivative of Eq. (51) as source time history in order to
compare both methods. The wave velocities are ¢,= 2000
m/s and ¢,= 1155 m/s, and the density is p=1 g/cm’,

F:gure 1 compares the numerical solutions with the
analytical solutions at two different receivers. The analyt-
ical solution is obtained by the Cagniard-de Hoop
technique.”! The coordinates give the position of the re-
ceivers relative to the source with the value between pa-
rentheses corresponding to the pseudospectral method.
This difference is due to the fact that the solutions are
computed at different grid points. As can be observed, the
matching between the solutions is virtually perfect. The
main pulse is the Rayleigh wave and the first event is the
compressional wave whose amplitude increases with depth,
as can be appreciated from the figures.

Figure 2 compares snapshots of the particle veloeity
vector at 0.75-5 propagation time. The vector is plotted at
the grid points. The GPM snapshot includes the absorbing
strips where the wave field is attenuated (e.g., the left side)
in order to eliminate nonphysical reflections from the
boundaries of the mesh. In the SPEM snapshot the size
and distribution of nodes of the single elements can be
clearly appreciated. The leading wave front corresponds to
the compressional wave as can be interpreted from its lon-
gitudinal motion and position. Then follows the shear head
wave connecting the P wave with the shear wave front, and
finally the Rayleigh wave confined near the surface. In Fig.
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3 we show the GPM seismograms recorded at the surface
where the compressional and Rayleigh waves can be
clearly distinguished. The SPEM seismograms are identi-
cal to those of Fig. 3 and for this reason are not shown. The
different waves can be appreciated better in the vertical
seismograms shown in Fig. 4 and recorded at a distance of
930 m from the source, where the symbols R, P, §, and HS
stand for Rayleigh, compressional, shear, and head shear
waves, respectively.

IV. DISPERSED RAYLEIGH WAVES PROBLEM

Rayleigh waves are dispersive when a surface layer
overlies an elastic half-space.”” This problem has no ana-
lytical solution. Kosloff ez al.® compared their numerical
solution with results from a propagator matrix method.*
However, the match was not good since, as they state, the
propagator matrix solution does not account for the body
waves, which contribute significant amplitudes, in particu-
lar before the arrival of the main Rayleigh pulse.

The thickness of the surface layer is 123 m, and its
material properties are ¢,=2000 m/s, ¢,=1155 m/s, and
p=1 g/cm’. The overlying half-space has ¢,=3000 m/s,
¢,=1500 m/s, and p=2 g/cm’. The numerical mesh,
source, source depth, and time step for the global modeling

691 J. Acoust. Soc. Am,, Vol. 95, No. 2, February 1984

are the same as in Lamb’s problem. The position of the
layer relative to the surface is defined between the vertical
grid points 13 at 115 m, and 14 at 131 m. The SPEM
numerical mesh is in general similar to that used for the
previous example. The difference is that the elements of the
surface layer are stretched to define the interface at 123-m
depth.

Figure 5 compares the numerical solutions at two dif-
ferent surface receivers. The solutions are in quite good
agreeement, Some differences can be attributed to the fact
that the interface in the GPM model is not exactly at 123
m. A more precise definition of the interface with this
method can be achieved by using mapping transformations
which increase the density of points in the interface. Snap-
shots of the particle velocity vector at two different prop-
agation times are illustrated in Fig. 6. The propagation
displays most of the usual normal-mode characteristics at
large distances from the source. Figure 7 illustrates the
seismograms recorded at the surface. The fundamental
mode corresponds to the Rayleigh wave,

V. THE TWO-QUARTER-SPACES PROBLEM

This problem was first investigated with numerical
modeling by Ottaviani,”* and recently solved by Kosloff
et al.® in the elastic case, and by Carcione’ in the anelastic
case. It consists (see Fig. 8) of a vertical interface in con-
tact with the surface. The focus here is in the process by
which the Rayleigh wave, originated by a vertical force,
generates an interface wave traveling downwards. The
problem has no known analytical solution and constitutes a
good test of the modeling algorithms.

The numerical mesh, source, source depth, and time
step for the GPM modeling is the same as in Lamb’s prob-
lem. The SPEM mesh is similar to that of Lamb’s problem,
the only difference is that the elements of the right quarter-
space have a size of 70 m (instead of 60 m), since the wave
velocities there are higher than in the left quarter-space.

Figure 9 compares the numerical solutions at three
different receivers: (a) near the surface between the source
and the interface, (b) near the surface beyond the inter-
face, and (c) at depth on the interface. The GPM solution
is computed at 10 m from the vertical interface (for global
methods the interfaces are located between grid points).
The matching between solutions is excellent; the difference
in (¢) is due to the different locations of the receivers in
both methods. The events at approximately 1.25 s in (a)
and (b) are the reflected and transmitted Rayleigh waves,
respectively. In (c), the first pulse corresponds to the com-
pressional wave, the second is the shear wave, and the
third, at approximately 1.5 s, is an interface wave.

Figure 10 shows snapshots of the particle velocity vec-
tor at 1.25 5. The reflected and transmitted Rayleigh waves
are the main features at the surface, while the interface
wave generated by the incident Rayleigh is traveling down-
wards along the vertical interface. Surface and vertical seis-
mograms are displayed in Figs. 11 and 12, respectively, the
latter along the interface. In Fig. 12 we show the horizon-
tal components of both methods where the interface wave,
denoted by the symbol I, is one of the main events. The

Priolo at al.: Numerical simulation of interface waves 681




Offset (m)
j 200 400 60O ﬂTu 1000 1200 1400 1600 1800

M i ..

= ' Incident Pl

tt g {HIFRRARARRRRRRRRRSe 0.6
g
I

-

EEHHEH
h iden T'rar

i

1 I ) WTransmitted RF[l | 2
(s) e

0.8

i 1.0

W HHHHHH RRIREERARALSY 1.8
Tected R Trans ﬁ

i
1.8
I

Vx (horizontal component) (a)

=

i
foes
=

GPM

Ofiset (m)

400 600 80O 1000 1200 1400 1600 1800
|| I

-
]
=
<

0.2

0.4

0.8

@3-

@ (Il

GPM Vy (vartical component) (b}

FIG. 11. Two-quarter-spaces problem. Surface seismograms computed
with the GPM modeling algorithm, where (a) is the v, component and
(b) is the v, component. The symbols R and P refer to the Rayleigh and
compressional waves, respectively.

velocity of this wave is approximately 1600 m/s, which lies
between the shear velocities of the two media.

VI. CONCLUSIONS

We have successfully cross-checked two different nu-
merical modeling techniques for solving complex problems
in elastodynamics. The GPM is based on explicit differen-
tiation of the field variables, and the SPEM solves a vari-
ational formulation, In particular, the two-quarter-spaces
problem involves complex phenomena like transmission
and reflection of Rayleigh waves, and the generation of
interface waves at the welded contact. These modes, which
constitute a severe test for the boundary conditions, are
correctly reproduced in amplitude and phase. Differences
between numerical solutions may be caused by different
positions of the interfaces (GPM defines them between
grid points and SPEM at grid points) and the receivers.
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The first problem can be solved by using a 2-D Chebyshev
differential operator and mapping transformations in the
GPM modeling, or adapting the size of the SPEM elements
to the GPM mesh. Comparisons for common receiver
points can be solved by interpolating the wave field be-
tween grid points.

Of both methods, the more promising is the SPEM
algorithm due to its versatility to model complex geome-
tries and boundary conditions. However, at present, the
GPM method is more efficient in terms of storage and
computer time. This suggests that, in the context of do-
main decomposition techniques, a hybrid modeling code
combining both methods could be highly performing.

Several problems are of immediate interest for investi-
gation. For instance, an analysis of the quarter-space prob-
lem (step at the free surface), studied theoretically by
Lapwood,”® and experimentally by Bremaecker®® and
Knopoff and Gangi.?’ This problem requires the use of 2-D
Chebyshev differential Dperatorsz“ and domain decomposi-
tion methods® in the global modeling technique. Also, of
interest is a detailed study of the two-quarter-space prob-
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lem to confront with the numerical seismograms and ex-
perimental oscillograms obtained by Ottaviani.**

A natural extension of the modeling algorithms in-
volves the use of coordinate transformations,” such that
the grid points can be adapted to topographic features and
curved interfaces. This could allow, for instance, attacking
the problem of Rayleigh waves on curved surfaces,"*” like
the whispering gallery effect.”
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