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The classical Earth model used to process seismic data assumes plane layers and a velocity analysis based on a
hyperbolic approximation of the reflection events, where basically one parameter (the stacking velocity) is
used to perform the normalmove-out (NMO) correction to obtain the stacked section.We explore the possibility
of using alternative approaches, other than the standard Dix equation based on the root-mean-square (RMS)
velocities, to obtain the interval velocities and perform the depth conversion in order to locate the interfaces.
Specifically, we consider traveltime equations as a function of offset using different NMO approximations,
based on the average, RMS and root-mean-quartic (RMQ) velocities. A generalised form of Dix's equation is
used for this purpose. Moreover, we analyse the model-dependency of the different NMO equations.
We consider a simple 4-layermodel and amodel based on data from the Cooper basin, South Australia, to test the
NMO equations. We build an elastic-velocity model and compute a common midpoint (CMP) synthetic seismo-
gram. The reflection events are identified and traveltimes are picked to perform a non-linear inversion with the
conventional (one parameter) hyperbolic approximation, the 3-term Taner and Koehler equation and approxi-
mations based on the average, RMQ and RMS velocities, also using two parameters. The model has a velocity
inversion which poses a challenge to the approximations. The performance of the approximations is model de-
pendent, so a-priori information of the velocity profile can be useful to perform a suitable inversion, or an optimal
stack of the reflection events is required to test theNMOcorrection.Moreover, the results show that the inversion
based on the RMSvelocities yields better results than those based on theRMQvelocities, but this is not always the
case. On the other hand, the inversion using the average velocity performs a worse velocity–depth estimation,
even compared to the RMS results from the hyperbolic approximation.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The hyperbolic relation between two-way traveltime and offset is a
rough approximation to compute the NMO correction in the case
of multiple plane layers and large offsets. This therefore requires a
non-hyperbolic approximation. Blias (2007) provides various expres-
sions and analyses their performance for the calculation of the interval
velocities. He also introduces new NMO approximations. Two of them
include average velocity as one of the parameters.

Although the subject has been making significant progress dur-
ing the last two decades, mainly considering the anisotropic case
(Alkhalifah, 2000, 2011; Alkhalifah and Tsvankin, 1995; Blias,
2009; Tsvankin and Grechka, 2011), still some issues are not clear in
h), jcarcione@inogs.it
.
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simple cases, such as plane layered isotropic media, and precise, unam-
biguous answers cannot be found in the literature. As Blias (2007) indi-
cates, there are two main issues related to the NMO velocity analysis,
i.e., the accuracy of the NMO approximation and the interval-velocity es-
timation and related depth conversion. Optimal traveltime approxima-
tions can be found for instance in Causse (2004), Fomel and Stovas
(2010). In particular, these authors propose a five-parameter non-
hyperbolic moveout approximation that reduces to known equations,
some of them given here, with a particular choice of the parameters.
However, a good NMO approximation should also be useful to perform
an accurate velocity inversion and depth conversion. Blias (2007) pro-
vides such approximations, stating: “Two of the new NMO approxima-
tions include average velocity as one of the parameters. This enables an
estimate of reflector depth directly from velocity analysis rather than
depth estimation through the Dix formula and RMS velocities”. Here,
we use one of Blias' approximation and pose the question: Is average ve-
locity better to estimate the interval velocities and interface depth than
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Table 1
4-Layer acoustic model.

Layer Base of layer P velocity

(km) (km/s)

1 0.4 2
2 0.7 3
3 0.8 3.5
4 1.3 4
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RMS velocities? Moreover, according to Blias (2007): “The new approx-
imations appear to be the most accurate in terms of residual traveltimes
and RMS velocity estimations, particularly at large offsets”. A second
question to answer is: Are there NMO approximations that can perform
better in general or their performances depend on the depth–velocity
model?

In order to answer these questions and test the NMO approxima-
tions, we apply them to a CMP seismogram generated from Tirrawarra
well data in the Cooper basin (Laws and Gravestock, 1998). Preliminary
work based on this model and focused on the 3-term equation has been
performed by Qadrouh (2008). Blias (2007) considered several NMO
approximations constrained by the condition that the traveltime and
its two derivatives with respect to the offset squared at zero offset be
the same as those of the exact traveltime function. Here, we show that
these approximations aremodel-dependent by also computing residual
traveltimes for a simple model 4-layer model. Then, we obtain the
interval velocities for the Tirrawarra model from the RMS and average
velocities. In the inversion procedure, the two-way zero-offset
traveltime is assumed to be known, resulting in one parameter,
using the hyperbolic approximation (the stacking or NMO velocity)
and two parameters, using the 3-term Taner and Koehler equation
and one of Blias's equations based on the average velocity.

2. Reflection-traveltime approximations

Let us consider a multilayered Earth consisting of n layers. Bolshykh
(1956) and Taner and Koehler (1969) derived the first power series for
the reflection traveltime from the base of the nth layer, located at depth
z. The result is

T2 ¼
X∞
i¼0

cix
2i
; ð1Þ

where ci are coefficients depending on the model parameters and x is
the offset.

We consider at most three terms:

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
0 þ

x2

a2
þ a22−a4

4T2
0a

4
2

x4
s

; ð2Þ
Table 2
Tirrawarra (Cooper basin) model.

Layer Base of layer P velocity h T0 V1 V2 V4

(km) (km/s) (km) (s) (km/s) (km/s) (km/s)

1 0.413 1.59 0.413 0.5195 1.59 1.59 1.59
2 0.714 2.023 0.301 0.8171 1.748 1.760 1.785
3 1.504 2. 0.790 1,6071 1.872 1.882 1.90
4 2.098 2.129 0.594 2.1651 1.938 1.949 1.967
5 2.428 3.132 0.330 2.3758 2.044 2.081 2.170
6 2.676 3.223 0.248 2.5297 2.116 2.168 2.287
7 3. 5.250 0.324 2.6531 2.261 2.4 2.80
8 3.334 3.587 0.334 2.8394 2.348 2.496 2.874
9 3.793 4.787 0.459 3.0311 2.503 2.699 3.140
where T0 is the two-way zero-offset traveltime to the base of then layer,
x is the offset,

aj ¼
1
T0

Xn
k¼1

vj
ktk; Vjn ¼ a1= jj ; ð3Þ

are the velocitymoments, vk is the seismic velocity of the k layer, tk is the
vertical two-way traveltimewithin layer k, V2n is the RMS velocity, V4 is
the RMQ velocity and T0 = ∑1

nti. Interface k is intended to be the base
of layer k in the following. The average velocity is

V1n ¼ 2z
T0

¼ a1 ¼ 1
T0

Xn
k¼1

vktk: ð4Þ

Other NMO approximations reported by Blias (2007), are obtained
by keeping time T and its two derivatives with respect to x2 at x = 0
the same as those of the exact traveltime function T(x). These approxi-
mations are given in Eqs. (5)–(9) below.

Let us consider the nth interface. Malovichko (1978) derived the
shifted hyperbola approximation,

T ¼ T0 1−1
s

� �
þ 1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
0 þ

sx2

V2
2n

s
; s ¼ a4

a22
¼ V4n

V2n

� �4
: ð5Þ
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Fig. 1. Traveltime residuals for different NMO approximations corresponding to the
deepest interfaces of the 4-layer (a) and Cooper basin (b) models.



Offset (m) Offset (m)

T
 (

s)

T
 (

s)

a b

Fig. 2. Synthetic CMP data (a) and traveltime picks (b) corresponding to the Cooper basinmodel. Primary reflection events are highlighted. The numbers indicate the interfaces listed in Table 2.
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A three-term NMO approximation, similar to the one derived by
Alkhalifah and Tsvankin (1995) is

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
0 þ

x2

V2
2n

− s−1ð Þx4
V2
2n 4T2

0V
2
2n þ 3þ sð Þx2� �

vuut Blias Eq: 9ð Þð Þ: ð6Þ

An approximation derived from Taner et al. (2005) is

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
0 þ

x2

V2n þ ax2
� �2

vuut ; a ¼ s−1
8T2

0V2n
Blias Eq: 10ð Þð Þ: ð7Þ

A relation based on the average velocity is

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
0 þ

x2

V2
1n

 !
1þ gx2

T2
0V

2
1n 1þ gð Þ

 !−1
vuut ; g ¼ V2

2n

V2
1n

−1 Blias Eq: 11ð Þð Þ:ð8Þ

Finally, Blias (2007) considers another approximation,

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
0 þ

x2

V2
2n þ bx2

s
; b ¼ s−1

4T2
0

Blias Eq: 13ð Þð Þ: ð9Þ
Table 3
Cases to obtain the interval velocities.

Equation Velocity

Hyperbola V2k ¼ 1=
ffiffiffiffiffi
p1

p
3-term TK V2k ¼ 1=

ffiffiffiffiffi
p1

p
3-term TK V4k ¼ 1−4p2T

2
0k=p

2
1

	 
1=4
=
ffiffiffiffiffi
p1

p
Blias
Eq. (10)

V2k = p1

Blias
Eq. (10)

V4k = p1(1 + 8p1p2T0k2 )1/4

Blias
Eq. (11)

V1k ¼ 1=
ffiffiffiffiffi
p1

p

Blias
Eq. (11)

V2k ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1−p2T

2
0k

q

3. Exact reflection traveltime

To test these approximations, we compute the traveltime residuals
T − Te, where Te is the exact traveltime. This is computed as

x ¼ p
X
k

v2k tkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−p2v2k

q ; Te ¼
X
k

tkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−p2v2k

q ; ð10Þ

(Bolshykh, 1956; Pilant, 1979), where p = sinθ / vn is the ray parame-
ter and θ is the incidence angle on the first (upper) interface.

4. Generalised Dix equation

It can be shown that to obtain the interval velocities vk, we may use
the following generalisation of the Dix equation

vk ¼
V j
jkTk−V j

j k−1ð ÞTk−1

Tk−Tk−1

0
@

1
A1= j

; ð11Þ

where

Tk ¼
Xk
l¼1

tl; Tn ¼ T0: ð12Þ

The case j = 2 is the standard Dix's equation (Dix, 1955). The other
two cases yield the interval velocities from the average velocity (j = 1)
and from v4n (j = 4).

5. Time to depth conversion

From the interval velocities one can compute the depth of the inter-
faces as

zk ¼
1
2

Xk
l¼1

vltl; ð13Þ

where tl is the two-way traveltime corresponding to layer l, given by

t1 ¼ T01 and tl ¼ T0l−T0 l−1ð Þ; l ¼ 2;…n; ð14Þ

where T0l is the two-way traveltime corresponding to interface l.



Fig. 4. Traveltime residuals corresponding to the deepest interface of the Cooper basin
model.

a

b

c

Fig. 3. Average (a), RMS (b) and RMQ (c) velocities obtained from the inversion compared
to the true values.
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6. Examples

The differentNMOequations are verified by using themodels shown
in Tables 1 and 2. Table 2 provides also the average velocity (V1), the
RMS velocity (V2) and the RMQ velocity (V4). The second model corre-
sponds to the Tirrawarra well in the Cooper basin, South Australia.
Fig. 1a and b show thehyperbolic (black line) andnon-hyperbolic resid-
ual traveltimes as a function of offset, corresponding to the deepest
interfaces of themodels given in Tables 1 and 2, respectively. The curves
clearly show that the approximations are model dependent. In the first
case, Blias Eqs. (10) and (13) show the best performance, while the
Taner and Koehler 3-term equation and Blias Eq. (10) are the best for
the model displayed in Table 2. The hyperbolic approximation is the
worst in both cases. It can be shown that the 3-term Taner and Koehler
equation provides the best fit for interfaces 4–9 of the second model.
The fact that this NMO equation is the best for model 2 does not mean
that it can perform equally well in other cases. Blias (2009) has also
shown that the NMO approximations are model-dependent. Therefore,
a-priori knowledge of the velocity trend is important to establish the
best NMO approximation to obtain the interval velocities. Alternatively,
the equation providing the best fit should be used to obtain the
velocities.

A synthetic CMP gather has been computed with a full-wave solver
based on the pseudospectral method (Carcione, 2007; Seriani et al.,
1992) (see Fig. 2a). We have assumed that the S-wave velocities are
given by vS ¼ vP=

ffiffiffi
3

p
(a Poisson medium) and the density is computed

from Gardner's relation ρ = 1741 vP
0.25 (Mavko et al., 1998, p. 254),

where vp is given in km/s and ρ in kg/m3. The P-wave velocity below in-
terface 9 is set to 5.2 km/s. The source – a Ricker wavelet – has a dom-
inant frequency of 25 Hz. We have used 561 × 561 grid points with a
uniform grid spacing of 10 m along the horizontal and vertical direc-
tions and the time step is 1 ms.

Next, we compute the Cooper-basin interval velocities from CMP
data, using the hyperbola, Taner and Koehler 3-term formula and Blias
Eqs. (10) and (11). Let us assume for simplicity that we have obtained
the exact traveltimes picks from the CMP gather. These are shown in
Fig. 2b. Actually, a PS event from the first interface can be seen between
events 1 and 2, showing that this visual pick to identify PP reflections is
not always reliable.We have L pairs (xi, Ti) (offset-traveltime) to fit with
the hyperbolic approximation and Eqs. (2) and (8), respectively. It is a
non-linear minimisation problem of the functions

XL
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
0 þ p1x

2
i

q
−Ti

� �2
hyperbola

XL
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
0 þ p1x

2
i þ p2x

4
i

q
−Ti

� �2
3� term Taner and Koehler

XL
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
0 þ

x2i
p1 þ p2x

2
i

� �2
vuut −Ti

0
@

1
A2

Blias Eq: 10ð Þ;

XL
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
0 þ p1x

2
i

1þ p2x
2
i

s
−Ti

 !2

Blias Eq: 11ð Þ;

ð15Þ
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Fig. 5. Inversion results based on the hyperbolic equation (conventional velocity analysis)
and the 3-term Taner and Koehler equation (a), Blias Eq. (10) (b) and Blias Eq. (11) (c).
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b

Fig. 6. Inversion results for the 4-layer model, based on the 3-term Taner and Koehler
equation (a) and Blias Eq. (11) (b).
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respectively, to obtain the parameters p1 and p2 (T0 is known). The
minimisation algorithm, called Praxis, is illustrated in Chapter 7 of
Brent (1971).

We consider several cases, listed in Table 3, to compute the interval
velocities, where TK denotes Taner and Koehler. The estimation of the
average (a), RMS (b) and RMQ (c) velocities, compared to the true
values, are shown in Fig. 3. The average velocity deviates from the true
values at the deepest layers starting from the highest velocity. On the
other hand, the 3-term Taner and Koehler approximation performs
better than the hyperbola, as expected. Also, the twoBlias RMS velocities
obtained from Eqs. (7) and (8) yield a good agreement. Similarly, the
RMQ velocity from Blias Eq. (10) is a good approximation to the true
one as can be seen in Fig. 1b. Fig. 4 shows the traveltime residuals com-
puted with the inversion coefficients p1 and p2. The curve out of bounds
corresponds to the conventional NMO approximation.

The inversion results (interval velocity and interface depth) are
shown in Fig. 5. The conventional velocity analysis underestimates the
highest velocity by approximately 0.5 km/s. The 3-term Taner–Koehler
equation gives the best estimation in this case, since this approximation
is the best as can be seen in Fig. 1b. The RMS velocities are the most
reliable ones while the average velocity fails to estimate the highest
velocity, where there is a velocity inversion and does not perform better
than the hyperbola, despite the fact that the traveltime equation (Blias
Eq. (11)) provides a better approximation to the true event, as shown
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in Fig. 1, and therefore a better stack. In all the cases, the RMS velocities
seem to handle better the velocity inversion.

To show that the inversion is model dependent, we display in
Fig. 6 the results for the 4-layer model, using the 3-term Taner
and Koehler equation and Blias Eq. (11). The RMS velocities from
both equations perform very similar, with a slightly better perfor-
mance of the latter, since its residual move out is closer to zero
than that of the first approximation (see Fig. 1). On the other
hand, the RMQ velocities in Fig. 6a (dots) performs better than
the RMS velocities, with the only exception of the last layer. The in-
version obtained from the average velocity is better than that of the
more complex model but it is still worse than that obtained with
the RMS velocity.

7. Conclusions

Optimal NMO approximations are required to obtain accurate
images of the subsurface (optimal stacking), compute reliable values
of the interval velocities and perform the conversion from two-way
traveltime to depth. It is shown here that a-priori knowledge of the
velocity profile in the area is useful, since the NMO equations are
model-dependent. Alternatively, tests are necessary to identify the
optimal NMO equation providing maximum stacking of the reflection
events.We have considered a particular velocitymodel from the Copper
basin, obtained the traveltime picks of the reflection events and
performed an inversion of the root-mean and average velocities using
different NMO approximations. It has been found that the root-mean-
squared velocities provide a better estimation of the interval velocities
than the average and root-mean-quartic velocities, and therefore a
better depth conversion, but this is not general, since the opposite
performance may occur depending on the model. Moreover, it is clear
that higher order (non-hyperbolic) approximations perform much
better than the classical hyperbolic equation used in conventional
processing. The analysis presented here can be extended to dipping
interfaces and to the case of anisotropic layers, where even in the case
of a single homogeneous layer the traveltimes are not described by a
hyperbolic function and therefore non hyperbolic approximations are
more important.
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Appendix A. Generalised Dix equation

Following Stovas (2008), we demonstrate Eq. (11) using the contin-
uum. First, note that aj in Eq. (3) can be expressed as

aj ¼
1
T0

Z T0

0
vjdt ¼ 2

T0

Z H

0
vj−1dz; ð16Þ
where H is the thickness of the layer (or set of layers in the discrete
case). We note that

aj ¼
2
T0

I j−1; ð17Þ

with Ij defined in Eq. (A-1) by Stovas (2008) and that a0 = 1.
Taking the derivative of T0aj as follows and using Eq. (16), we obtain

the generalised Dix equation

d T0aj

	 

dT0

¼ vj
; ð18Þ

which is the continuum version of Eq. (11). Eq. (18) is equivalent to
Eq. (B-7) in Stovas (2008), since Sk in his Eq. (A-2) is given by
Sk = a2k/a2k, such that S2 = s (see Eq. (5)).
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