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S U M M A R Y
Wave-induced local fluid flow is known as a key mechanism to explain the intrinsic wave
dissipation in fluid-saturated rocks. Understanding the relationship between the acoustic prop-
erties of rocks and fluid patch distributions is important to interpret the observed seismic wave
phenomena. A triple-layer patchy (TLP) model is proposed to describe the P-wave dissipation
process in a double-porosity media saturated with two immiscible fluids. The double-porosity
rock consists of a solid matrix with unique host porosity and inclusions which contain the
second type of pores. Two immiscible fluids are considered in concentric spherical patches,
where the inner pocket and the outer sphere are saturated with different fluids. The kinetic
and dissipation energy functions of local fluid flow (LFF) in the inner pocket are formulated
through oscillations in spherical coordinates. The wave propagation equations of the TLP
model are based on Biot’s theory and the corresponding Lagrangian equations. The P-wave
dispersion and attenuation caused by the Biot friction mechanism and the local fluid flow
(related to the pore structure and the fluid distribution) are obtained by a plane-wave analysis
from the Christoffel equations. Numerical examples and laboratory measurements indicate
that P-wave dispersion and attenuation are significantly influenced by the spatial distributions
of both, the solid heterogeneity and the fluid saturation distribution. The TLP model is in rea-
sonably good agreement with White’s and Johnson’s models. However, differences in phase
velocity suggest that the heterogeneities associated with double-porosity and dual-fluid distri-
bution should be taken into account when describing the P-wave dispersion and attenuation in
partially saturated rocks.

Key words: Microstructure; Permeability and porosity; Body waves; Seismic attenuation;
Wave propagation; Acoustic properties.

1 I N T RO D U C T I O N

In seismic propagation, wave attenuation can be caused by scattering and intrinsic mechanisms. The latter has been found to dominate
the scattering loss at all frequencies for a stratified sequence of water-saturated sandstones, siltstones and limestones (Sams et al. 1997).
Cross-well experiments suggest that at seismic frequencies scattering loss is negligible compared with intrinsic attenuation (Quan & Harris
1997). It is believed that intrinsic attenuation is mainly caused by wave-induced local fluid flow in fluid-saturated rocks. In response to
a passing P wave, the porous solid skeleton is compressed and dilated. In reality, skeletons and saturating fluid distributions are spatially
heterogeneous, which causes spatial gradients in fluid pressure and introduces fluid flow. Fluid movements relative to the rock frame create
internal frictions until the pore pressure is equilibrated.

The macroscopic flow at the wavelength scale was first studied by Biot (1956a,b). Biot theory quantifies the viscous-inertial attenuation
and gives frequency-dependent velocities. However, the ‘Biot loss’ underestimates the measured attenuation in many cases in the seismic
band (Mochizuki 1982; Dvorkin et al. 1995; Arntsen & Carcione 2001). A microscopic ‘squirt flow’ mechanism has then been proposed to
account for the measured high attenuation and velocity dispersion (Oconnell & Budiansky 1977; Mavko & Nur 1979; Dvorkin et al. 1995;
Thas 2007), by which compliance differences between adjacent pores, originating in pore-shape orientations, causes local pressure gradients
of pore fluid. The microcracks and grain contacts show a greater deformation than the intergranular pores, responding with a greater fluid
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A triple-layer patchy-saturated rock model 23

Figure 1. Heterogeneities in solid matrix and fluid patch. (a) Spatial distribution of less consolidated inclusions and gas pocket in host matrix. (b) Concentric
spherical model with less consolidated solid inclusion (hatched line area) embedded in a consolidated host sphere (radius b) and gas pocket (grey shaded area
with radius a) embedded in a host water patch (blank shell with radius b).

pressure than the main pore space and resulting in a squirt flow from cracks to pores. The squirt-flow model is able to explain the measured
attenuation at ultrasonic frequencies, but mostly fails in the seismic band (Pride et al. 2004).

Seismic attenuation is mainly due to the spatial variations in rock compliance on a scale much larger than a typical pore size but much
smaller than the wavelength, which is known as mesoscopic inhomogeneity in the frame and fluid distributions. Mesoscopic scale models
have been developed to explain the wave dispersion and attenuation in a single-porosity medium saturated by two immiscible fluids (White
1975; Dutta & Odé 1979a,b; Johnson 2001; Pride et al. 2004; Ba et al. 2011) and in a mixture of two porous phases saturated with a single
fluid (White et al. 1975; Berryman & Wang 2000; Pride et al. 2004; Ba et al. 2011; Rubino & Holliger 2012). The inhomogeneous lithology
distributions or patches of pore fluids form the mesoscopic heterogeneity, for which the scale is larger than the grain size and smaller than the
wavelength. The velocity and attenuation of P waves are strongly dependent upon the fluid distribution and pore geometry within the rock
matrix (Nur 1971, 1973; Solomon 1972). Fluids in different porosity respond with different pore pressure increments under waves’ squeezing.
Internal relaxation leads to local fluid flow between compliant and stiff regions as a compressional wave is passing through. The subsequent
flow causes energy loss and account for the attenuation in seismic band.

White (1975) studied P-wave dispersion/attenuation in unconsolidated rocks with partial gas/water saturation. The energy loss mechanism
is based on a concentric spherical model with a gas pocket embedded in a liquid sphere. White’s work ascribed the P-wave dispersion and
attenuation to fluid flow at the mesoscopic level and this is considered as the first patchy saturation model. White et al. (1975) considered
porous alternating layers, where the medium in each layer is isotropic and partially saturated. Dutta & Odé (1979a,b) and Dutta & Seriff (1979)
improved White’s spherical patchy model by modifying White’s formulas and the corrections gave an expected Gassmann–Wood velocity
at very low frequencies. Berryman & Wang (1995) extended Biot’s poroelasticity to include fractures/cracks by making a generalization for
a double-porosity/dual-permeability model. Berryman & Wang (2000) also applied the double-porosity analysis of poroelasticity to seismic
wave propagation. Johnson (2001) developed a generalization of White’s model for patches of arbitrary shape by using a branching function
approach. Pride et al. (2004) provided a unified theoretical treatment for P-wave attenuation models in sedimentary rocks, that is, two
mesoscopic heterogeneity models (pore type variations with a single fluid saturating all the pores, a single uniform lithology saturated by
two immiscible fluids with mesoscopic ‘patches’) and a microscopic squirt flow model. Carcione & Picotti (2006) studied the influence of
pore fluid and solid frame properties on the dispersion/attenuation curves. Recently, Ba et al. (2011) formulated a double-porosity model
(Biot–Rayleigh or BR model) based on Biot theory and the dynamics of gas-bubble oscillation in water developed by Rayleigh (1917), where
the wave-induced local fluid flow of a spherical inclusion is modeled. Dynamic equations for double-porosity media are obtained and the
effective bulk modulus are calculated. Quintal et al. (2011) reported a finite element modeling of seismic attenuation and dispersion between
regions of different compressibilities described by Biot’s equations.

In hydrocarbon reservoirs, the heterogeneity of pore structures lies in the form of matrix pores and cracks. Even in an apparently
uniform sandstone formation, a small volume fraction of less consolidated sand grains may be considered as a second type of skeleton.
The heterogeneity due to pore-type variations (e.g. mixtures of sands and clays) can interweave with the heterogeneity caused by patches of
different immiscible fluids (Fig. 1). Previous attempts to incorporate porosity and fluid heterogeneities into patchy models provide rigorous
extensions of the mesoscopic attenuation mechanism (Pride & Berryman 2003b; Ba et al. 2011). Some efforts were dedicated to investigate
the elastic wave characteristics in nature rocks simultaneously containing patchy-saturation and pore structure heterogeneities, for example,
from the angle of view of poroelasticity theory (Ba et al. 2015) or from the angle of view of numerical modeling (Rubino & Holliger 2012).
In this work, we aim to develop an approach by making the idealization that the mesoscopic heterogeneity can be meaningfully reduced to a
triple-layer spherical patchy model.
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24 W. Sun, J. Ba and J.M. Carcione

Figure 2. Triple-layer patchy (TLP) model. (a) Fluid-pocket inside inclusion (FII); (b) fluid-pocket completely overlaps inclusion; (c) fluid-pocket cover
inclusion (FCI). fin is the inner fluid pocket. fout is the outer fluid. Ssolid is the solid matrix heterogeneity interface. Sfluid is the fluid saturation heterogeneity
interface. The volume fractions of the inner pocket, intermediate and outer layers are v1, v2, v3, respectively.

The main goal of this study is to propose a triple-layer patchy (TLP) model to analyze P-wave dissipation processes in a double-porosity
medium saturated with two fluids (Fig. 1). The influences of the solid skeleton and the pore-fluid distribution on the P-wave velocity are
considered simultaneously. The model consists of spherical inclusions embedded in a homogeneous host medium (see Fig. 1b). The inclusions
are homogeneous and their radii are much smaller than the P wavelength but larger than the pore size (in a mesoscopic scale). The interface
between inclusions and host medium is open and fluids can flow through it. On the other hand, the skeletons are saturated with two types
of fluids. There is an interface between the inner fluid patch and the outside fluid zone (Fig. 1b). The fluid interface is not necessarily
related to the interface between inclusion and host medium. As a matter of fact, the solid matrix and pore fluid patch are two independent
heterogeneous systems and are treated separately. Based on such a ‘triple-layer patchy’ idealization, analytical solutions are obtained in the
form of differential equations and measurable coefficients.

The formulation requires to know: (i) the strain energy of the partially-saturated double-porosityrock system (the TLP model); (ii) the
kinetic energy of the TLP model and (iii) the dissipation functions of the TLP model. We obtain the wave propagation equations by substituting
the energies and dissipation functions into the Euler-Lagrange equation. The analysis differs from single porosity energy treatments in two
aspects: (i) we express the fluid flow kinetic energy in terms of the global and local fluid flows and (ii) we obtain the dissipation related to
both fluid flows. The kinetic energy of the local fluid flow is derived by means of a spherical harmonics formulation. Then, the solutions of
the wave equation are obtained by a plane-wave analysis.

The paper is organized as follows. Section 2 describes the TLP model incorporating both the skeleton and fluid distribution heterogeneities.
We also consider the patch interface vibrations which relate the local fluid flow ζ to the patch size and porosity. In Sections 3 and 4, we derive
the strain and kinetic energies of the global fluid flow. In Sections 5 and 6, we derive the dissipation energy functions of the global and local
fluid flow. The wave equation is obtained in Section 7 by using the Lagrangian formulation and Section 8 presents the plane-wave solutions.
Finally, in Section 9, we compute the P-wave dispersion and attenuation induced by the fluid flow and compare the results to experimental
data.

2 I N T E R FA C E V I B R AT I O N A N D F LU I D E XC H A N G E

In this work, solid and fluid heterogeneities are considered simultaneously in the TLP model. The fluid heterogeneity is realized by merging
two of the triple concentric layers into one effective layer which is saturated by the same fluid (Fig. 2). The other layer is saturated by another
fluid. The whole spherical patch is separated by the fluid interface Sfluid, the solid interface Ssolid and the patch boundary Spatch.

The three geometrical layers are represented by subscripts m = 1, 2, 3 from the inner pocket to the outer boundary. The volume fractions
and porosities of each layer are v1, v2, v3 and φ10, φ20, φ30, respectively. The fluids in each layer are represented by f1, f2, f3 correspondingly.
We consider two types of porosity: the inclusion porosity φin and the host porosity φout. The inner and outer layer porosities satisfy φ10 = φin

and φ20 = φout, while the middle layer porosity is to be determined according to the relative position of the fluid interface Sfluid and solid
interface Ssolid. In the same way, we can assign the saturating fluid types for the inner, outer and middle layers.

The matrix and fluid heterogeneities are investigated in two ways. In the first case, the inner fluid pocket is within the solid inclusions
(fluid inside inclusion or FII). As a consequence, the solid interface Ssolid is located outside the fluid interface Sfluid (Fig. 2a). Layers 1 and
2 have the same porosity φ10 = φ20 = φin, and layer 3 has porosity φ30 = φout. The outer layers 2 and 3 are saturated by the same fluid and
combined into one effective layer. Then, we have φ10 = φ20 �= φ30 and f2 = f3 �= f1. The porosity and volume of the effective layer are
φ̄20, v̄2.

φ̄2 = φ̄20v̄2, (1)

v̄2 = v2 + v3, (2)
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A triple-layer patchy-saturated rock model 25

φ̄20 = φ20v2 + φ30v3

v̄2
. (3)

In the second case (Fig. 2c), the fluid interface Sfluid is located outside the solid interfaceSsolid (fluid cover inclusion or FCI). Layers 2 and
3 have the same porosity φ20 = φ30 = φout and layer 3 has porosity φ10 = φin. Then, we have φ20 = φ30 �= φ10 and f1 = f2 �= f3. The inner
layers 1 and 2 are saturated by the same fluid and combined into an effective layer with φ̄10, v̄1. The effective parameters of the combined
layers are labeled with a bar.

φ̄1 = φ̄10v̄1, (4)

v̄1 = (v1 + v2) , (5)

φ̄10 = φ10v1 + φ20v2

v̄1
. (6)

When the fluid interface exactly overlaps the solid inclusion interface (Fig. 2b), that is, v2 = 0, FII and FCI reduce to the same case.
The surfaces of the three layers are assumed to be geometrically spherical with radius r10, r20, r30. When the P-wave propagation causes

vibrations, the instantaneous radial positions of the surfaces are indicated by r1, r2, r3. Considering the wave-induced flow, the fluid being
depleted from the inner pocket to the outer domain is φ1ζ , and the opposite flow induces the variation −φ2ζ , where

ζ = 1

φ2

(
1 − r 3

10

r1
3

)
. (7)

ζ is the variation of fluid content, which represents the fluid content increment due to the diffusion across the internal interface separating
different phases. Once we assume that the vibration amplitude of the fluid interface is sufficiently small, the radius r1 can be expanded as

r1 = r10(1 − φ2ζ )−
1
3 ≈ r10 + 1

3
r10φ2ζ. (8)

The rate at which the internal interface vibrates is ṙ1 ≈ 1
3 r10φ2ζ̇ .

3 S T R A I N E N E RG Y

In this section, the strain energy functions of the TLP model are derived. The strain energies for the cases FII and FCI are

WFII = 1

2
[(A + 2N ) I 2

1 − 4N I2 + 2Q1 I1

(
ξ1 − φ̄2ζ

)+ R1

(
ξ1 − φ̄2ζ

)2 + 2Q̄2 I1 (ξ2 + φ1ζ ) + R̄2(ξ2 + φ1ζ )2], (9)

WFCI = 1

2
[(A + 2N ) I 2

1 − 4N I2 + 2Q̄1 I1 (ξ1 − φ2ζ ) + R̄1(ξ1 − φ2ζ )2 + 2Q2 I1

(
ξ2 + φ̄1‘ζ

)+ R2

(
ξ2 + φ̄1ζ

)2
], (10)

where I1 = e11 + e22 + e33 and I2 = | e11 e12

e21 e22
| + | e22 e23

e32 e33
| + | e33 e31

e13 e11
| are the first and second strain invariants. Here ei j = (ui j + u ji )/2 and

ui (i = 1, 2, 3) is the mesoscopic volume average displacement of solid skeleton. The ‘, j’ subscript represents the spatial derivative with
respect to the j-th coordinate.

Here, u is the mesoscopic volume average displacement of the solid skeleton and ξm are the first strain invariants of the average fluid
displacement U(m)(m = 1, 2) in each effective material layer,

ξm = ε11 + ε22 + ε33. (11)

The fluid strain components are defined as

ε
(m)
i j = 1

2

(
U (m)

i j + U (m)
j i

)
. (12)

N is the average shear modulus of the solid skeleton. The coefficients A, Qm, Rm , Q̄m, R̄m(m = 1, 2) are stiffnesses, which are functions of
the porosity φ, the frame bulk modulusKb, and the solid and fluid bulk moduli Ks, K f (see the Appendix).

A =
(

1 −
2∑

m=1

φm

)
Ks − 2

3
N − Ks

2∑
m=1

Qm

K fm

, (13)

Qm = Ksφm

1 + γm
, (14)

Rm = K fm φm

1 + 1/γm
, m = 1, 2, (15)
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Figure 3. The global fluid flow (GFF) and local fluid flow (LFF) caused by the plane-wave excitation.

γ1 = Ks

K f1

⎡
⎢⎢⎢⎣ φ1 + φ2β

1 − Kb/Ks −
2∑

m=1
φm

⎤
⎥⎥⎥⎦ , (16)

γ2 = Ks

βK f2

⎡
⎢⎢⎢⎣ φ1 + φ2β

1 − Kb/Ks −
2∑

m=1
φm

⎤
⎥⎥⎥⎦ , (17)

φm are the porosities of each porous layer phase. Let vm be the volume fraction of phase m in the averaging volume. Then we have φm = vmφm0,
where φm0 is the porosity in the m-th domain. The total porosity is φ =∑2

m=1 φm .

4 K I N E T I C E N E RG Y

The kinetic energy of the effective system is:

T = 1

2

[
ρ0

3∑
i=1

u̇2
i +

2∑
m=1

∫
	m

ρ fm

3∑
i=1

(
u̇i + g(m)

i + l (m)
i

)2
d	m

]
, (18)

where g(m), l(m) are the global and local relative microvelocity fields of the fluid. The solid skeleton density is ρ0, ρ fm and 	m are the fluid
densities and fluid volume in the mth domain, respectively.

The direction of global flow caused by the plane-wave excitation is the same as that of the wave propagation. For the static isotropic
microvelocity field, the global flow velocity vector is g(m)

i = cφ(U̇ (m)
i − u̇i ) (Biot 1962; Berryman & Wang 2000). Here c is a coefficient

which depends on the pore geometry and we let c = 1. The local flow oscillation is assumed to be perpendicular to the inner sphere’s surface
(Fig. 3). The oscillation amplitude is the same on the sphere surface.

Since u̇i is the average velocity of the solid skeleton, it can be taken out of the integral. The terms in the kinetic energy are∫
	m

ρ fm u̇2
i d	m = ρmu̇2

i , (19)

∫
	m

ρ fm 2u̇i g
(m)
i d	m = 2u̇i

∫
	m

ρ fm g(m)
i d	m = 2u̇iρm

(
U̇ (m)

i − u̇i

)
= −2ρmu̇2

i + 2ρmu̇i U̇
(m)
i , (20)

∫
	m

ρ fm g(m)
i

2
d	m =

∫
	m

ρ fm a2φ2
m

(
U̇ (m)

i − u̇i

)2
d	m = ρmm

(
U̇ (m)

i − u̇i

)2
= ρmmu̇2

i − 2ρmmu̇i U̇
(m)
i + ρmmU̇ (m)2

i , (21)

where ρm and ρmm are density coefficients. Since the local flow vector is perpendicular to the inner sphere surface and has the same amplitude
in all radial directions, it can be deduced that (Ba et al. 2011)∫

	m

ρ fm u̇i l
(m)
i d	m = 0. (22)
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A triple-layer patchy-saturated rock model 27

Figure 4. The pocket-shell spherical harmonics model; r and velocity ṙ are the fluid displacement and velocity, while 	1 is the inner-pocket domain.

For the spherical inclusions with a uniform size, we also have (Ba et al. 2011)∫
	m

ρ fm g(m)
i l (m)

i d	m = 0. (23)

If we define

ρ00 = ρ0 −
3∑

m=1

(ρm − ρmm), (24)

ρ0m = ρm − ρmm, (25)

the kinetic energy can be rewritten as

T = 1

2

3∑
i=1

ρ00u̇2
i +

3∑
i=1

2∑
m=1

ρ0mu̇i U̇
(m)
i + 1

2

3∑
i=1

2∑
m=1

ρmmU̇ (m)
i

2 + TL . (26)

The LFF kinetic energy TL in the FII and FCI cases are derived in the following section.

5 S P H E R I C A L H A R M O N I C S A N D L F F K I N E T I C E N E RG Y

Rayleigh analyzed the pressure in an incompressible liquid during the collapse of a spherical cavity (Rayleigh 1917). The whole kinetic
energy of the liquid enviroment is given as an integral on thin liquid shells. Here, we extend Rayleigh’s idea to a pocket-shell model, which
includes kinetic energy of both the inner spherical pocket and surrounding fluid shell.

In the FII case, the kinetic energy of a single pocket 	1 (Fig. 4) and corresponding host medium is

T s
L−FII = 1

2
φ10

∫
	1

ρ f1 ṙ 2d	1 + 1

2
φ̄20ρ f2

∫ r3

r1

4πr 2ṙ 2 dr. (27)

The first term represents the kinetic energy of the inner sphere m = 1. r1, r3 are the radii of the inner fluid pocket and outer fluid layer.
φ̄20 is the effective porosity of the outer fluid layer. In the triple-layer model, φ̄20 is represented by φ̄20 = φ10v2+φ20v3

v2+v3
, where v2, v3 are the

volume fractions of layers 2 and 3, respectively and φ10, φ20 are the porosities of the medium in layers 2 and 3 (Fig. 2a).
First, we calculate the intergral in the inner domain 	1. The fluid displacement r and velocity ṙ in T s

L−F I I are derived by spherical
harmonics. In the fluid inside 	1, the velocity is

ṙ =
∑
l,h

vlh (t) r10∇
(

r l
0

r l
10

Y h
l (θ0, φ0)

)
, (28)

where vlh are time integrals of clh and Y h
l (θ0, φ0) are real spherical harmonics

vlh = − 1

ρ f1r10

∫
clh (t) dt. (29)
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By time-integration of the velocity, we have the fluid displacement

r = r0 +
∑
l,h

rlh (t) r10∇
[

r l
0

r l
10

Y h
l (θ0, φ0)

]
. (30)

The unperturbed fluid element position is r0 and position coefficients rlh satisfy ṙlh = vlh . In the case of irrotational vibrations, the
displacement gradient is independent of θ0, φ0 and ∇ = d/dr0. At the surface of phase zone m = 1, the radial displacement component is
given by

r1 = r10 +
∑
l,h

rlh (t)lY h
l (θ0, φ0) . (31)

The eigen functions Y h
l (θ0, φ0) are normalized to be orthonormal integrated over the surface of the unit sphere,

1

4π

∫ π

θ0=0

∫ 2π

φ0=0
Y h

l (θ0, φ0) Y h̄
l̄

(θ0, φ0) sin θ0dθ0dφ0 = δ
(
l − l̄

)
δ
(
h − h̄

)
. (32)

The final kinetic energy in phase zone m = 1 becomes

1

2
φ10

∫
	1

ρ f1 ṙ · ṙd	1 = 1

2
φ10ρ f1

∑
l,h

∑
l̄,h̄

ṙlh ṙl̄ h̄r 3
1 l̄

∫ π

θ0=0

∫ 2π

φ0=0
Y h

l (θ0, φ0) Y h̄
l̄

(θ0, φ0) sin θ0dθ0dφ0 = 2πρ f1φ10r 3
1

∑
l,h

lṙ 2
lh (33)

Considering the conservation of fluid flow between different internal surfaces, we have

4πr 2ṙφm0 = 4πr 2
1 ṙ1φ10 = 4πr 2

2 ṙ2φ20, or ṙ = r 2
1 ṙ1φ10

r 2φm0
= r 2

2 ṙ2φ20

r 2φm0
, (m = 1, 2, 3) (34)

where ṙ is the radius of an arbitrary internal interface in phase m. For l = h = 1, the kinetic energy of the inner sphere is

1

2
φ10

∫
	1

ρ f1 ṙ · ṙd	1 = 1

2
ρ f1φ10r 3

1 ṙ 2
1 . (35)

Then kinetic energy related to TLP inclusion is written as

T s
L−FII = 1

2
φ10

∫
	1

ρ f1 ṙ 2d	1 + 1

2
φ̄20ρ f2

∫ r3

r1

4πr 2ṙ 2 dr

= 2πρ f1φ10r 3
1 ṙ 2

1 + 2πρ f2

φ2
10

φ̄20
r 3

1 ṙ 2
1

[
1 − r1

r3

]
. (36)

The first term in the above formula represents the kinetic energy of the inner inclusion, ṙlh is the fluid velocity caused by different
components of the spherical harmonic vibrations at the surface of phase m = 1. The second term is related to the kinetic energy integral in
the outer concentric shell domain. The relative fluid flow velocity approaches zero at infinite distance from the patchy center, therefore the
boundary condition used here is the same as that of White (1975). If the surface of the inner fluid pocket is far from the outer boundary of
the whole patch, that is if r1 � r3, the term r1/r3 can be neglected.

Considering the phase volume fraction relation φm = vmφm0, we can write the volume ratio of the inclusion v1 and layer v3 as

v1 = 4

3
πr 3

1 N0 = φ1

φ10
or r 3

1 = 3φ1

4πφ10 N0
. (37)

Here, N0 is the number of inclusions per unit volume of composite. Since ṙ1 ≈ 1
3 r10φ2ζ̇ has been derived in a previous section, we finally

have the total LFF kinetic energy density TL−FII = N0T s
L−FII, expressed as

TL−F I I =
(

2πρ f1φ10 + 2πρ f2

φ2
10

φ̄20

(
1 − r1

r3

))
3φ1

4πφ10 N0

(
1

3
r10φ̄2ζ̇

)2

= α1
φ10φ̄

2
2

6
r 2

10ζ̇
2 (38)

α1 =
(

ρ f1 + ρ f2

φ10

φ̄20

[
1 − v

1/3
1

])
v1, (39)

In the same way, the LFF kinetic energy density for the FCI case is

TL −FCI = α2
φ̄10φ

2
2

6
r 2

20ζ̇
2 (40)

α2 =
[
ρ f1 + ρ f2

φ̄10

φ20

(
1 − (v1 + v2)1/3)] (v1 + v2) , (41)
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6 D I S S I PAT I O N F U N C T I O N S

The dissipation includes both the Biot and mesoscopic loss mechanisms. Biot’s dissipation is caused by the relative motion between the fluid
and the frame. The dissipation function for the FII and FCI cases are (Biot 1962):

DFII = 1

2

[
v1b1

3∑
i=1

(
U̇ (1)

i − u̇i

)2
+ v̄2b̄2

3∑
i=1

(
U̇ (2)

i − u̇i

)2
]

, (42)

DFCI = 1

2

[
v̄1b̄1

3∑
i=1

(
U̇ (1)

i − u̇i

)2
+ v3b3

3∑
i=1

(
U̇ (2)

i − u̇i

)2
]

, (43)

b1 = φ2
10

η1

κ10
, b̄2 = φ̄2

20

η2

κ̄20
, b̄1 = φ̄2

10

η1

κ̄10
, b3 = φ2

20

η2

κ20
, (44)

1

κ̄10
= v1

κ10v̄1
+ v2

κ20v̄1
,

1

κ̄20
= v2

κ10v̄2
+ v3

κ20v̄2
. (45)

The dissipation energy caused by the local fluid flow is derived in the same way as TL .

DL−F I I = 1

2
φ2

10

η1

κ1

∫
	1

4πr 2ṙ 2d	1 + 1

2
φ̄2

20

η2

κ2

∫ r3

r1

4πr 2ṙ 2 dr

=
(

2π
η1

κ1
φ2

10 + 2π
η2

κ2
φ̄2

20

[
1 − v1

1/3
])

r 3
1 ṙ 2

1 = β1
φ10φ̄

2
2

6
r 2

10ζ̇
2 (46)

β1 =
(

η1

κ10
+ η2

κ̄20

(
1 − v

1/3
1

))
φ10v1, (47)

Similarly, the dissipation energy for the FCI case is

DL −FC I = β2
φ̄10φ

2
2

6
r 2

20ζ̇
2 (48)

β2 =
(

η1

κ̄10
+ η2

κ20

(
1 − v̄

1/3
1

))
φ̄10v̄1, (49)

where ηm, κm , (m = 1, 2, 3) are the viscosity and permeability in each layer.

7 WAV E P RO PA G AT I O N E Q UAT I O N S

The dynamics of the entire porous system is determined by the Lagrangian function:

L = T − W, (50)

where T is the total kinetic energy and W is the total potential energy. The Euler-Lagrange equation, containing dissipation function is

∂

∂t

(
∂L

∂ u̇i

)
+

3∑
j=1

∂

∂x j

(
∂L

∂ui j

)
+ ∂L

∂ui
+ ∂ (D + DL )

∂ u̇i
= 0. (51)

where ui represents the components of the solid displacement u and the fluid displacement U(m). Regarding the local fluid flow, the Euler-
Lagrange equation is

∂

∂t

(
∂L

∂ζ̇m

)
+ ∂L

∂ (ζm)
+ ∂ (D + DL )

∂ζ̇m

= 0, m = 1, 2. (52)

Substituting T, W, D, DL into the previous equations, the dynamic equations for the FII case are

N∇2u + (A + N ) ∇ I1 + Q1∇
(
ξ1 − φ̄2ζ

)+ Q̄2∇ (ξ2 + φ1ζ ) = ρ00ü +
2∑

m=1

[
ρ0mÜ(m) + bm

(
u̇ − U̇(m)

)]
, (53)

Q1∇ I1 + R1∇
(
ξ1 − φ̄2ζ

) = ρ01ü + ρ11Ü(1) + b1

(
U̇(1) − u̇

)
, (54)

Q̄2∇ I1 + R̄2∇ (ξ2 + φ1ζ ) = ρ02ü + ρ22Ü(2) + b̄2

(
U̇(2) − u̇

)
, (55)

φ̄2 Q1 I1 + φ̄2 R1

(
ξ1 − φ̄2ζ

)− φ1 Q̄2 I1 − φ1 R̄2 (ξ2 + φ1ζ ) = − (α1ζ̈ + β1ζ̇
) φ10φ

2
2

3
r 2

10, (56)
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The porous system of TLP model has ten unknows {ui , U (m)
i , ζ }, i = 1, 2, 3, m = 1, 2, 3, which can be determined from the previous

equations.
The dynamical equations for the FCI case are derived in the same way as the FII ones. The only difference is that the inner and middle

layers are merged into an effective sphere. The porosity and coefficients in the FCI case are φ̄1, R̄1, Q̄1, b̄1. While the outer layer contains
different fluid with parameters φ1, R2, Q2, b2. The dynamical equations are

N∇2u + (A + N ) ∇ I1 + Q̄1∇ (ξ1 − φ2ζ ) + Q2∇
(
ξ2 + φ̄1ζ

) = ρ00ü +
2∑

m=1

[
ρ0mÜ(m) + bm

(
u̇ − U̇(m)

)]
, (57)

Q̄1∇ I1 + R̄1∇ (ξ1 − φ2ζ ) = ρ01ü + ρ11Ü(1) + b̄1

(
U̇(1) − u̇

)
, (58)

Q2∇ I1 + R2∇
(
ξ2 + φ̄1ζ

) = ρ02ü + ρ22Ü(2) + b2

(
U̇(2) − u̇

)
, (59)

φ2 Q̄1 I1 + φ2 R̄1 (ξ1 − φ2ζ ) − φ̄1 Q2 I1 − φ̄1 R2

(
ξ2 + φ̄1ζ

) = − (α1ζ̈ + β1ζ̇
) φ̄10φ

2
2

3
r 2

10. (60)

8 P L A N E - WAV E A NA LY S I S

Assuming that the porous medium is homogeneous and isotropic, we obtain the plane-wave propagation. The wave kernel eι(ωt−k·x) is used
in the derivations, where ω is the angular frequency and k is the vector wavenumber. Substituting the plane-wave kernel into the dynamical
equations, we obtain

∇2u = −k2u, u̇ = ιωu, ü = −ω2u, (61)

U̇(m) = ιωU(m), Ü(m) = −ω2U(m), (62)

I1 = ∇ · u = ι∇ (−k · x) · u, ∇ I1 = −k2u, (63)

ξm = ∇ · U(m) = ι∇ (−k · x) · U(m), ∇ξm = −k2U(m), (64)

ζ = ∇ · Z = ι∇ (−k · x) · Z, ∇ζ = −k2Z, (65)

ζ̇ = ιω · ι∇ (−k · x) · Z, ζ̈ = −ω2 · ι∇ (−k · x) · Z. (66)

Then, we get the dynamic equations for the FII and FCI cases as⎡
⎢⎢⎢⎣

(A + 2N ) k2 − ρ00ω
2 + ιω

(
b1 + b̄2

) (
Q1k2 − ρ01ω

2 − ιωb1

) (
Q̄2k2 − ρ02ω

2 − ιωb̄2

) (
Q̄2φ1 − Q1φ̄2

)
k2(

Q1k2 − ρ01ω
2 − ιωb1

) (
R1k2 − ρ11ω

2 + iωb1

)
0 −R1φ̄2k2(

Q2k2 − ρ02ω
2 − ιωb̄2

)
0

(
R̄2k2 − ρ22ω

2 + iωb̄2

)
R̄2φ1k2(

Q̄2φ1 − Q1φ̄2

)
k2 −R1φ̄2k2 R̄2φ1k2

[
φ̄2

2 R1 + φ2
1 R̄2 − φ10φ̄2

2ω

3 r 2
10 (−α1ω + ιβ1)

]
k2

⎤
⎥⎥⎥⎦

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ui

Ui
(1)

Ui
(2)

Zi

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 0, (i = 1, 2, 3) (67)

⎡
⎢⎢⎢⎣

(A + 2N ) k2 − ρ00ω
2 + ιω

(
b̄1 + b2

) (
Q̄1k2 − ρ01ω

2 − ιωb̄1

) (
Q2k2 − ρ02ω

2 − ιωb2

) (
Q2φ̄1 − Q̄1φ2

)
k2(

Q̄1k2 − ρ01ω
2 − ιωb̄1

) (
R̄1k2 − ρ11ω

2 + iωb̄1

)
0 −R̄1φ2k2(

Q2k2 − ρ02ω
2 − ιωb2

)
0

(
R2k2 − ρ22ω

2 + iωb2

)
R2φ̄1k2(

Q2φ̄1 − Q̄1φ2

)
k2 −R̄1φ2k2 R2φ̄1k2

[
φ2

2 R̄1 + φ̄2
1 R2 − φ̄10φ2

2ω

3 r 2
20 (−α2ω + ιβ2)

]
k2

⎤
⎥⎥⎥⎦

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ui

Ui
(1)

Ui
(2)

Zi

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 0, (i = 1, 2, 3) (68)
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Table 1. French Vosgian sandstone properties.

Property

φ 0.21
Ks (GPa) 37
ρs (kg m–3) 2650
Vp (m s–1) 2050
Vs (m s–1) 1240
κ (m2) 1.1 × 10−13

Vpwater (m s–1) 1550
ρwater (kg m–3) 1015
ηwater (Pa s) 0.001
Vpoil (m s–1) 1275
ρoil (kg m–3) 755
ηgas (Pa s) 0.076

The relationship between the wavenumber k and the frequency ω can be obtained by setting the determinant of the dynamical equations
to zero, that is,∣∣∣∣∣∣∣∣∣

a11k2 + b11 a12k2 + b12 a13k2 + b13

a21k2 + b21 a22k2 + b22 a23k2 + b23

a31k2 + b31 a32k2 + b32 a33k2 + b33

∣∣∣∣∣∣∣∣∣
= 0, (69)

These equations in k2 have three roots, corresponding to the fast P wave and two slow P waves. Here, the coefficients ai j , bi j (i = 1, 2, 3,
j = 1, 2, 3) are functions of frequency ω, porosity φ, the stiffnesses and the density coefficients (see Appendix B). The complex and phase
P-wave velocities are defined as

v = ω

k
, (70)

vP = Re (v) , (71)

respectively. The P-wave dissipation factor is

Q−1 = Im
(
v2
)

Re (v2)
. (72)

9 N U M E R I C A L E X A M P L E S

9.1 Laboratory data comparison for the oil-brine saturated sandstone

In the first example, we obtain the P-wave velocity in French Vosgian sandstone, which is saturated with oil and brine with an average porosity
of 21 per cent. Table 1 shows the rock properties reported by Bacri & Salin (1986). The partial oil/brine saturations are achieved by imbibition
and drainage methods. Here, the frequency at which the acoustic velocities were measured is 350 kHz.

The P-wave dispersion/attenuation curves are computed with the White, Johnson, Biot–Rayleigh (BR) and TLP models, respectively. In
addition, the BGW and BGH limits are calculated as velocity bounds. We consider two special cases of the TLP model. (1) The TLP model
reduces to a single-porosity/dual-fluid model by setting the solid inclusion radius to zero or whole patch size. The effect of the inner fluid
pocket kinetic energy is excluded. The data is tagged as TLPRsi=0 or TLPRsi=Rpatch . (2) The effect of the inner fluid pocket kinetic energy is
included, with the TLP model reducing to the single-porosity/dual-fluid model by setting the solid inclusion radius to zero. The data is tagged
as TLPRsi=0

inner .
When the TLP model is reduced to single-porosity/dual-fluid case, the whole region has a unique type of rock matrix. It is straightforward

to show that the equations of the cases FII and FCI are the same. Figs 5 and 6 show that the P-wave dispersion/attenuation curves corresponding
to the Rsi = 0 and Rsi = Rpatch cases overlap.

The difference between the case with TLPRsi=0 and the case with TLPRsi=0
inner is non-negligible (Fig. 5). In the first case the radius of the

inner spherical matrix with porosity φin is set to zero and the kinetic energy of the inner fluid pocket is neglected. Thus, the double-porosity
dual-fluid model reduces to the traditional single-porosity dual-fluid model. In the second case the kinetic energy of the inner fluid pocket is
included. These differences in the velocity dispersion curves (Fig. 5) are due to the inner fluid pocket. The local fluid flow kinetic energy of
the inner fluid pocket is included when deriving the equations of the TLP model (the first integralterm in eq. 27, as well as the one in eq. 36).

The TLP model provides a method to predict dispersion and attenuation caused by both fluid and solid heterogeneities. The curves are
different from the White and Johonson results. The local fluid flow kenetic energy TL of the inner fluid pocket is included in deriving the
equations of TLP model, which lead to an extra term ρ f1 in the coefficient α1 = (ρ f1 + ρ f2

φ10
φ20

). However, the BR model ingores the inner gas
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Figure 5. P-wave phase velocity as a function of frequency, corresponding to the different models. Water saturation is 90 per cent and the inner fluid pocket
(oil droplet) radius is Ra = 1 mm. The TLP model reduces to the double-porosity model by setting the inclusion radius Rsi = 0.

Figure 6. P-wave attenuation as a function of frequency, corresponding to the different models. Water saturation is 90 per cent and the inner fluid pocket radius
(oil droplet) is Ra = 1 mm. The TLP model reduces to the double-porosity model by setting inclusion radius Rsi = 0.

pocket energy. Differences between the predicted TLP and BR velocities are relatively small compared with the total velocity range for water
saturations from 0 to 100 per cent. The TLP model results considering the inner fluid kinetic energy are close to those of the BR model (see
Fig. 7), indicating that the velocity difference caused by the inner fluid pocket is about 0.7 per cent at most.

9.2 Velocity prediction for the high porosity sandstone at sonic frequency

The next example corresponds to a North-Sea sandstone with a porosity of 35 per cent and permeability of 8.7D. The rock and fluid properties
are reported by Boruah & Chatterjee (2010) are given in Table 2.

The frame bulk moduli Kb and N are calculated by using Pride’s equations Kb = Ks (1−φ)
1+αφ

and N = Ns (1−φ)
1+1.5αφ

(Pride & Berryman 2003a,b).
The consolidation parameter α is determined by fitting the dry-frame velocity of the North-Sea sandstones. The velocities of the North-Sea
sandstone as a function of brine saturation are given in Batzle et al. (2006).

The photomicrographs show that the mean grain size of the North-Sea sandstone is about 100 µm (Avseth 2000). The presence of clay
increases the pore surface to volume ratio. The water adsorption weakens the frame moduli and significant velocity dispersion/attenuation
occurs in the sandstone. The acoustic phase velocities have been reported as a function of brine saturation at the seismic, sonic and ultrasonic
frequency ranges (Batzle et al. 2006). The sample has high porosity and the saturation is heterogeneous.

Here, the complete TLP model is applied to the North-Sea sandstone, that is double-porosity and dual-fluid are assumed. The sandstone
is predominantly composed of quartz with clay coating the mineral grains (Avseth 2000). The clay and organic matter coating the sand grains
tend to inhibit quartz cementation. The clay content in the pore system leads to a great number of small size contact gaps. The losses are
therefore greater because of the higher number of dissipation mechanisms.
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Figure 7. P-wave velocity as a function of water saturation, corresponding to the BR and TLP models. Wave frequency is 350 kHz and the inner fluid pocket
radius (oil droplet) is Ra = 1 mm. The TLP model reduces to the double-porosity model by setting the inclusion radius Rsi = 0. The experimental data is shown.

Table 2. Rock and fluid parameters for North Sea sandstone.

Property Value

φ 0.35
Ks (GPa) 39.47
ρs (kg m–3) 2630
N (GPa) 36.61
κ (m2) 8.586 × 10−12

Kbrine (GPa) 2.48
ρbrine (kg m–3) 1060
ηbrine (Pa s) 0.0011
Kgas (GPa) 1.01 × 10−5

ρgas (kg m−3) 1.2
ηgas (Pa s) 1.81 × 10−5

Since the velocity dispersion is caused by the local fluid flow between inclusions and host media, the ratio between the diffusion length
and the mesoscopic fluid patch size is important. When the wave frequency is sufficiently low, the characteristic patch size of the fluid
heterogeneities is muchsmaller than the diffusion length. Since the fluids have enough time to relax, Wood’s law is applied to calculate an
effective fluid bulk modulus in the form of the harmonic saturation-weighted average of the individual fluid bulk moduli (Gassmann–Wood
limit). On the contrary, when the wave frequency is sufficiently high and the characteristic patch size is larger than the diffusion length,

the fluid-flow relaxation effects can be ignored. The diffusion length in a porous rock can be determined by λp =
√

κ M L
ωηH , with L , H being

the P-wave moduli of the dry and fluid-saturated rock. Here M = [(α − φ)/Ks + φ/K f ]−1 and α = 1 − Kb/Ks , with κ, η denoting flow
permeability and viscosity, resepctively.

The ratio of the volume of the water patch to the bounding area (V/A) has been used as a measure of patch size. The theory of
acoustics of patchy-saturation (APS) is proposed to deduce the value of V/A from experimental data on wave velocity and attenuation in
partially water-saturated limestones (Tserkovnyak & Johnson 2002). The patch size is found as a function of the fractional water-saturation.
Tserkovnyak & Johnson (2002) reported that the APS theory does not work in the case of high and low permeability samples. Some of the
deduced V/A values exceed the expected limits at high saturation S > 0.99. They ascribed the failure to the neglected capillary effects or
heterogeneities in permeability.

In this example, the sandstone has a high permeability. We determine the patch size by estimating the diffusion length λp at the low
frequency band. The effective fluid bulk modulus K f at different saturations is calculated as the harmonic saturation-weighted average of the
individual fluid bulk moduli. The wave frequencies are so low that the characteristic patch size is much smaller than the diffusion length. The
patch size is defined as R = aλp with a small coefficient a. Calculations show that a = 0.2 will give a satisfactory fit to the experiment data
at the seismic frequency (Fig. 8). The patch sizes approximately range from 0.3 to 2.3 cm for water saturations from 0 to 1. The estimated
patch size range is consistent with those determined from velocities and attenuation in partially water saturated limestone (Tserkovnyak &
Johnson 2002). The photomicrographs show that the mean grain size of the North-Sea sandstone is 100 µm (Avseth 2000). Thus, the patch is
roughly 30–230 times the grain size. The volume fraction of the outer sphere is chosen to be 80 per cent. In the outer sphere, the porosity is
65 per cent of the main matrix porosity and the grain density is 85 per cent of the frame grain density. With these values, φ20 is approximately
0.23 and ρ01 is 2236 kg m–3. All the other parameters are listed in Table 2.
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Figure 8. Measured and theoretically predicted P-wave velocities for the North-Sea sandstone. The symbols of 5–50 Hz, 75–200 Hz, 0.3–1 kHz and 1–2.5 kHz
and ultrasonic wave are experimental data following Batzle et al. (2006). (a) Predictions of White and Johnson models, (b) predictions of TLP model.

Having the patch size and inclusion volume fraction, we calculated the P-wave dispersion and attenuation for North-Sea sandstone.
The P-wave velocities at different water saturation are computed with the TLP, generalized White and Johnson models and shown in Fig. 8.
The results of the generalized White and Johnson models are bounded by the BGW and BGH limits. Although the predictions of the TLP
model are not perfect, the predicted 500 kHz curve is able to approach the experimentally-measured data which are outside the range of the
BGW and BGH limits. By introducing locally different porosities, the TLP model fits experimental data which cannot be predicted with
conventional patch models. However, as it is shown in Fig. 8, all the models can hardly predict the noticeably higher ultrasonic wave velocity
at low saturations (<50 per cent). The difference has been ascribed to sample heterogeneity (Batzle et al. 2006), where a combined effect of
the fluid flows from different heterogeneities may affect the wave propagation.

1 0 C O N C LU S I O N S

A new mesoscopic-loss model has been derived to investigate the compressional-wave dissipation process in a double-porosity/dual-fluid
medium. The significance of this work is to combine both mesoscopic-scale heterogeneities in the porous skeleton and the pore fluid saturation
in a triple-layer geometry. The three solid-fluid heterogeneity combinations are achieved by assigning different rock and fluid properties to each
layer. The model is based on Biot theory and Lagrange equations, which incorporate both the Biot and local-flow attenuation mechanisms.
A detailed comparison between the predictions of the model and measurements of wave velocity and attenuation are given, as well as
comparisons to the White, Johnson and BR models. The agreement among the different models is reasonably good in the case of particular
version of the new model. The TLP model considers the inner fluid kinetic energy and there is slightly small differences between the predicted
TLP and BR velocities for water saturations from 0 to 100 per cent. Although all the models predict attenuation and velocity dispersion typical
of a relaxation process, there are differences. Application of the models to a North-Sea sandstone, from seismic to ultrasonic frequencies,
suggests that the incorporation of heterogeneitoes in the matrix improves the prediction of the P-wave velocity approaching full saturation.
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A P P E N D I X : S T I F F N E S S A N D D E N S I T Y C O E F F I C I E N T S

Considering the general form of the strain energy, we derive the stress components as

τi j = ∂W

∂ei j
=
(

AI1 +
2∑

m=1

Qmξm

)
δi j + 2Nei j (A1)

τ (m) = ∂W

∂ξm
= Qm I1 + Rmξm, (A2)

where ∂ I1
∂ei j

= δi j ,
∂ I2
∂ei j

= I1δi j − ei j are used in the derivation. Following gedanken experiments, we derived the stiffness coefficients.

Case 1: In the pure shear deformation case, I1 = ξm = 0. The solid stress becomes τ (m) = 0 and

τi j = 2Nei j = 2μbei j . (A3)

Here N = μb is the dry-rock shear modulus.

Case 2: Assuming that there is a flexible rubber jacket surrounding the rock sample, we come to the second case. The pore fluid is
unloaded (τ (m) = 0) and allowed to flow in and out. Then we have ξm = −(Qm I1)/Rm .

The skeleton is subjected to a hydrostatic pressure p0 and I1 = ∇ · u = −p0/Kb, where Kb is the frame modulus. Substituting τi j = −p0,
ξm and I1 into stress equation, we have

A + 2

3
N −

2∑
m=1

Q2
m

Rm
= Kb (A4)
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Case 3: The rock sample is subjected to a uniform hydrostatic pressure p1. The mineral grain is homogeneous and isotropic. Then we
have τi j = −(1 −∑2

m=1 φm)p1δi j , τ (m) = −φm p1, I1 = −p1/Ks and ξm = −p1/K fm , where Ks , K fm are the solid and fluid bulk moduli.
Here, we neglect the LFF process. Substituting the above equations into τ i j , τ (m), we get

A + 2
3 N

Ks
+

2∑
m=1

Qm

K fm

= 1 −
2∑

m=1

φm, (A5)

Qm

Ks
+ Rm

K fm

= φm, m = 1, 2. (A6)

Case 4: In the case of an unloaded pore fluid (τ (m) = 0), we have ξm = −Qm I1/Rm . If each single phase is isolated from the others,
the elastic constants given by the single-porosity Biot’s theory satisfy Qm0 I (m)

1 + Rm0ξm = 0, that is, Qm0/Rm0 = αm/φm0 − 1, where

αm = 1 − Kbm/Ksm is the Biot-Willis coefficient (Berryman & Wang 2000). Then, we define β12 ≡ ξ1
ξ2

= Q1 R2
Q2 R1

≈ Q10 R20 I
(1)
1

Q20 R10 I
(2)
1

.

Considering that I (m)
1 = −p0/Kbm , Qm, Rm satisfy

Q1 R2

Q2 R1
= φ20

φ10

[
1 − (1 − φ10) Ksm/Kb1

1 − (1 − φ20) Ksm/Kb2

]
≡ 1

β
(A7)

Since we have six unkonws A,N , Qm, Rm, m = 1, 2 and six equations, the stiffness can be determined as follows

A =
(

1 −
2∑

m=1

φm

)
Ks − 2

3
N − Ks

2∑
m=1

Qm

K fm

, (A8)

Qm = Ksφm

1 + γm
, (A9)

Rm = K fm φm

1 + 1/γm
, m = 1, 2, (A10)

γ1 = Ks

K f1

⎡
⎢⎢⎢⎣ φ1 + φ2β

1 − Kb/Ks −
2∑

m=1
φm

⎤
⎥⎥⎥⎦ , (A11)

γ2 = Ks

βK f2

⎡
⎢⎢⎢⎣ φ1 + φ2β

1 − Kb/Ks −
2∑

m=1
φm

⎤
⎥⎥⎥⎦ , (A12)

For the FII case, the coefficients for phase m = 2 are Q̄2, R̄2 and the porosities φ2, φ20 are replaced by φ̄2, φ̄20. For the FCI case, the
coefficients for phase m = 1 are Q̄1, R̄1 and φ1, φ10 are replaced by φ̄1, φ̄10.

Following the calculations of the density coefficients proposed by Biot, we derive the expressions for ρ00, ρ0m, ρmm . Assuming that there is
no relative motion between the fluid and solid, we have ui = U (m)

i . The pressure difference in the fluid per unit length is −φm∇i p = φmρ fm
∂2ui
∂t2 ,

or Q(m)
i = φmρ fm

∂2ui
∂t2 . From Lagrange’s equations, we have Q(m)

i = ∂

∂t ( ∂T

∂U̇
(m)
i

) = ∂2

∂t2 (ρ0mui + ρmmU (m)
i ) = (ρ0m + ρmm) ∂2ui

∂t2 . Comparing the

above equations, we obtain

φmρ fm = ρ0m + ρmm, m = 1, 2. (A13)

Since ui = U (m)
i , the kinetic energy becomes T = 1

2

∑3
i=1 (ρ00 + 2

∑2
m=1 ρ0m +∑2

m=1 ρmm)u̇2
i .

The total mass of fluid-solid aggregate per unit volume is ρ = ρ00 + 2
∑2

m=1 ρ0m +∑2
m=1 ρmm . The total density can also be expressed

as ρ = ρ0 +∑2
m=1 φmρ fm = ρ0 +∑2

m=1 (ρ0m + ρmm), where ρ0 is the density of solid skeleton. Comparing the above equations, we obtain

ρ0 = ρ00 +
2∑

m=1

ρ0m . (A14)

In terms of the tortuosity τ , the density coefficient ρmm can be written as (Berryman & Wang 2000; Carcione 2015):

ρmm = τ (m)φmρ fm , m = 1, 2, (A15)
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where τ (m) = 1
2 (1 + 1

φm0
). We have five unknowns ρ00, ρ0m, ρmm (m = 1, 2) and five equations. Thus, the density coefficients can be determined

as

ρmm = ρ fm

2
φm

(
1 + 1

φm0

)
. (A16)

ρ0m = ρ fm

2
φm

(
1 − 1

φm0

)
. (A17)

ρ00 = ρ0 − 1

2

2∑
m=1

ρ fm φm

(
1 − 1

φm0

)
. (A18)

For the fluid-inside-inclusion (FII) case, the density coefficients are ρ̄22, ρ̄02 and φ2, φ20 are replaced by φ̄2, φ̄20. For the fluid-outside-
inclusion (FCI) case, the density coefficients are ρ̄11, ρ̄01 and φ1, φ10 are replaced by φ̄1, φ̄10. The density of the solid skeleton ρ0 is
ρ0 =∑2

m=1 ṽm(1 − φ̃m0)ρ̃sm . Here ρ̃sm is the solid mass density average in phase m of the mesoscopic volume, and ρ fm and 	m are the
fluid densities and fluid phase volume in each phase, respectively. For the FII case, ṽ1 = v1, φ̃10 = φ10, ρ̃s1 = ρs1 , ṽ2 = v2 + v3, φ̃20 = φ̄20,
ρ̃s2 = ρs1 v2+ρs2 v3

v2+v3
, and for the FCI case, ṽ1 = v1 + v2, φ̃10 = φ̄10, ρ̃s1 = ρs1 v1+ρs2 v2

v1+v2
, ṽ2 = v3, φ̃20 = φ20, ρ̃s2 = ρs2 .
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