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ABSTRACT:
P-wave conversion to slow diffusion (Biot) modes at mesoscopic (small-scale) inhomogeneities in porous media is

believed to be the most important attenuation mechanisms at seismic frequencies. This study considers three

periodic thin layers saturated with gas, oil, and water, respectively, a realistic scenario in hydrocarbon reservoirs,

and perform finite-element numerical simulations to obtain the wave velocities and quality factors along the direc-

tion perpendicular to layering. The results are validated by comparison to the Norris-Cavallini analytical solution,

constituting a cross-check for both theory and numerical simulations. The approach is not restricted to partial satura-

tion but also applies to relevant properties in reservoir geophysics, such as porosity and permeability heterogeneities.

This paper considers two cases, namely, the same rock skeleton and different fluids, and the same fluid and different

dry-rock properties. Unlike the two-layer case (two fluids), the results show two relaxation peaks and the agreement

between numerical and analytical solutions is excellent. VC 2020 Acoustical Society of America.
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I. INTRODUCTION

Fluid flow is responsible for the high wave dissipation

in partially saturated rocks. Fluid-pressure gradients,

induced between regions of dissimilar properties (meso-

scopic, small-scale heterogeneities) generate slow P diffu-

sion modes from fast P-waves, according to the Biot theory

of poroelasticity, where the mesoscopic scale is much larger

than the pore size but much smaller than the wavelength.

The mode conversion is very effective in the presence of

partial saturation. This dissipation mechanism was first

explained by White et al. (1975) for a two-layer periodic

system and extended by Norris (1993) to many layers.

Although these theories consider each layer as a medium

saturated with a single fluid, P-waves “see” the layering as a

partially saturated medium at the long wavelength limit.

Cavallini et al. (2017) explicitly solved Norris’s equations

and obtained a solution for three layers. For example, if the

fluid content or the porosity of the rock skeleton vary signifi-

cantly at the mesoscopic scale, fluid diffusion between dif-

ferent regions generates this loss mechanism, which can be

important at seismic frequencies (e.g., Carcione, 2014;

Carcione and Picotti, 2006; Santos and Gauzellino, 2017).

The advantage of the three-layer system is that the varia-

tions in fluid type, porosity, permeability, and dry-rock bulk

moduli can be arbitrary. Periodicity is not a limitation since,

according to Norris (1993), the characteristic length defining

the periodicity can be the spatial autocorrelation length in a

non-periodically (random) layered medium (see Gurevich and

Lopatnikov, 1995). In this work, the theory of Norris (1993)

and Cavallini et al. (2017) is verified by means of a numerical

method. To verify the theory [and the finite element (FE)

numerical solver], we perform numerical simulations of oscil-

latory (harmonic) numerical simulations based on a space-

frequency domain FE method. We apply the methodology to

the periodic sequence of three layers and compute the quality

factor and wave velocities as a function of frequency along the

direction perpendicular to layering. This methodology has

already been used with success in other simpler cases

(Carcione, 2014; Carcione et al., 2011; Picotti et al., 2010;

Santos et al., 2009).

II. THEORY

Let us consider isotropic poroelastic layers and denote

the time variable by t, the frequency by f ¼ x=ð2pÞ, where

x is the angular frequency, and the position vector by

x ¼ ðx; y; zÞ ¼ ðx1; x2; x3Þ. Let usðxÞ ¼ ðus
1; u

s
2; u

s
3Þ and uf ðxÞ

¼ ðuf
1; u

f
2; u

f
3Þ indicate the time Fourier transform of the dis-

placement vector of the solid and fluid (relative to the solid)

phases, respectively [if Uf is the fluid displacement vector,

uf ¼ /ðUf � usÞ, where / is the porosity]. Also, set

u ¼ ðus; uf Þ, let rijðuÞ and pf ðuÞ denote the time Fourier

transform of the total stress and the fluid pressure, respec-

tively, and let �ijðusÞ be the strain tensor of the solid phase.

A. Stress-strain relation

The frequency-domain stress-strain relations of a single

plane layer n in a sequence of n ¼ 1, 2, 3 layers, are

(Carcione, 2014)
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rklðuÞ ¼ 2lðnÞ �klðusÞ

þ dkl kðnÞG r � us þ aðnÞMðnÞr � uf
� �

; (1)

where dkl is the Kronecker delta and

pf ðuÞ ¼ �aðnÞMðnÞr � us �MðnÞr � uf : (2)

For each layer n, the coefficient l is the shear modulus of

the bulk material, considered to be equal to the shear modu-

lus of the dry frame (skeleton). Also

kG ¼ KG �
2

3
l; (3)

with KG the bulk modulus of the saturated material

(Gassmann modulus). The coefficients in Eqs. (1) and (2)

can be obtained from the relations (Carcione, 2014)

a ¼ 1� Km

Ks
; M ¼ a� /

Ks
þ /

Kf

� ��1

;

KG ¼ Km þ a2M; (4)

where Ks, Km, and Kf denote the bulk moduli of the solid

grains, dry frame, and saturant fluid, respectively. The coef-

ficient a is known as the effective stress coefficient of the

bulk material.

B. Equation of motion

We define the matrix

B ¼
0I 0I

0I bI

 !
; (5)

which is positive definite and non-negative. Here, I is the 3

� 3 identity matrix, and the coefficient b includes the vis-

cous coupling effects between the solid and the fluid,

b ¼ g
j
; (6)

where g is the fluid viscosity and j is the frame

permeability.

Next, let LðuÞ be the second-order differential operator

defined by

LðuÞ ¼ r � rðuÞ;�rpf ðuÞ
� �>

: (7)

Biot’s equation of motion in the diffusive range, stated in

the space-frequency domain, is

ixBuðx;xÞ � L uðx;xÞ½ � ¼ 0; (8)

which is complemented with Eqs. (1) and (2). We have

ignored external sources in Eq. (8) and the inertial (accelera-

tion) term, which can be neglected since over the seismic

band of frequencies that term is negligible compared to the

viscous resistance. Equation (8) describes wave diffusion in

a porous medium and is the basis to take into account the

mesoscopic-loss anelasticity introduced by White et al.
(1975) for two layers and generalized by Norris (1993) to

many layers. Therefore, at this frequency band, the effects

of wave-induced fluid flow are described by the quasi-static

Biot theory, i.e., stress equilibrium within the porous frame

and Darcy’s flow of pore fluid (e.g., Carcione et al., 2011;

Carcione, 2014, Chap. 7; Santos and Gauzellino, 2017,

Chap. 7).

The mesoscopic attenuation theory of interlayer flow

from White et al. (1975), extended by Norris (1993),

describes the equivalent viscoelastic medium of a stack of

thin alternating porous layers of thickness Lj, j ¼ 1, 2, 3,

such that the period of the stratification is L ¼
P

jLj. The

theory gives the complex and frequency dependent P-wave

modulus E, where the analytical solution is given in

Appendix A.4, specifically Eq. (61), from Cavallini et al.
(2017). Defining qs and qf as the mass densities of the solid

grains and fluid, respectively, the bulk density is

q ¼ ð1� /Þqs þ /qf : (9)

C. Seismic properties

The P-wave phase velocity is given by

vp ¼ Re
1

v

� �� 	�1

; (10)

where v is the complex velocity

v ¼
ffiffiffi
E

q

s
; (11)

and the quality factor is

Q ¼ Reðv2Þ
Imðv2Þ ; (12)

(e.g., Carcione, 2014). The modulus E is equivalent to the

complex stiffness component p33 of the effective (long-

wavelength) transversely isotropic medium.

D. Peak frequency and diffusion length

The approximate transition frequency separating the

relaxed and unrelaxed states (i.e., the approximate location

of the relaxation peak) is (Carcione, 2014)

f0j ¼
8jMEm

pgL2
j EG

; j ¼ 1; 2; 3; (13)

where M, Em ¼ Km þ 4l=3; EG ¼ KG þ 4l=3, g, and Lj

refer to every single layer. At this reference frequency, the

Biot slow-wave attenuation length equals the mean layer

thickness or characteristic length of the inhomogeneities
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(see next paragraph). Equation (13) indicates that the relaxa-

tion peak moves towards the low frequencies with increas-

ing viscosity and decreasing permeability, i.e., the opposite

behaviour of the Biot peak.

The dissipation is due to the presence of the slow P-

wave, with a diffusivity constant d ¼ jMEm=ðgEGÞ, while

the critical fluid-diffusion relaxation length is Lr ¼
ffiffiffiffiffiffiffiffiffi
d=x

p
.

The fluid pressures will be equilibrated if Lr is comparable

to the period of the stratification. For smaller diffusion

lengths (e.g., higher frequencies) there is not enough time

for the pressures to reach equilibrium, causing attenuation

and velocity dispersion. Since x ¼ 2pf and f ¼ d=ð2pL2
r Þ,

substituting the diffusivity constant d into this equation, we

have that the transition frequency [Eq. (13)] is obtained for

a diffusion length Lr ¼ Lj=4 (Carcione, 2014).

III. HARMONIC NUMERICAL SIMULATIONS

We perform harmonic numerical simulations to com-

pute the stiffness E as a function of frequency by using a

Galerkin FE procedure (Carcione et al., 2011; Santos et al.,
2009). A square sample X of boundary C of the periodic 3-

layer medium is subjected to time-harmonic compressions

DP exp ðixtÞ, where P denotes pressure (see Fig. 1) and D
denotes a variation of the field variable. In the following, we

establish the boundary conditions to be used at the sides of

X to obtain the stiffness components. Then, we solve Eq. (8)

with those conditions.

The boundary of X is C ¼ CL [ CB [ CR [ CT , where

CL ¼ fðx; zÞ 2 C : x¼ 0g; CR ¼ fðx; zÞ 2 C : x¼ Dg;
CB ¼ fðx; zÞ 2 C : z¼ 0g; CT ¼ fðx; zÞ 2 C : z¼ Dg;

(14)

where D is the side length of X, CL; CR; CB, and CT are the

left, right, bottom, and top boundaries of X, respectively.

Denote by n the unit outer normal on C and let m be a unit

tangent on C so that fn;mg is an orthonormal system on C.

The boundary conditions are

ðrnÞ � n ¼ �DP; ðx; zÞ 2 CT ;

ðrnÞ �m ¼ 0; ðx; zÞ 2 C;

u � n ¼ 0; ðx; zÞ 2 CL [ CR [ CB: (15)

Only the strain component �33 is non-zero, while �11 ¼ �22

¼ 0. Denoting by V the original volume of the sample and

by DVðxÞ its (complex) oscillatory volume change, we have

DVðxÞ
V

¼ � DP

EðxÞ ; (16)

valid in the quasi-static case. After solving Eq. (8) with the

boundary conditions [Eq. (15)], we obtain the average verti-

cal displacement uT
3 ðxÞ at the top boundary CT from the ver-

tical displacements u3ðx;D;xÞ measured on CT . Then, for

each frequency x, the volume change produced by the com-

pressibility test can be approximated by DVðxÞ � LuT
3 ðxÞ,

which yields EðxÞ using the relation [Eq. (16)].

To estimate EðxÞ, we use a FE procedure to compute

the solution of the equations of motion [Eq. (8)], based on

bilinear functions to represent the solid displacement vector,

whereas the fluid displacement is approximated by a closed

subspace of the vector part of the Raviart–Thomas–Nedelec

space of zero order (Raviart and Thomas, 1977; Nedelec,

1980). More details about this methodology can be found in

(Carcione, 2014, Chap. 4; Santos and Gauzellino, 2017,

Chap. 6; Santos et al., 2009). Finally, we obtain the P-wave

velocity and quality factor using equations (10) and (12).

IV. EXAMPLES

We consider two examples, where the inhomogenei-

ties are due to the pore fluids and the frame, respectively.

To obtain a reliable comparison between the Norris-

Cavallini theory and the numerical solution, the model

should include a large number of periods, which requires

a large mesh, with a consequent increase in the amount of

storage and computer time. Therefore, the choice of the

mesh size is a compromise between the computational

effort and solution reliability. The sample model, repre-

sented in Fig. 1, is discretized on a numerical mesh of 210

� 210 grid points. Each example considers five cases with

a grid spacing of 4 cm, except case 5, which uses 2 cm. A

smaller grid spacing is used for case 5 to discretize a very

thin layer (at least two points per layer thickness are

needed). As a result, the number of periods is 14 for all

the cases and seven for case 5.

A. Homogenous frame example

The first example considers the same frame (skeleton)

and three thin layers of period L ¼ 60 cm saturated with

brine, oil, and gas, where the properties of the rock, frame,

and saturant fluids are listed in Table I.

The thicknesses are denoted by Li ¼ LSi, where Si rep-

resents the saturations, denoted by Sb, So, and Sg for brine,

oil, and gas, respectively. Figure 2 shows the phase velocity

FIG. 1. Oscillatory (harmonic) test performed to obtain E. The orientation

of the layers and the directions of the applied stress are indicated. The thick

black lines at the edges indicate rigid boundary conditions (vanishing nor-

mal solid and fluid displacements and tangential stresses).
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[Fig. 2(a)] and dissipation factor (inverse of the quality fac-

tor) [Fig. 2(b)] for each case indicated in Table II, where the

symbols correspond to the FE solution. As can be observed,

the agreement between the solutions is very good.

Unlike the second case (where brine has the highest sat-

uration) the other curves show two attenuation peaks. Based

on the approximated transition frequency [Eq. (13)], the

lower- and higher-frequency dissipation peaks are related to

the presence of oil and gas, respectively. For example, in

case 3 we have f02 ¼ 0.14 Hz and f03 ¼ 37.4 Hz, while the

first peak has a negligible amplitude and is located at a very

high frequency. When the transition frequencies are similar,

we have one peak as in case 2, where f01 ¼ 43.9 Hz, f02

¼ 1.28 Hz, and f03 ¼ 37.4 Hz. The peak amplitudes in these

examples indicate high attenuation, with minimum quality

factors between 5 and 20. To our knowledge, the use of

attenuation in surface seismics for reservoir characterization

has been very limited. P-wave quality factors computed

from field data in sandstone reservoirs (e.g., Klimentos,

1995) show that attenuation can be very strong at sonic fre-

quencies (5 <Q < 30). Assuming that similar pore-fluid

effects occur at seismic frequencies, these simulations pre-

dict that attenuation can be important for seismic data as

well, allowing us to distinguish between different propor-

tions of gas, oil, and water.

B. Homogeneous fluid example

The second example considers three layers of dissimilar

porosity saturated with brine. Porosity and permeability are

related by the Kozeny-Carman relation (Mavko et al.,
2009),

j ¼ 4B/3R2

ð1� /Þ2
; (17)

where R is the grain radius, B ¼ 0.003, and R ¼ 80 lm. We

use the Krief model (Mavko et al., 2009) to obtain the dry-

rock moduli as

Km ¼ Ksð1� /Þ3=ð1�/Þ
and l ¼ Kmls=Ks; (18)

where ls is the shear modulus of the grains. Table III shows

the five cases with different layer thicknesses.

The porosities, dry-rock moduli, and permeabilities are

given at the bottom of Table III and the other remaining

properties are listed in Table I. Figure 3 shows the phase

velocity [Fig. 3(a)] and dissipation factor [Fig. 3(b)], respec-

tively, where the symbols correspond to the FE solution. As

can be seen, the agreement between the solutions is very

good. Compared to the homogeneous frame, there is a

TABLE I. Medium properties.

Grain Bulk modulus, Ks 33.4 GPa

Shear modulus, ls 30 GPa

Density, qs 2650 kg/m3

Frame Bulk modulus, Km 1.3 GPa

Shear modulus, lm 1.4 GPa

Porosity, / 0.3

Permeability, j 1 darcy

Brine Density, qB 975 kg/m3

Viscosity, gB 0.001 Pa s

Bulk modulus, KB 2.2 GPa

Oil Density, qo 870 kg/m3

Viscosity, go 0.3 Pa s

Bulk modulus, Ko 2 GPa

Gas Density, qg 70 kg/m3

Viscosity, gg 0.00015 Pa s

Bulk modulus, Kg 0.0096 GPa

FIG. 2. P-wave phase velocity (a) and dissipation factor (b) corresponding

to the cases shown in Table II. The symbols refer to the FE numerical

simulations.

TABLE II. Homogeneous frame. Saturations of brine, oil, and gas.

Sb So Sg

Case (%) (%) (%)

1 100/3 100/3 100/3

2 60 20 20

3 20 60 20

4 20 20 60

5 46.7 46.7 6.6
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single, relevant attenuation peak with lower amplitude (i.e.,

lower attenuation), and relaxation frequency between 7 and

100 Hz. Minor peaks at very high transition frequencies are

not visible. As for the homogeneous frame, in some cases

(e.g., cases 3 and 5) the main broad peak is the superposition

of two peaks with similar transition frequencies. For exam-

ple, using Eq. (13) for case 5, we obtain f02 ¼ 73.6 Hz and

f03 ¼ 13 Hz.

V. CONCLUSIONS

Fluid type (bulk modulus, viscosity), permeability, and

porosity may, in principle, be inferred from the amplitude

and phase of the seismic pulse, related to the quality factor

and phase velocity, respectively. We have presented numeri-

cal quasi-static harmonic numerical simulations to test and

validate the theory. The proposed numerical simulations are

based on a FE solution of the equation of motion in the

space-frequency domain to simulate compressibility tests

and obtain the P-wave modulus. We considered three plane

layers with different properties and have explicitly obtained

the P-wave velocity and quality factor perpendicular to

layering. The first example considers the same skeleton satu-

rated with brine, oil, and gas. The curves show two attenua-

tion peaks, unlike the case of two fluids. A second example

assumes three layers of different porosity saturated with

brine. The agreement with the analytical solution is excel-

lent in both cases.

The FE numerical simulations are not restricted to

obtain the properties perpendicular to layering but can be

used to obtain the five stiffness components of the equiva-

lent transversely-isotropic medium. In future work, we will

extend the computation to the anisotropic case. Because the

fluid flow is perpendicular to the layering plane, there is

only one relaxation function, corresponding to the

symmetry-axis P-wave stiffness. Knowing this relaxation

function and the high- and low-frequency elastic limits of

the stiffness tensor, the seismic properties as a function of

the propagation angle can be obtained.
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