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Abstract

An important upscaling effect in heterogeneous poroelastic Biot media is the dissipation mechanism due to wave-induced fluid
flow caused by mesoscopic scale heterogeneities. A typical mesoscopic heterogeneity has a size of tens of centimeters and can be due
to local variations in lithological properties or to patches of immiscible fluids. For example, a fast compressional wave traveling across
a porous rock saturated with water and patches of gas induces a greater fluid pressure in the gas patches than in the water saturated
parts of the material. This in turn generates fluid flow and slow Biot waves which diffuse away from the gas–water interfaces
generating significant losses in the seismic range. In this work an iterative domain-decomposition finite-element procedure is
presented and employed to simulate this type of upscaling effects in alternating layers of poroelastic rock saturated with either gas or
water. The domain-decomposition procedure is naturally parallelizable, which is a necessity in this type of simulations due to the large
number of degrees of freedom needed to accurately represent these attenuation effects. The numerical simulations were designed to
show the effects of the wave-induced fluid flow on the traveling waves. Our results are the first numerical evidence of the mesoscopic
loss mechanism in the seismic range of frequencies for this type of porous heterogeneous media.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The propagation of waves in a porous elastic solid
saturated by a single-phase compressible viscous fluid
was first analyzed by Biot in several classical papers
(Biot, 1956a,b, 1962). Biot assumed that the fluid may
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flow relative to the solid frame causing friction. Biot also
predicted the existence of two compressional waves,
denoted here as P1 and P2 compressional waves, and one
shear or S wave. The three waves undergo attenuation and
dispersion effects in the seismic to the ultrasonic range of
frequencies. The P1 and shear waves have a behavior
similar to that in an elastic solid, with high phase
velocities, low attenuation and very little dispersion. The
P2 wave behaves as a diffusion-type wave due to its low
phase velocity and very high attenuation and dispersion.
One important cause of attenuation at seismic frequencies
in fluid-saturated porous media is wave-induced fluid
cts due to wave-induced fluid flow in Biot media using the finite-
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Table 1
Material properties of the system

Solid matrix Solid grains bulk modulus, Ks 37 GPa
Dry matrix bulk modulus, Km 8 GPa
Dry matrix shear modulus, μ 9.5 GPa
Solid grains density, ρs 2650 kg/m3

Water Bulk modulus, Kf 2.25 GPa
Density, ρf 1040 kg/m3

Viscosity, η 0.003 Pa s
Gas Bulk modulus, Kf 0.012 GPa

Density, ρ2 78 kg/m3

Viscosity, η 0.00015 Pa s

Fig. 2. Phase velocity cp(ω) for a sandstone saturated with water and
gas for cases A and B.
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flow at mesoscopic scale heterogeneities, which are those
larger than pore size but smaller than wavelengths in the
seismic range (1–100 Hz). As pointed out by White
(White et al., 1975), sometimes gas saturation over a large
vertical section occurs in thin layers, separated by liquid-
saturated layers. This is the simplest case of mesoscopic
heterogeneities and White showed that in this case fluid
flow effects add up and play a major role. Numerical
simulations to analyze attenuation effects in an homo-
geneous sandstone saturated with brine and spherical gas
pockets at laboratory frequencies were presented by
Carcione et al. (2003) and Helle et al. (2003).

In this article we describe the use of a parallel iterative
finite-element domain-decomposition procedure to simu-
late the propagation of waves in laminated porous media in
the seismic range of frequencies. The algorithm employs
the nonconforming rectangular element defined by
Douglas et al. (1999) to approximate the displacement
vector in the solid phase. The dispersion analysis presented
by Zyserman et al. (2003) shows that using this non-
conforming element allows for a reduction in the number of
points per wavelength necessary to reach a desired ac-
curacy. It is also the case that the use of nonconforming
Fig. 1. Inverse of the quality factor Q(ω) for a sandstone saturated with
water and gas for cases A and B.
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elements reduces the amount of information that needs to
be exchanged in any parallel implementation of the algo-
rithm, as comparedwith the corresponding procedure using
conforming elements of the same order. The displacement
in the fluid phase is approximated using the vector part of
the Raviart–Thomas–Nedelec mixed finite-element space
of zero order, which is a conforming space (Raviart and
Thomas, 1975; Nedelec, 1980). The convergence analysis
of this type of iterative algorithm was presented by Santos
and Sheen (in press). The numerical experiments were run
in the IBM SP2 and the community cluster parallel com-
puters at Purdue University under the MPI standards. The
simulations show clearly the mesoscopic loss mechanism
due to the wave-induced fluid flow, and the observed
attenuation is in very good agreement with that predicted
by the White theory.

2. Review of Biot theory

We consider a porous solid saturated by a single
phase, compressible viscous fluid and assume that the
whole aggregate is isotropic. Let us = (ui

s) and ũf = (ũi
f),

i=1, …, d denote the averaged displacement vectors of
the solid and fluid phases, respectively, where d denotes
the Euclidean dimension. Also let

uf ¼ /ðũf−usÞ;

be the average relative fluid displacement per unit
volume of bulk material, where ϕ denotes the effective
porosity. Set u=(us, uf) and note that

n ¼ −jd uf ;

represents the change in fluid content.
cts due to wave-induced fluid flow in Biot media using the finite-
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Fig. 4. Vertical component of the particle velocity of the solid phase as
a function of time for the water-saturated porous medium related to
case A.
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Let εij (u
s) be the strain tensor of the solid. Also, let

σij, i, j=1, …, d, and pf denote the stress tensor of the
bulk material and the fluid pressure, respectively.
Following Biot (1962), the stress–strain relations can
be written in the form:

rijðuÞ ¼ 2leijðusÞ þ dijðkcjd us−aKavnÞ; ð2:1aÞ

pf ðuÞ ¼ −aKavjd us þ Kavn: ð2:1bÞ

The coefficient μ is equal to the shear modulus of the
bulk material, considered to be equal to the shear
modulus of the dry matrix. Also

kc ¼ Kc−
2
d
l;

with Kc being the bulk modulus of the saturated
material. Following Santos et al. (1992) and Gassmann
(1951), the coefficients in Eqs. (2.1a), (2.1b) can be
obtained from the relations

a ¼ 1−
Km

Ks
; Kav ¼

a−/
Ks

þ /
Kf

� �−1

;Kc ¼ Km þ a2Kav;

ð2:2Þ

where Ks,Km and Kf denote the bulk modulus of the solid
grains composing the solid matrix, the dry matrix and the
saturant fluid, respectively. The coefficient α is known as
the effective stress coefficient of the bulk material.

2.1. The equations of motion

Let us consider an open bounded domain Ω⊂Rd of
bulk material with boundary Γ=∂Ω. Let ρs and ρf
Fig. 3. Vertical component of the particle velocity of the solid phase as
a function of time for the periodic gas–water saturated porous medium
of case A.
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denote the mass densities of the solid grains and the
fluid and let

qb ¼ ð1−/Þqs þ /qf

denote the mass density of the bulk material. Let the
positive definite matrix P and the nonnegative matrix B
be defined by

P ¼ qbI qf I
qf I gI

� �
; B ¼ 0I 0I

0I bI

� �
:

Here I denotes the identity matrix in Rd×d. The mass
coupling coefficient g represents the inertial effects
associated with dynamic interactions between the solid
and fluid phases, while the coefficient b includes the
viscous coupling effects between such phases. They are
given by the relations

b ¼ g
k
; g ¼ Sqf

/
; S ¼ 1

2
1þ 1

/

� �
; ð2:3Þ

where η is the fluid viscosity and k the absolute per-
meability. S is known as the structure or tortuosity
factor. Next, let LðuÞ be the second order differential
operator defined by

LðuÞ ¼ ðjd rðuÞ;−jpf ðuÞÞt:

Then if ω=2πf is the angular frequency and F(x, ω)=
(F s(x,ω), Ff(x,ω)) is the external source, the equations of
motion, stated in the space–frequency domain, are (see
Biot, 1956a,b)

−x2Puðx;xÞ þ ixBuðx;xÞ−Lðuðx;xÞÞ
¼ Fðx;xÞ; xaX: ð2:4Þ
cts due to wave-induced fluid flow in Biot media using the finite-
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It was shown by Biot (1956a,b) that two compres-
sional waves, denoted here as P1 and P2, and one shear
or S wave can propagate. The P1 and S waves cor-
respond to the classical compressional and shear waves
propagating in elastic or viscoelastic isotropic solids.
The additional P2 slow mode is a wave strongly at-
tenuated in the low frequency range, associated with the
motion out of phase of the solid and fluid phases.

Let us state a boundary condition needed to com-
pletely define our differential model. Denote by ν the
unit outer normal on Γ. In the 2D case let χ be a unit
tangent on Γ so that {ν, χ} is an orthonormal system on
Γ. In the 3D case let χ1 and χ2 be two unit tangents on Γ
so that {ν, χ1, χ2} is an orthonormal system on Γ. Then,
in the 2D case set

GCðuÞ ¼ rðuÞmd m; rðuÞmd v; pf ðuÞð Þt;

SCðuÞ ¼ ðusd m; usd v; uf d mÞt;

ð2:5Þ

and in the 3D case set

GCðuÞ ¼ rðuÞmd m; rðuÞmd v1; rðuÞmd v2; pf ðuÞ
� �t

;

SCðuÞ ¼ ðusd m; usd v1; usd v2; uf d mÞt:

ð2:6Þ

Let us consider the solution of Eq. (2.4) with the
following absorbing boundary condition

−GCðuðx;xÞÞ ¼ ixDSCðuðx;xÞÞ; xaC: ð2:7Þ

The matrix D in Eq. (2.7) is positive definite. In the
2D case it is given by the following relations, with the
obvious extension to the 3D case: D ¼ A1

2N 1
2A1

2, where
N ¼ A−1

2M1
2A−1

2 and

A ¼

qb 0 qf

0 qb−
ðqf Þ2

g
0

qf 0 g

0BB@
1CCA;

M ¼
kc þ 2l 0 a Kav

0 l 0
aKav 0 Kav

0@ 1A:

ð2:8Þ

2.2. A variational formulation

In order to state a variational formulation for Eqs.
(2.4) and (2.7) we need to introduce some notation. For
Please cite this article as: Rubino, J.G. et al. Simulation of upscaling effe
element method. J. Appl. Geophys. (2006), doi:10.1016/j.jappgeo.2006.11
X⊂Rd with boundary ∂X, let (·,·)X and 〈·,·〉∂X denote the
complex L2(X ) and L2 (∂X ) inner products for scalar,
vector, or matrix valued functions. Also, for s∈R, || · ||s,X
and | · |s,X will denote the usual norm and seminorm for
the Sobolev space Hs(X ). In addition, if X=Ω or X=Γ,
the subscript X may be omitted such that (·,·)= (·,·)Ω or
〈·,·〉= 〈·,·〉Γ. Also, set

Hðdiv;XÞ ¼ fυ a ½L2ðXÞ�d : jd υaL2ðXÞg;

H1ðdiv;XÞ ¼ fυa½H1ðXÞ�d : jd υaH1ðXÞg;

with the norms

jjυjjHðdiv;XÞ ¼ ½jjυjj20 þ jjjd υjj20�
1=2;

jjυjjH1ðdiv;XÞ ¼ ½jjυjj21 þ jjjd υjj21�
1=2:

Let us introduce the spaceV ¼ ½H1ðXÞ�d � Hðdiv;XÞ.
Then multiply Eq. (2.4) by υ∈V, use integration by parts
and apply the boundary condition (2.7) to see that the
solution u of Eqs. (2.4) and (2.7) satisfies the weak form:

−x2ðPu;υÞ þ ixðBu;υÞ þ
X
l;m

ðslmðuÞ; elmðυð1ÞÞÞ

−ð pf ðuÞ;jdυð2ÞÞ þ ixhD SCðuÞ; SCυi ¼ ðF;υÞ;

υ ¼ ðυð1Þ;υð2ÞÞtaV: ð2:9Þ

The argument presented by Santos and Sheen (in
press) for a generalized composite Biot model can be
used here to show that problem (2.9) has a unique
solution for any ω≠0.

3. Simulation techniques

In order to analyze the attenuation effect due to wave-
induced fluid flow, Eq. (2.9) was solved in a rectangular
poroelastic domain Ω in the (x, y)-plane. Let T hðXÞ be a
non-overlapping partition of Ω into rectangles Ωj of
diameter bounded by h such that

P
X ¼ [J

j¼1
P
Xj.

Two different finite-element spaces associated with
the partition T hðXÞ were employed to discretize the
solid and fluid displacement vectors. Each component
of the solid displacement vector was approximated
using the 2D non-conforming finite-element spaceNCh

presented in Douglas et al. (1999), while to approximate
the fluid displacement the vector part of the Raviart–
Thomas–Nedelec space (Raviart and Thomas, 1975;
Nedelec, 1980) of zero order, denoted Wh, was chosen.
Appendix A describes these finite-element spaces and
their approximation properties.
cts due to wave-induced fluid flow in Biot media using the finite-
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Then, if Vh ¼ ðNChÞ2 �Wh, the global finite-
element procedure is defined as follows: find uh=(u(1,h),
u(2,h))t∈Vh such that

−x2ðPuh;υÞ þ ixðBuh; υÞ þ
X
j

½ðrlmðuÞ; elmðυð1ÞÞÞXj

−ðpf ðuÞ;jdυð2ÞÞXj
� þ ixhD SCðuhÞ; SCðυÞi

¼ ðF;υÞ; υ ¼ ðυð1Þ; υð2ÞÞtaVh: ð3:1Þ

To perform the numerical simulations needed to re-
present the mesoscopic loss mechanism, the computer
implementation of the global procedure (3.1) would
require the solution of a huge linear system of equations
due to the large number of degrees of freedom needed to
represent the phenomenon. Since the algebraic problem
associated with Eq. (3.1) is complex valued and non-
coercive, no known efficient iterative global solvers can
be employed. To tackle this problem, a parallel iterative
domain-decomposition algorithm was employed as
described in Appendix A.

4. Numerical example

We consider wave propagation in a poroelastic
medium Ω of uniform porosity ϕ=0.3 and permeability
k=0.986923 10−12 m2, saturated with either gas or
water. The value of the structure factor S in Eq. (2.3) was
chosen to be 1. The other material properties of the system
are given in Table 1. The domain Ω is a square of side
length L divided into two subdomains Ωhomo and Ωper.

In case A, L=800 m and Ωhomo={0<x<800 m,
0<y<8.8 m}, Ωper={0≤x≤800 m, 8.8<y<800 m},
while in case B, L=320 m and Ωhomo={0<x<320 m,
0<y<4.4 m}, Ωper={0≤x<320 m, 4.4<y<320 m}.

In both cases the region Ωhomo is fully saturated with
water, while the region Ωper consists of horizontal layers
of width 0.4 m for case A and 0.2 m for case B,
alternatively saturated with either gas or water.

In order to analyze the mesoscopic loss mechanism it
is convenient first to approximate the saturated porous
medium Ω by a viscoelastic solid and use the concept of
complex velocity as follows (see, for example, Car-
cione, 2001). Recall that in a viscoelastic solid, the
quality factor Q(ω) is defined by the relation

QðxÞ ¼
Reðυ2

pÞ
Imðυ2

pÞ
;

Please cite this article as: Rubino, J.G. et al. Simulation of upscaling effe
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where υp is the complex compressional velocity given
by

υpðxÞ ¼
ffiffiffiffiffiffiffi
E
q̄b

:

s
ð4:1Þ

In Eq. (4.1) ρ̄b is the average bulk density over Ω and
E=E(ω)= |E|eiθ is the complex plane wave modulus
associated with the domain Ω as defined by White et al.
(1975), which complicated expression involving all
coefficients in Biot's equations of motion (2.4) is in-
cluded in Appendix B.

The quality factor is related to the loss angle θ by the
formula

Q−1ðxÞ ¼ tan h:

Fig. 1 displays the inverse of the quality factor Q(ω)
for both cases, showing that the minimum value of Q(ω)
is approximately equal to 28 for cases A and B, cor-
responding to the frequencies 20 Hz and 77 Hz for cases
A and B, respectively. These frequencies were chosen as
the dominant frequencies of the external source to be
used in our numerical simulations, which allowed us to
better visualize the attenuation effects being analyzed.

Fig. 2 shows the phase velocities cp (ω) for both
cases, obtained from the expression

cpðxÞ ¼ Re
1

υpðxÞ

� �� �−1
;

where it can be observed the velocity dispersion as-
sociated with the wave-induced fluid flow mechanism.

The source function (F s, F f) is a compressional point
source located inside the region Ωhomo at (xs, ys)=
(400 m, 4 m) for case A and at (xs, ys)= (160 m, 4 m) for
case B, applied to the solid frame. It has the form

Fsðx; y;xÞ ¼ jdxs;ysɡðxÞ; F f ¼ 0;

where δxs,ys ydenotes the Dirac distribution at (xs, ys).
Also, g(ω) is the Fourier transform of the waveform

ɡðtÞ ¼ −2nðt−t0Þe−nðt−t0Þ
2

;

with ξ=8 f 0
2, t0=1.25 / f0, where the value f0 was chosen

such that the source central (dominant) frequency be
equal to 20 Hz for case A and 77 Hz for case B.

The parallel iterative procedure (A.3a)–(A.3b)
described in Appendix A was used to find the time
Fourier transforms of the displacement vectors of the
solid and fluid phases for 110 equally spaced temporal
cts due to wave-induced fluid flow in Biot media using the finite-
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Fig. 7. Vertical component of the particle velocity of the solid phase as
a function of time for the periodic gas–water saturated porous medium
of case B.

Fig. 6. Vertical component of the particle velocity of the solid phase as
a function of time at receiver r3 located at x=400 m, y=682 m for the
periodic gas–water case A and the related water and gas saturated
experiments, respectively.

Fig. 5. Vertical component of the particle velocity of the solid phase as a
function of time for the gas-saturated porous medium related to case A.
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frequencies in the interval (0, 60 Hz) for case A and (0,
242 Hz) for case B. The algorithm was implemented
employing a uniform partition T h of Ω into squares of
side length h=0.4 m for case A and h=0.2 m for case B.
The time domain solution was obtained after performing
an approximate inverse Fourier transform. The numer-
ical experiments were run in the IBM SP2 and the
community cluster parallel computers at Purdue Uni-
versity under the MPI standard. To better observe the
mesoscopic attenuation effects, in case Awe also run the
same experiment but when the subdomain Ωper is fully
saturated with either water or gas.

Figs. 3, 4, and 5 show the vertical component of the
particle velocity of the solid phase as a function of time,
for the case A and the corresponding homogeneous
experiments, i.e., the periodic gas–water saturated case
A, and the homogeneous water and gas saturated
experiments, at three receivers rj with receiver locations
(xrj, yrj), j=1, 2, 3, where xrj=400 m, j=1, 2, 3 and
yr1=230 m, yr2=456 m, yr3=682 m.

The amplitude peaks corresponding to the arrival of
the fast P1 wave for the case of periodic gas–water
saturation are lower than the corresponding peaks for the
cases of homogeneous water saturation in Fig. 4 and of
homogeneous gas saturation in Fig. 5, showing clearly
the mesoscopic loss mechanism predicted by White
et al. (1975). This effect is more easily observed in
Fig. 6, where the vertical component of the particle
velocity of the solid phase at the receiver r3 is shown for
the periodic gas–water case and for the homogeneous
water and gas experiments. Note also the delay in the
arrival time of the pulse for the periodic case as
compared with the homogeneous experiments, showing
the velocity dispersion effects caused by the mesoscopic
scale heterogeneities.
Please cite this article as: Rubino, J.G. et al. Simulation of upscaling effe
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Notice that the decay rate of the peaks associated with
the arrival of the fast P1 wave in Fig. 3 is much larger
than the corresponding decay rates in Figs. 4 and 5,
which are associated only with geometrical spreading
effects. The fast decay rate of the peak amplitudes in
Fig. 3 is then caused by the wave-induced fluid flow
between the gas and water layers.

Fig. 7 shows the vertical component of the particle
velocity of the solid phase as a function of time for case B
at three receivers rj, with receiver locations (xrj, yrj), j=1,
2, 3, where xrj=160 m, j=1, 2, 3 and yr1=49 m,
yr2=139 m, yr3=229 m. This figure shows again the fast
decay rate in the peak amplitudes associated with the fast
P1 arrivals, due to the wave-induced fluid flow mechan-
ism. The corresponding homogeneous experiments
cts due to wave-induced fluid flow in Biot media using the finite-
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Table 3
Estimated Q using the frequency-shift and spectral-ratio methods

Source Receiver Frequency-shift method Spectral-ratio method

r1 r2 28.33 30.45
r1 r3 25.32 24.79
r2 r3 22.21 20.9

Case B.
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behave in a similar way to case A and the figures are not
included here for brevity.

The quality factor Q(ω) associated with this decay
rate can also be evaluated by using the frequency-shift
and spectral-ratio methods. Here we briefly describe
these procedures. Let A( f, rs) be the value of the
amplitude spectrum of the vertical component of the
displacement of the solid phase (as a function of time),
observed at the receiver rs located at a distance ds from
the source at the frequency f=ω / 2π. Let fs be the
centroid of A( f, rs), defined by the formula

fs ¼
Rl
o fAð f ; rsÞdfRl
o Að f ; rsÞdf

:

The frequency-shift method analyzed by Quan and
Harris (1997) relates the quality factorQwith the centroid
frequencies fs and ft of two receivers rs and rt, respectively,
considering the signal at the receiver rs as the source for
the receiver rt. For the special case when the amplitude
spectrum of the signal A( f, rs) at the receiver rs is
Gaussian with variance σs

2, the following equality holds
(Quan and Harris, 1997)

kðdt−dsÞ
Qcp

¼ ð fs−ftÞ=r2s ; ð4:2Þ

where cp is the average compressional phase velocity in a
region containing the receivers rs and rt in the frequency
band of interest. The value of cp was estimated from the
arrival times at the corresponding receivers.

Another procedure to estimate the quality factor Q is
the spectral-ratio method as described by Carcione et al.
(2003). The method uses the following relation between
the amplitude spectrum of two receivers rs and rt
(Carcione et al., 2003):

ln
Aðx; rsÞ
Aðx; rtÞ

� �
¼ x

cpQ
ðdt−dsÞ þ ln

Gs

Gt

� �
; ð4:3Þ

where Gs and Gt are the corresponding geometrical
spreading factors, assumed to be independent of the
frequencyω. Thus, the quality factorQ can be determined
from the slope of the line fitting ln (A(ω, rs) /A(ω, rt)).
Table 2
Estimated Q using the frequency-shift and spectral-ratio methods

Source Receiver Frequency-shift method Spectral-ratio method

r1 r2 29.96 22.52
r1 r3 28 21.71
r2 r3 24.63 20.96

Case A.

Please cite this article as: Rubino, J.G. et al. Simulation of upscaling effe
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Picotti and Carcione (2006) compare the performances of
the twoQ-evaluationmethods, and show how to use them
in the case of noisy signal.

Tables 2 and 3 show the estimated values of Q using
the two methods. The Q-estimates are in very good
agreement with the theoretical value (Q=28 for cases A
and B) of the quality factor predicted by White et al.
(1975) as shown in Fig. 1.

5. Conclusions

Numerical experiments of wave propagation in alter-
nating porous layers saturated with either gas or water
have shown that the mesoscopic loss mechanism can be
significant in the seismic band, confirming the results
obtained by White et al. (1975).This is a simple example
of how microheterogeneities in the fluid and frame
properties can affect observations at the macro scale.
Similar results were presented by Carcione et al. (2003)
and Helle et al. (2003) in partially saturated rocks in the
high-frequency range.

The experiments show that the finite-element proce-
dure employed is accurately representing the attenuation
Fig. 8. Local degrees of freedom (dofs) associated with each
component of the solid displacement and the fluid displacement vector.
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effects, and could be used to analyze this phenomenon in
highly heterogeneous porousmaterials, such as in the case
of patchy saturation or fractal porosity–permeability
distributions.
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Appendix A. Description of the numerical procedure

Here the finite-element spaces NCh and Wh, and the
numerical procedure employed in the simulations are
briefly described.

The finite-element spaces are defined locally on a
reference square Rb =[−1, 1]2 as follows. For each
component of the solid displacement, setbNCðRbÞ ¼ Spanf1; ̂x; ̂y; að ̂xÞ−að ̂yÞg;

að ̂xÞ ¼ ̂x 2−
5
3

̂x 4;

with the degrees of freedom being the values at the
midpoint of each edge of Rb .

Next, for the fluid displacement vector, if wLð ̂xÞ ¼
−1þ ̂x

2 ;wRð ̂xÞ ¼ 1þ ̂x
2
;wBð ̂yÞ ¼ −1þ ̂y

2 ;wT ð ̂yÞ ¼ 1þ ̂y
2 , let

WbðRbÞ ¼ SpanfðwLð ̂xÞ; 0Þt; ðwRð ̂xÞ; 0Þt; ð0;wBð ̂yÞÞt;
ð0;wT ð ̂yÞÞtg:

Fig. 8 shows the local degrees of freedom (dofs )
associated with each component of the solid displace-
ment and the fluid displacement vector.

Now the finite-element spaces associated with the
partition T h are defined by scaling and translations in the
usual fashion as follows. For eachΩj, let FΩj: Rb→Ωj be an
invertible affine mapping such that FΩj (Rb)=Ωj, and define

NCh
j ¼ fυ ¼ ðυ1;υ2Þt : υi ¼ υbi ∘F−1

Xj
;υbia bNCðRbÞ; i¼1; 2g;

Wh
j ¼ fw : w ¼ wb∘F−1

Xj
;wbaWb ðRb Þg :

Setting

NCh ¼ fυ : υj ¼ υjXj
aNCh

j ;υjðnjkÞ ¼ υkðnjkÞ8ðj; kÞg;

Wh ¼ fwaHðdiv;XÞ : wj ¼ wjXj
aWh

j g;
Please cite this article as: Rubino, J.G. et al. Simulation of upscaling effe
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the global finite-element space to approximate the
solution u of Eq. (2.9) is defined by

Vh ¼ ðNChÞ2 �Wh:

Standard approximation theory implies that, for all
φ=(φ(1), φ(2))t∈ [H2(Ω)]2 ×H1(div;Ω),

inf
paNCh

tuð1Þ−pt0 þ h
X
j

tuð1Þ−pt2
1;Ωj

 !1
2

24 35VCh2tuð1Þt2;

ðA:1aÞ
inf

paWh
tuð2Þ−pt0VChtu

ð2Þt1; ðA:1bÞ

inf
paWh

tuð2Þ−ptHðdiv;XÞVChðtuð2Þt1

þtjduð2Þt1Þ:

ðA:1cÞ

The following a priori error estimates for the
procedure (3.1) has been presented by Santos and
Sheen (in press).

Theorem A. 1. Let u=(us, uf)∈V and uh∈Vh be the
solutions of Eqs. (2.9) and (3.1), respectively. We then
have the following energy-norm error estimate: for
sufficiently small h>0,

tus−uðs;hÞt1;h þ tjd ðuf−uðf ;hÞÞt0 þ juðsÞ−uðs;hÞj0;C þ jðuf−uðf ;hÞÞdmj0;C

VCðxÞh tust2 þ tuft3
2
þ tjduft1

h i
:

As explained in Section 3, the algebraic problem
associated with the global procedure (3.1) cannot be
efficiently solved with iterative global solvers due to the
large number of degrees of freedom needed to represent
the mesoscopic loss mechanism. For this reason, the
following iterative domain-decomposition algorithm
was used in this work.

Set Γj=∂Ω∩∂Ωj, Γjk=∂Ωj∩∂Ωk, and denote by ξj
and ξjk the midpoints of Γj and Γjk, respectively. Let us
denote by νjk the unit outer normal on Γjk from Ωj to Ωk

and by νj the unit outer normal to Γj. Let χj and χjk be two
unit tangents on Γj and Γjk so that {νj, χj} and {νjk, χjk}
are orthonormal systems on Γj and Γjk, respectively.

Consider the decomposition of problem (2.4) and
(2.7) over Ωj as follows: for j=1, …, J, find uj(x, ω)
satisfying

−x2Puj þ ixBuj−LðujÞ ¼ F; Xj; ðA:2aÞ

GCjk ðujÞ þ ixbjkSCjk ðujÞ
¼ GCkjðukÞ−ixbjkSCkjðukÞ; Cjk ; ðA:2bÞ

−GCjðujÞ ¼ ixDSCjðujÞ; Cj; ðA:2cÞ
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where GCjk and GCj are defined as in Eq. (2.5). Here βjk is
a positive definite matrix function defined on the interior
boundaries Γjk. The Robin transmission conditions
(A.2b) impose the continuity of the solid displacement,
the normal component of the fluid displacement and the
stresses at the interior interfaces Γjk.

Next, following Douglas et al. (1999) and Santos and
Sheen (in press), let us introduce a set of Lagrange
multipliers λjk

h associated with the values of the forces at
the midpoints ξ jk of Γ jk in the sense that
khjkfGjkðujÞðnjkÞ. The Lagrange multipliers λjk

h belong
to the following space of functions defined on the
interior interfaces Γjk:

Kh ¼ fkh : khjCjk
¼ khjka½P0ðCjkÞ�3 ¼ Kh

jk ; 8fj; kgg;

where P0(Γjk) denotes the constant functions on Γjk.
Moreover, for Γ=Γj or Γ=Γjk let 《u, υ》Γ denote the

approximation of 〈d ,d 〉Γ by the mid-point quadrature:
《u, υ》Γ=(u, ῡ )(ξjk)|Γ | where |Γ | is the measure of Γ.

The domain-decomposition iteration is defined as
follows: For all j=1, …, J choose an initial guess
ðufh;0gj ; kfh;0gjk ÞaNCh

j �Wh
j � Kh

jk . Then, for n=1, 2, 3,
…, and j=1, …, J, compute ðufh;ngj ; kfh;ngjk ÞaNCh

j �
Wh

j � Kh
jk as the solution of the equations

�x2ðPufh;ngj ;υÞj þ ixðBufh;ngj ;υÞj
þ
X
l;m

ðrlmðufh;ngj Þ; elmðυð1ÞÞÞj

� ðpf ðufh;ngj Þ;jd υð2ÞÞj
þ ixhDSCjðu

fh;ng
j Þ; SCjðυÞiCj

þ
X
k

hixbjkSCjk ðu
fh;ng
j Þ;SCjk ðυÞiCjk

¼ ðF;υÞXj−
X
k

hixbjkSCjk ðu
fh;n−1g
k Þ; SCjk ðυÞiCjk

þ
X
k

hhkfh;n−1gkj ; SCjk ðυÞiiCjk
; υaNChðXjÞ �Wh

j ;

ðA:3aÞ
kfh;ngjk ¼ kfh;n−1gkj −ixbjk ½SCjk ðu
fh;ng
j þ SCkjðu

fh;n−1g
k Þ�

� ðnjkÞ; on Cjk ; 8k:
ðA:3bÞ

Eq. (A.3b), used to update the Lagrange multipliers,
is obtained directly from Eq. (A.2b) evaluated at the
midpoint ξjk.

Eq. (A.3a) yields a 12×12 linear system of equations
for the degrees of freedom associated with the vector
displacements of the solid and fluid phases on each
subdomain Ωj at the n-iteration level. The iteration
Please cite this article as: Rubino, J.G. et al. Simulation of upscaling effe
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(A.3a)–(A.3b) is a Jacobi-type iteration that converges to
the solution uh of Eq. (3.1) (see Santos and Sheen, in
press). A twice as fast iteration may also be defined by
using a red–black type iteration (see Douglas et al.,
2001; Ha et al., 2002; Santos and Sheen, in press). The
iteration parameter matrix βjk is chosen to have the same
form of the matrix D in Eq. (2.7), with entries obtained
by averaging the coefficients in the definition of the
matrices A and M in Eq. (2.8) on both sides of the
boundary Γjk.

The space–time solution is obtained by solving Eqs.
(A.3a)–(A.3b) for a finite number of temporal frequen-
cies and using an approximate inverse Fourier transform
(Douglas et al., 1993).

Appendix B. Complex bulk modulus of a periodic
system of porous layers

We consider a periodic layered system composed of
porous media 1 and 2 with thickness dl, l=1, 2 and
period d1+d2. White et al. (1975) obtained the complex
modulus for a P1 wave traveling along the direction
perpendicular to the stratification. It is given by

E ¼ 1
E0

þ 2ðr2−r1Þ2

ixðd1 þ d2ÞðI1 þ I2Þ

" #−1
; ðB:1Þ

where

E0 ¼
p1
EG1

þ p2
EG2

� �−1

; ðB:2Þ

with pl=dl / (d1+d2), l=1, 2. Omitting the subindex l
for clarity, we have for each medium

EG ¼ Kc þ
4
3
l; ðB:3Þ

where Kc is given by Eq. (2.2).
Moreover,

r ¼ aKav

EG
ðB:4Þ

is the ratio of fast P wave fluid tension to total normal
stress,

I ¼ g
jk

coth
kd
2

� �
ðB:5Þ

is an impedance related to the slow P wave,
cts due to wave-induced fluid flow in Biot media using the finite-
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k ¼
ffiffiffiffiffiffiffiffiffi
ixg
jKE

r
ðB:6Þ

is the complex wavenumber of the slow P wave, and

KE ¼ EmKav

EG
; ðB:7Þ

is an effective modulus, with

Em ¼ Km þ 4
3
l ðB:8Þ

the dry-rock fast P wave modulus.
Let us assume in the following analysis that the

properties of the frame are the same in media 1 and 2
and that the contrast is due to two different saturating
fluids (for example, water and gas). The approximate
transition frequency separating the relaxed and unre-
laxed states (i.e., the approximate location of the
relaxation peak) is

fm ¼ 8j1KE1

kg1d21
; ðB:9Þ

where the subindex 1 refers to water for a layered
medium alternately saturated with water and gas. At this
reference frequency, the Biot slow-wave attenuation
length equals the mean layer thickness or characteristic
length of the inhomogeneities (Gurevich et al., 1997)
(see below). Eq. (B.9) indicates that the mesoscopic-loss
mechanism moves towards the low frequencies with
increasing viscosity and decreasing permeability, i.e., the
opposite behaviour of the Biot relaxation mechanism.

The mesoscopic mechanism is due to the presence of
the Biot slow wave and the diffusivity constant is
γ=κKE /η. The critical fluid-diffusion relaxation length
L is obtained by setting |kL| = 1, where k is the
wavenumber (Eq. (B.6)). It gives L ¼

ffiffiffiffiffiffiffiffiffi
g=x

p
. The

fluid pressures will be equilibrated if L is comparable to
the period of the stratification. For smaller diffusion
lengths (e.g., higher frequencies) the pressures will not
be equilibrated, causing attenuation and velocity
dispersion. Notice that the reference frequency (Eq.
(B.9)) is obtained for a diffusion length L=d1 /4.

At enough low frequencies, the fluid pressure is
uniform (isostress state) and the effective modulus of the
pore fluid is given by Wood's (1955) law:

1
Kf

¼ p1
Kf1

þ p2
Kf2

: ðB:10Þ

It can be shown (see Johnson, 2001) that E(ω=0) is
equal to the plane-wave modulus (Eq. (B.3)) for a fluid
whose composite modulus is given by Eq. (B.10). On
Please cite this article as: Rubino, J.G. et al. Simulation of upscaling effe
element method. J. Appl. Geophys. (2006), doi:10.1016/j.jappgeo.2006.11
the other hand, at high frequencies, the pressure is not
uniform but can be assumed to be constant within each
phase. In such a situation Hill's (1964) theorem gives
the high-frequency limit E(ω=∞)=E0 (see Eq. (B.2)).
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