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Q‐anisotropy in finely‐layered media
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[1] Finely layered media behaves as an anisotropic medium
at long wavelengths. If the constituent media are anelastic,
Q‐anisotropy of qP, qSV and SH waves can be described
by a generalization of Backus averaging to the lossy case.
To test the theory, we introduce a novel method to obtain
the complex and frequency‐dependent stiffnesses from
numerical simulations of oscillatory (harmonic) tests based
on a space‐frequency domain finite element method. We
apply the methodology to a periodic sequence of shale
and limestone and compute the quality factor and wave
velocities as a function of frequency and propagation
direction. Citation: Picotti, S., J. M. Carcione, J. E. Santos,
and D. Gei (2010), Q‐anisotropy in finely‐layered media, Geophys.
Res. Lett., 37, L06302, doi:10.1029/2009GL042046.

1. Introduction

[2] Recent advances in seismic exploration are aimed on
property estimates of target zones using amplitude versus
offset (AVO) analysis. The broad field of applications
reaches from ocean‐bottom cable recordings over reservoir
permeability estimates to carbon‐dioxide sequestration and
monitoring. These approaches are heavily affected by the
presence of attenuation anisotropy. This has a significant
impact on AVO analysis [e.g., Carcione et al., 1998b]. The
physical reasons for wave attenuation and attenuation
anisotropy are still not completely known. Interlayering
could be a major agent beside porosity effects.
[3] Most geological systems can be modeled as fine

layering, which refers to the case where the dominant
wavelength of the pulse is much larger than the thicknesses of
the single layers. When this occurs, the medium is effectively
anisotropic with a transversely isotropic symmetry. The first
to obtain a solution to this problem was Bruggeman [1937].
Other investigators studied the problem using different
approaches, e.g., Riznichenko [1949] and Postma [1955],
who considered a two‐constituent periodically layered
medium. Later, Backus [1962] obtained the average elasticity
constants in the case when the single layers are transversely
isotropic with the symmetry axis perpendicular to the
layering plane. Moreover, he assumed stationarity, i.e., in a
given length of composite medium much smaller than the
wavelength, the proportion of each material is constant
(periodicity is not required). The equations were further
generalized by Schoenberg and Muir [1989] for anisotropic

single constituents. Backus averaging for the lossless case
has been verified numerically by Carcione et al. [1991].
They found that the minimum ratio between the P‐wave
dominant pulse wavelength and the spatial period of the
layering depends on the contrast between the constituents.
For instance, for a periodic sequence of epoxy‐glass it is
around 8, and for sandstone‐limestone (which has a lower
reflection coefficient) it is between 5 and 6. In any case, an
optimal ratio can be found for which the equivalence between
a finely layered medium and a homogeneous transversely
isotropic medium is valid. Carcione [1992] generalized
Backus averaging to the anelastic case, obtaining the first
model for Q‐anisotropy [see Carcione, 2007]. Analyses on
sequences of sandstone‐limestone and shale‐limestone with
different degrees of anisotropy indicate that the quality fac-
tors of the shear modes are more anisotropic than the
corresponding phase velocities, cusps of the qSV mode are
more pronounced for low frequencies and midrange propor-
tions, and in general, attenuation is higher in the direction
perpendicular to layering or close to it, provided that the
material with lower velocity is the more dissipative. Other
alternative models of Q‐anisotropy were proposed by
Carcione and Cavallini [1994, 1995] and Carcione et al.
[1998a]. A brief description of all these models can be
found from Carcione [2007].
[4] In order to test Backus averaging for Q‐anisotropy, we

perform numerical simulations using an upscaling procedure
to obtain the complex stiffnesses of the effective viscoelastic
transversely isotropic medium. It consists in the simulation
of oscillatory compressibility and shear tests in the space‐
frequency domain, which enable us to obtain the complex
stiffnesses. The method is illustrated by Santos et al. [2009]
for isotropic media and it is generalized here for anisotropic
media. We use a finite element method at a single frequency
to approximate the solutions of the associated boundary
value problems. We obtain the quality factors and velocities
as a function of frequency and propagation angle from the
complex stiffnesses.

2. Backus Averaging

[5] Fine layering on a scale much finer than the dominant
wavelength of the signal yields effective anisotropy, whose
elasticity constants are given by Backus averaging [Backus,
1962]. Carcione [1992] uses this approach and the corre-
spondence principle to study the anisotropic characteristics of
attenuation in viscoelastic finely layered media [e.g.,
Carcione, 2007]. Here, we consider that each medium is
isotropic and anelastic with complex Lamé constants given by

�ð!Þ ¼ � c2P � 4

3
c2S

� �
M1ð!Þ � 2

3
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ð1Þ
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where w is the angular frequency, M1 and M2 are the dilata-
tional and shear complex moduli, respectively, cP and cS are
the elastic high‐frequency limit compressional‐ and shear
wave velocities, and r is the density. (in Carcione [1992], the
relaxed moduli correspond to the elastic limit.)
[6] Omitting the angular‐frequency (w) dependency for

brevity, the dilatational modulus is

k ¼ �þ 2

3
� ¼ � c2P � 4

3
c2S

� �
M1; ð2Þ

and the P‐wave modulus is given by

E ¼ k þ 4

3
�: ð3Þ

[7] According to Carcione [1992], the equivalent visco-
elastic transversely isotropic medium is defined by the fol-
lowing complex stiffnesses:

p11 ¼ hE � �2E�1i þ hE�1i�1hE�1�i2;
p33 ¼ hE�1i�1;

p13 ¼ hE�1i�1hE�1�i;
p55 ¼ h��1i�1;

p66 ¼ h�i;

ð4Þ

where h·i denotes the thickness weighted average. In the
case of a periodic sequence of two alternating layers,
equations (4) are similar to those of Postma [1955], who
considered lossless layers.
[8] The method is valid for any complex modulus de-

scribing the anelastic properties of the medium. Here we
assume constant quality factors over the frequency range of
interest (until about 100 Hz). Such behavior is modelled by
a continuous distribution of relaxation mechanisms based on
the standard linear solid [Liu et al., 1976; Ben‐Menahem
and Singh, 1981, p. 909]. The dimensionless dilatational
and shear complex moduli for a specific frequency can be
expressed as

M�ð!Þ ¼ 1þ 2

�Q0�
ln
1þ i!�2
1þ i!�1

� ��1

; ð5Þ

where t1 and t2 are time constants, with t2 < t1, and Q0n
defines the value of the quality factor which remains nearly
constant over the selected frequency range. The dilatational,
S‐wave and P‐wave quality factors of each single isotropic
layer are respectively given by

Q1 ¼ ReðkÞ
ImðkÞ ; QS ¼ Q2 ¼ Reð�Þ

Imð�Þ ; and QP ¼ ReðEÞ
ImðEÞ : ð6Þ

[9] We consider homogeneous viscoelastic waves [e.g.,
Carcione, 2007]. The complex velocities are the key quan-
tities to obtain the wave velocities and quality factors of the
equivalent anisotropic medium. They are given by

vqP ¼ ð2�Þ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11l21 þ p33l23 þ p55 þ A

p
;

vqSV ¼ ð2�Þ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11l21 þ p33l23 þ p55 � A

p
;

vSH ¼ ��1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p66l21 þ p55l23

p
;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðp11 � p55Þl21 þ ðp55 � p33Þl23 �2 þ 4½ðp13 þ p55Þl1l3�2

q
;

ð7Þ

[Auld, 1990; Carcione, 2007, equation (1.79)], where l1 =
sin� and l3 = cos� are the directions cosines, � is the propa-
gation angle between the wave number vector and the sym-
metry axis, and the three velocities correspond to the qP, qS
and SH waves, respectively. The modulus of the phase
velocity vector is given by

vp ¼ Re
1

v

� �� ��1

; ð8Þ

where v represents either vqP, vqSV or vSH. The energy‐
velocity vector of the qP and qSV waves is given by

ve
vp

¼ ðl1 þ l3 cot Þ�1be1 þ ðl1 tan þ l3Þ�1be3 ð9Þ

[Carcione, 2007, equation (6.158)], where

tan ¼ Reð	*X þ 
*W Þ
Reð	*W þ 
*ZÞ ð10Þ

defines the angle between the energy‐velocity vector and
the z‐axis, and

	 ¼ pv
ffiffiffiffiffiffiffiffiffiffiffiffi
A� B

p
;


 ¼ �pv
ffiffiffiffiffiffiffiffiffiffiffiffi
A� B

p
;

B ¼ p11l21 � p33l23 þ p55 cos 2�;

ð11Þ

where the asterisk indicates complex conjugate and the
upper and lower signs correspond to the qP and qSV
waves, respectively. Moreover,

W ¼ p55ð
l1 þ 	l3Þ;
X ¼ 	p11l1 þ 
p13l3;
Z ¼ 	p13l1 þ 
p33l3

ð12Þ

[Carcione, 2007, equation (6.121)–(6.123)], where “pv”
denotes the principal value, which has to be chosen
according to established criteria [e.g., Sidler et al., 2008].
[10] On the other hand, the energy velocity of the SH

wave is

ve ¼ vp
�ReðvÞ l1Re

p66
v

� �be1 þ l3Re
p55
v

� �be3h i
ð13Þ

and

tan ¼ Reðp66=vÞ
Reðp55=vÞ tan � ð14Þ

[Carcione, 2007, equation (4.115)]. In general, the phase
velocity is related to the energy velocity by

vp ¼ ve cosð � �Þ; ð15Þ

where ve = ∣ve∣. The quality factor is given by

Q ¼ Reðv2Þ
Imðv2Þ : ð16Þ

[11] The values of the qP quality factor along the layering
plane and symmetry axis are

QqPð� ¼ �=2Þ ¼ Reðp11Þ
Imðp11Þ and QqPð� ¼ 0Þ ¼ Reðp33Þ

Imðp33Þ ; ð17Þ

PICOTTI ET AL.: Q‐ANISOTROPY IN FINELY‐LAYERED MEDIA L06302L06302

2 of 6



respectively, while those of the shear waves are

QqSV ð� ¼ �=2Þ ¼ QqSV ð� ¼ 0Þ ¼ QSH ð� ¼ 0Þ ¼ Reðp55Þ
Imðp55Þ ; and

QSH ð� ¼ �=2Þ ¼ Reðp66Þ
Imðp66Þ : ð18Þ

3. Methodology

[12] Let u, �ij(u) and sij(u) denote the displacement vec-
tor, strain components and stress components of each single
medium in the frequency domain. The stress‐strain relations
are

�ij ¼ �#ij þ 2��ij; # ¼ �ii ¼ ui;i; ð19Þ

where implicit summation of repeated indices is assumed.
The equation of motion is

!2�uðx; z; !Þ þ r � s ½uðx; z; !Þ� ¼ 0; ð20Þ

where the dot denotes the scalar product. Let us assume a
square sample of side length L and set the boundaries as G =
GL ⋃ GR ⋃ GB ⋃ GT, where

�L ¼ fðx; zÞ 2 � : x ¼ 0g; �R ¼ fðx; zÞ 2 � : x ¼ Lg;

�B ¼ fðx; zÞ 2 � : z ¼ 0g; �T ¼ fðx; zÞ 2 � : z ¼ Lg:

[13] In other words, GL, GR, GB, and GT are the left, right,
bottom, and top boundaries of the sample, respectively.

Denote by n the unit outer normal on G and let m be a unit
tangent on G so that {n, m} is an orthonormal system on G.
[14] To estimate the effective complex stiffnesses, we use

a finite element procedure to approximate the solution of the
equation of motion (20). We use bilinear functions to ap-
proximate the solid displacement vector, and we consider
the solution of equation (20) with the following boundary
conditions:

½sðuÞ � n� � n ¼ ��P; ðx; zÞ 2 �T ; ð21Þ

½sðuÞ � n� �m ¼ 0; ðx; zÞ 2 �T ; ð22Þ

½sðuÞ � n� �m ¼ 0; ðx; zÞ 2 �L [ �R; ð23Þ

u � n ¼ 0; ðx; zÞ 2 �L [ �R; ð24Þ

u ¼ 0; ðx; zÞ 2 �B: ð25Þ

[15] The medium is not allowed to move at the bottom
and lateral boundaries GB ⋃ GL ⋃ GR, a uniform time‐har-
monic compression of the form DP exp(iwt), where P de-
notes pressure, is applied at the top boundary GT and no
tangential external forces are applied. The factor exp(iwt) is
omitted because the problem is formulated in the space‐
frequency domain. A uniform compression can also be
applied, for example, on a lateral boundary GR, and in this
case the boundary conditions (21), (24), and (25) become

½sðuÞ � n� � n ¼ ��P; ðx; zÞ 2 �T [ �R; ð26Þ

u � n ¼ 0; ðx; zÞ 2 �L [ �B: ð27Þ

[16] Denoting by V the original volume of the sample, its
(complex) oscillatory volume change, DV(w), allows us to
define the effective P wave complex stiffness p(w), by using
the relation

�V ð!Þ
V

¼ � �P

pð!Þ : ð28Þ

[17] After solving equation (20) with the boundary con-
ditions (21)–(25), the vertical displacements u3(x, z, L, w) on
GT allow us to obtain an average vertical displacement u3

T(w)
at the boundary GT. Then, for each frequency w, the volume
change produced by the compressibility test can be approx-
imated byDV(w) ≈ Lu3

T(w), which enable us to compute p(w)
by using the relation (28).
[18] To obtain the effective shear stiffness, we consider the

solution of equation (20) with the following boundary
conditions:

�sðuÞ � n ¼ g; ðx; zÞ 2 �T [ �L [ �R; ð29Þ

u ¼ 0; ðx; zÞ 2 �B; ð30Þ

Figure 1. Oscillatory tests performed to obtain (a) p33,
(b) p11, (c) p55, (d) p13 and (e) p66. The orientation of the
layers and the directions of the applied stresses are indicated.
The thick black lines at the edges indicate rigid boundary
conditions, as defined by equations (24), (25), (27) and (30).
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where

g ¼
ð�p; 0Þ; ðx; zÞ 2 �T ;

ð0;��pÞ; ðx; zÞ 2 �L;

ð0;�pÞ; ðx; zÞ 2 �R:

8><
>:

[19] Santos et al. [2009] show that uniqueness holds for
equation (20) with the above boundary conditions for w > 0
sufficiently small, and that the associated error is of the
order of the computational mesh size.
[20] The change in shape of the sample allows us to re-

cover its equivalent complex shear stiffness p(w) by using
the relation

tan½�ð!Þ� ¼ �p

pð!Þ ; ð31Þ

where �(w) is the departure angle between the original
positions of the lateral boundaries and those after applying
the shear stresses [e.g., see Kolsky, 1963]. Equations (28) and
(31) are valid in the quasi‐static approximation. i.e., when
the wavelength is much larger than the size of the sample.
The horizontal displacements u1(x, L, w) at the top boundary
GT can then be used to obtain an average horizontal dis-
placement u1

T(w) at the boundary GT. Then, tan [�(w)] ≈
u1
T(w)/L and p(w) can be calculated from equation (31).
[21] These experiments show how to obtain the stiffnesses

associated with the symmetry axis and the layering direc-
tion, e.g., p33 and p11, respectively, for the qP‐wave, and p55
and p66 for the qSV and SH waves. Figures 1a–1e illustrate
the five experiments we need to compute the stiffnesses
components. The first two experiments use the boundary
conditions (21)–(25). In (a) we obtain the stiffness p33,
while in (b) we obtain p11. In this last case we rotate the
boundary conditions (21)–(25) clockwise, by replacing GT

by GR, GR by GB, GB by GL, and GL by GT. On the other hand,
using the boundary conditions (29) and (30), we obtain the
stiffness p55 by performing the experiment shown in (c) and
the stiffness p66 with the experiment shown in (e). In this
last case, the boundary conditions are the same as those used
for p55 but replacing z by y in equations (20), (29), and (30).

Table 1. Material Properties

Medium l (GPa) m (GPa) r (kg/m3) cP (m/s) cS (m/s) Q01 Q02

Shale 6.28 1.70 2250 2074 869 60 20
Limestone 30 25 2700 5443 3043 80 40

Figure 2. (a) qP‐wave phase and energy velocities, (b) qP‐wave quality factor, (c) S‐wave phase and energy velocities and
(d) S‐wave quality factor as a function of frequency obtained with the oscillatory tests (symbols) and Backus theory (solid
line). The propagation angle is � = 60°. We observe an excellent agreement until about 90 Hz (vertical dotted line).
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[22] Finally, to compute p13 we apply a normal stress s =
s11 = s33 as shown in Figure 1d. The stress‐strain relations
for a transversely isotropic medium are

�11 ¼ p11�11 þ p13�33;
�33 ¼ p13�11 þ p33�33;

ð32Þ

[Carcione, 2007, equation (4.4)], where �33 and �11 are the
strain components at the top side and at the right lateral side of
the sample, respectively. Using the boundary conditions (22),
with GT replaced by GT ⋃ GB, (23), (26), and (27), we com-
pute the displacements and obtain p13 from equations (32) as

p13 ¼ p11�11 � p33�33
�11 � �33

: ð33Þ

4. Example

[23] The example considers the shale‐limestone periodic
layered medium described by Carcione [1992]. The prop-
erties of the isotropic viscoelastic materials are given in
Table 1, i.e., the low‐frequency Lamé constants, wave ve-
locities, densities and quality factors. Let the time constants
in equation (5) be t1 = 0.16 s and t2 = 0.3 ms, so that the
quality factor of each single isotropic layer is nearly con-
stant over the exploration seismic band (from about 10 Hz
to 100 Hz). In the long‐wavelength limit, the wave char-
acteristics of the layered medium are defined by the Backus
averaging relations (4), the phase velocities (8), the energy
velocities (9) and (13), and the quality factors (16). In order to
validate Backus theory we perform the numerical com-
pressibility and shear oscillatory tests described in section 3.
The stratified medium is a 50 cm side sample composed of
100 alternating plane layers of shale and limestone of equal
thickness. The spatial period of the layering is then 1 cm. The
finite element simulations uses a uniform mesh of 100 × 100
elements.
[24] Figure 2 displays the modulus of the phase and

energy velocity vectors (Figures 2a and 2c) and quality factor
(Figures 2b and 2d) as a function of frequency, obtained
with the oscillatory tests (symbols), compared to Backus
theory generalized to the lossy case by Carcione [1992]
(solid line). The propagation angle corresponding to the
phase velocity is � = 60°. The corresponding energy angles
are y = 83.7° for the qP wave, y = 25.3° for the qSV wave
and y = 81.8° for the SH wave. It is seen that anisotropy
implies quite different phase and energy velocity curves. We
observe an excellent agreement between the theoretical and
numerical results until about 90 Hz (vertical dotted line).
[25] Figure 3 shows polar representations of the phase

velocity vector (Figure 3a), energy velocity vector (Figure 3b)
and quality factor (Figure 3c) at 30 Hz. The polar curve for
the quality factor is given by (siny, cos y) Q. Both the phase
and energy angles are indicated. As before, the agreement is
excellent. Moreover, this plot shows that attenuation anisot-
ropy due to fine‐layering is more pronounced for shear waves
than for compressional waves. In this case, the qP‐, qSV‐ and
SH‐wave wavelengths along the symmetry axis (� = 0) are
92 and 42 m, respectively. Therefore the dominant wave-
length (at 30 Hz) to spatial period ratio is 9200 and 4200,
respectively, i.e., well within the long‐wavelength limit (which,

Figure 3. Polar representation of the (a) phase velocity
vector, (b) energy velocity vector and (c) quality factor
corresponding to a frequency of 30 Hz (the vertical dashed
lines indicated in Figure 2). The symbols represent the
numerical simulations. The dashed line in Figure 3a cor-
responds to the phase angle � = 60°. The solid, dashed and
dotted lines in Figures 3b and 3c correspond to the energy
angles y = 83.7° (qP wave), y = 25.3° (qSV wave) and y =
81.8° (SH wave).
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in theory, is between 5 and 8 for P waves approximately, and
depending on the single constituents).

5. Conclusions

[26] The Backus/Carcione theory describes the anisotropic
behavior of finely‐layered media at long wavelengths. Here,
we have introduced a novel numerical method based on
oscillatory experiments to test the theory, i.e., we obtain the
complex and frequency‐dependent stiffnesses which allow
us to compute the wave velocities and quality factors as a
function of frequency and propagation angle. The method-
ology is based on a finite element solution of the equations
of motion in the space‐frequency domain to simulate har-
monic compressibility and shear tests. We consider a peri-
odic sequence of shale and limestone. The agreement
between the numerical and theoretical results is excellent.
The method validates the anelastic theory for Q‐anisotropy
and, in addition, the expressions of the wave velocities and
Q factors for homogeneous viscoelastic body waves in
anisotropic media.
[27] Laboratory measurements indicate that attenuation is

related to the presence of fluids. In particular, attenuation
may be used as an indicator of permeability and fluid sat-
uration. Attenuation anisotropy is more pronounced than
velocity anisotropy. Hence, measurements of Q‐anisotropy
may provide more reliable information about the orientation
of layering and fractures, and fluid properties of hydrocar-
bon reservoirs. Shear wave experiments can provide useful
information, since it is seen that attenuation anisotropy due
to fine‐layering is more pronounced for shear waves than for
compressional waves.
[28] The theory and numerical solver proposed in this

work can be applied to more complex geological situations
(lower symmetries, stochastic heterogeneities, fractures,
etc.) and implemented in the processing and interpretation of
real seismic data for characterization purposes.
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