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ABSTRACT
Wave-induced oscillatory fluid flow in the vicinity of inclusions embedded in porous
rocks is one of the main causes for P-wave dispersion and attenuation at seismic
frequencies. Hence, the P-wave velocity depends on wave frequency, porosity, satura-
tion, and other rock parameters. Several analytical models quantify this wave-induced
flow attenuation and result in characteristic velocity–saturation relations. Here, we
compare some of these models by analyzing their low- and high-frequency asymp-
totic behaviours and by applying them to measured velocity–saturation relations.
Specifically, the Biot–Rayleigh model considering spherical inclusions embedded in
an isotropic rock matrix is compared with White’s and Johnson’s models of patchy
saturation. The modeling of laboratory data for tight sandstone and limestone indi-
cates that, by selecting appropriate inclusion size, the Biot-Rayleigh predictions are
close to the measured values, particularly for intermediate and high water saturations.

Key words: P-wave dispersion/attenuation, Double porosity, Biot–Rayleigh theory,
Local fluid flow, Patchy saturation.

INTRODUCTION

Wave-induced local fluid flow causes attenuation and velocity
dispersion in fluid-saturated rocks (Dvorkin and Nur 1993;
Müller, Gurevich, and Lebedev 2010). This is because energy
is dissipated through the relative motion between the solid
skeleton and fluid phases. Dispersion and attenuation depend
on several factors such as the saturating fluids, the fluid distri-
bution patterns (patch size and shape), and pore heterogeneity
(Cadoret, Mavko, and Zinszner 1998; Müller and Gurevich
2004; Toms, Müller, and Gurevich 2007; Caspari, Müller,
and Gurevich 2011). The loss mechanism is also related to
the type of flow. Global flow attenuation was predicted by
Biot (1962). Although Biot mentioned the local fluid flow, a
predictive theory was not established until the 1970s (White
1975; White, Mikhaylova, and Lyakhovitskiy 1975; Dutta
and Odé 1979a, b; Dutta and Seriff 1979). On the other hand,
the mesoscopic loss mechanism is believed to describe the
attenuation at seismic frequencies (Ba et al. 2008; Ba, Car-

∗E-mail: baj08@petrochina.com.cn

cione, and Nie 2011). This mechanism is inherently frequency
dependent. Even for the same type of pore structure and sat-
uration, the elastic response of rocks will show different be-
haviours at low and high frequencies (Carcione 2007a).

A heterogeneous pore structure and/or fluid distribution
may stiffen or soften the rock at different frequency bands
(Cadoret, Marion, and Zinszner 1995; Carcione and Helle
2002; Ruiz and Ilgar Azizov 2011). In the case of multiple
fluids, the effective fluid bulk modulus KW is given by Wood’s
law at low frequencies, i.e., when the fluid pore pressure
is uniform between patches. It can be used together with
the Biot–Gassmann equation to predict wave velocity (Biot–
Gassmann–Wood or BGW theory) (Toms et al. 2007). At high
frequencies, there is no time for fluid pressure equilibration
between fluid patches (White 1975; Dutta and Odé 1979a, b;
Johnson 2001). The wet-rock bulk modulus is constant only
within each patch, and the shear modulus is not affected.
Invoking Hill’s theory (Hill 1963, 1964), the effective bulk
modulus KH of the composite can be obtained. The so-called
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Biot–Gassmann–Hill (BGH) formula yields a good estimate
of the velocity at high frequencies (Toms et al. 2007).

The BGW and BGH theories predict the effective bulk
modulus at the low and high frequency limits. At intermedi-
ate frequencies, the diffusion wavelength is comparable to the
size of the fluid patch. There are several approaches to model
the mesoscopic velocity dispersion and the related attenua-
tion mechanism (Sun et al. 2012). White (1975) considered
spherical gas pockets in a water-saturated porous medium.
He also considered porous layers alternately saturated with
water and gas (White et al. 1975). The effects of fluid flow
across boundaries on P-wave dispersion and attenuation were
quantified. Dutta and Odé (1979) improved White’s spherical
patchy saturation model by using Biot’s theory (Dutta and
Seriff 1979). More recently, Johnson (2001) developed a gen-
eralization of White’s model for patches of arbitrary shape
by using a branching function approach (Johnson 2001).
Carcione and Picotti (2006) studied the influence of the
fluid properties and frame (matrix) properties on the disper-
sion/attenuation curves (Carcione and Picotti 2006). Recently,
Ba et al. (2011) have formulated a double-porosity model
based on the flow dynamics theory developed by Rayleigh
(1917), where the local fluid flow of a spherical inclusion is
modeled. Dynamic equations for double-porosity media are
obtained, and the effective bulk modulus is calculated.

In this work, the Biot–Rayleigh (BR) theory (Ba et al.

2011) is adapted to the case of patchy-saturated rocks, where
gas is an inclusion in a water-saturated background medium.
The contrasts in density, viscosity, and bulk modulus between
the gas- and water-saturated zones constitute mesoscopic het-
erogeneities, i.e., the inclusions radii are much smaller than
the P-wavelength but larger than the pore size. Thus, the
partially saturated rock can be considered a special case of
a double-porosity medium with regions of different compli-
ances. Based on this double-porosity model (Ba et al. 2011; Ba
et al. 2012), the dispersion/attenuation curves are calculated
and compared with those of White’s and Johnson’s models
(White 1975; Johnson 2001).

LAGRANGIAN EQUA T I ON FOR
P A T C H Y - S A T U R A T E D M E D I A

The BR model consists of spherical inclusions embedded in
a homogeneous host medium. It is applicable in two cases: a
single-porosity solid saturated with two immiscible fluids and
a double-porosity solid saturated with a single type of fluid
(Ba et al. 2013). The inclusions are homogeneous, and their

radii are much smaller than the P-wavelength but larger than
the pore size (i.e., mesoscopic).

The wave-induced flow is caused by mesoscopic-scale
heterogeneity, which is modeled as a mixture of two porous
phases saturated by a single fluid in the BR model. A double-
porosity solid can be envisioned in many ways. For exam-
ple, there can be a small volume fraction of less consolidated
sand grains in an apparently uniform sandstone formation.
Strongly dissolved dolomite is another example, in which
powder crystals are present in the pores forming a second ma-
trix. The main difference between single- and double-porosity
solids is that the mineral grain frame is homogeneous in poros-
ity and compressibility in a single-porosity solid. For the case
of a single-porosity solid saturated with two immiscible fluids
(for instance, a rock partially saturated with gas and water),
the inclusions are gas pockets (or water pockets) while the host
medium of porous rock is saturated with water (or gas), and
the inclusions and host medium have the same skeleton if it is
treated with the BR theory. The pores between the inclusion
and the host medium are open, and the inclusions are assumed
isolated from each other so that the interaction between them
can be ignored. In isotropic double-porosity media, the strain
energy density can be expressed as (Ba et al. 2011):

W = 1
2

[(A+ 2N) I2
1 − 4NI2 + 2Q1 I1 (ε1 + φ2ζ )

+ R1 (ε1+ φ2ζ )2+ 2Q2 I1 (ε2 − φ1ζ )+ R2 (ε2 − φ1ζ )2 ]. (1)

Here I1 = e11 + e22 + e33 and I2 =
∣∣∣∣∣ e11 e12

e21 e22

∣∣∣∣∣+∣∣∣∣∣ e22 e23

e32 e33

∣∣∣∣∣+
∣∣∣∣∣ e33 e31

e32 e32

∣∣∣∣∣ are the first and second strain invariants

of solid matrix displacement u. The strain components are de-
fined as ei j = 1

2 (ui ′ j + uj ′i ). Moreover, εm = ξ
(m)
11 + ξ

(m)
22 + ξ

(m)
33

are the first strain invariants of the average fluid displacement
U(m) in the two porosity systems, with ξ

(m)
i j = 1

2 (U(m)
i ′ j + U(m)

j ′i ).
Here m = 1, 2 represent the displacements in the host
medium and inclusion, respectively (they represent the two
fluid phases in the case of a single-porosity matrix saturated
with two fluids); φ1 and φ2 are the absolute porosity of the
host medium and inclusion (it is the absolute porosity for each

fluid phase in partially saturated medium), ζ = 1
φ1

(1 − R3
0

R3 ) is
the variation of fluid content, inclusion size R is the dynamic
radius of the spherical inclusion at the boundary at time
t, R0 is the initial value of R, and N is the shear modulus
of the frame. The coefficients A, Qm, Rm (m = 1, 2) are the
stiffness values, which are functions of the porosity φ, the
frame bulk modulus Kb, and the solid’s and two fluid’s bulk
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moduli Ks, K fm
. A is the effective elastic parameter of the

solid phase. R1 and R2 are effective elastic parameters of fluid
phase. Q1 and Q2 represent the solid–fluid coupling strength
modulus. The explicit expressions for the four Biot elastic
parameters of a single-porosity medium have been derived
by three “gedanken” experiments (Johnson 1986). In the
same manner, idealized experiments can be performed for a
double-porosity medium. (i) The material is subjected to a
pure shear deformation. (ii) The rock sample is surrounded by
a flexible rubber jacket, subjected to a hydrostatic pressure,
and the pore fluid is allowed to flow in and out. (iii) The rock
sample is subjected to a uniform hydrostatic pressure, and
the mineral grain is homogeneous and isotropic. Applying the
stress–strain relations from strain energy function to idealized
experiments, the expressions of the stiffness coefficients can
be obtained (Ba et al. 2011).

The kinetic energy density of the double-porosity medium
is (Ba et al. 2011):

T = 1
2

[
ρ00

3∑
i=1

u̇2
i +2

2∑
m=1

ρ0m

3∑
i=1

u̇i U̇
(m)
i +

2∑
m=1

ρmm

3∑
i=1

(U̇(m)
i )2

]

+2TL, (2)

where

ρ00 =
(

1 −
2∑

m=1
φm

)
ρs −

2∑
m=1

ρm +
2∑

m=1
ρmm

ρ0m = ρm − ρmm, ρmm = αmφmρ fm

ρm = φmρ fm
, φm = vmφ0, (m = 1, 2) .

(3)

The host and inclusion densities are ρm = φ0ρ fm
(m =

1, 2), where ρs, ρ fm
are the solid and the two fluid’s mass

densities, and vm is the volume fraction of fluid zone m. The
porosity of the whole inclusion is φ0. The tortuosity is given
as αm = 1

2 (1/φm0 + 1) (Berryman 1979).
The kinetic energy density TL related to compression de-

formations is (Ba et al. 2011):

TL = 1
6

(
φ2

1φ2φ20

φ10

)
ρ f1

R2
0 ζ̇ 2. (4)

In the above formula, φm = vmφm0 = vmφ0 (m = 1, 2)
since we assume that the inclusions and host medium share
the same pore structures; moreover, they have the same per-
meability κ.

Biot’s dissipation function and local fluid flow dissipation
functions are (Ba et al. 2011):

D = 1
2

2∑
m=1

bmẇ(m) · ẇ(m), (5)

DL = 1
6

(η1

κ

)
φ2

1φ2φ20 R2
0 ζ̇ 2. (6)

Here w(m) = φm

(
U(m) − u(m)

)
andbm = φmφ0

( ηm
κ

)
. ηm(m =

1, 2) are the fluid viscosities. The Lagrangian formulation
of equations of motion for the current system is given by
Achenbach (1987) and Ba et al. (2011):

∂

∂t

(
∂L
∂q̇j

)
+

3∑
k=1

∂

∂qk

[
∂L

∂qj,k

]
+ ∂ (D+ DL)

∂q̇j
= ∂L

∂qj
, (7)

with L = T − W. The qj ’s are generalized coordinates and
represent the components of (ui,U

(m)
i , ζ ) (m = 1, 2, i =

1, 2, 3).
The above Lagrangian formula leads to the following

dynamic equations (Ba et al. 2011):

N∇2u + (A+ N) ∇ I1 + Q1∇ (ε1 + φ2ζ ) + Q2∇ (ξ2 − φ1ζ )

= ρ00ü +
3∑

m=1

[
ρ0mÜ(m) + bm

(
u̇ − U̇(m)

)]
, (8)

Q1∇ I1 + R1∇ (ε1 + φ2ζ ) = ρ01ü + ρ11Ü(1) + b1

(
U̇(1) − u̇

)
,

(9)

Q2∇ I1 + R2∇ (ε2 − φ1ζ )=ρ02ü + ρ22Ü(2) + b2

(
U̇(2) − u̇

)
,

(10)

φ2 Q1 I1 + φ2 R1 (ε1 + φ2ζ ) − φ1 Q2 I1 − φ1 R2 (ε2 − φ1ζ )

=
(

ρ f

φ0
ζ̈ + η1

κ
ζ̇

)
φ2

1φ2

3
R2

0φ0. (11)

This system of coupled equations has ten unknowns
(ui ,U(m)

i , ζ, i = 1, 2, 3, m = 1, 2). It entails six stiffness val-
ues (A, N, Qm, Rm), five density coefficients (ρ00, ρ0m, ρmm),
three geometrical coefficients (φm, R), the transport proper-
ties κ, and the fluid viscosity ηm. The stiffness and density
coefficients have been discussed and quantitatively estimated
on the basis of measurable properties of solid and fluids
(φ0, Ks, N, K f1

, K f2
, Kb, ρs, ρ f1

, ρ f2
). The geometrical coeffi-

cient R represents the radius of sphere inclusion, indicating
the size of gas pockets if the rock is treated as a single-porosity
medium saturated with two immiscible fluids (gas and water).

White (1975) developed the patchy saturation theory for
an elastic porous solid saturated with two immiscible fluids.
The idealized geometry contains a gas pocket that is located at
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Figure 1 The inclusion and patch geometry. According to White (1975), each cubic unit in the medium contains a sphere inclusion in the centre.
The cubic unit is treated as an outer sphere with the same volume. Rp represents the patch radius. The ratio of (R/Rp)3 gives saturation.

the center of each cubic unit (Fig. 1) in a periodical array sys-
tem. The concentric spheres are considered where the volume
of the outer sphere is equal to the volume of each single unit
cube. The inner spherical pocket is the inclusion (gas pocket),
and the whole volume of the outer sphere is the patch.

X-ray computer tomography has been used to reveal fluid
distribution inside the rock sample during saturation (Lebedev
et al. 2009). The resolution is not sufficient to image the exact
fluid patch geometry; however, it shows the overall character
of the fluid distribution. The patch size is not uniform in real
rock saturation. An effective or average size can be used to
reflect the influence of patchy saturation.

The stiffness coefficients can be derived through ideal-
ized experiments (Ba et al. 2011). Following the calculations
of density coefficients proposed by Biot (Johnson 1986), the
formulas for density coefficients can be derived. Assuming
that there is no relative motion between fluid and solid (ui =
U(m)

i ), the pressure difference in the fluid per unit length is

−φm∇i p = φmρ fm

∂2ui
∂t2 or Q(m)

i = φmρ fm

∂2ui
∂t2 . From Lagrange’s

equations, we have Q(m)
i = ∂

∂t (
∂T

∂U̇(m)
i

) = (ρ0m + ρmm) ∂2ui
∂t2 . Com-

paring the above equations, we derive:

φmρ fm
= ρ0m + ρmm, m = 1, 2. (12)

Since ui = U(m)
i , the kinetic energy becomes T =

1
2

∑3
i=1 (ρ00 + 2

∑2
m=1 ρ0m +∑2

m=1 ρmm)u̇2
i .

The total mass of fluid–solid aggregate per unit vol-
ume is ρ = ρ00 + 2

∑2
m=1 ρ0m +∑2

m=1 ρmm. The total den-
sity can also be expressed by ρ = ρ0 +∑2

m=1 φmρ fm
= ρ0 +

∑2
m=1 (ρ0m + ρmm), where ρ0 is the density of grain skeleton.

Comparing the above equations, we derive:

ρ0 = ρ00 +
2∑

m=1

ρ0m. (13)

The tortuosity α is the mean square deviation of the mi-
croscopic field of the solid from the solid mean field, normal-
ized by the square of the relative field between the solid and
fluid constituents (Carcione 2007b). In terms of the tortuos-
ity, the density coefficient ρmm can be written as (Berryman
1980):

ρmm = τ (m)φmρ fm
, m = 1, 2, (14)

where τ (m) = 1
2 (1 + 1

φm0
). We have five unknowns

ρ00, ρ0m, ρmm (m = 1, 2) and five equations. Thus, the
density coefficients can be determined as:

ρmm =
ρ fm

2
φm

(
1 + 1

φm0

)
, (15)

ρ0m =
ρ fm

2
φm

(
1 − 1

φm0

)
, (16)

ρ00 = ρ0 − 1
2

2∑
m=1

ρ fm
φm

(
1 − 1

φm0

)
. (17)

Using harmonic analysis of plane waves u = u0ei(ωt−k·x)

and U(m) = U(m)
0 ei(ωt−k·x) in the above dynamic equations, we

obtain equations for the complex wavenumbers k of the
P-wave:⎡
⎢⎣

a11k2 + b11 a12k2 + b12 a13k2 + b13

a21k2 + b21 a22k2 + b22 a23k2 + b23

a31k2 + b31 a32k2 + b32 a33k2 + b33

⎤
⎥⎦
⎛
⎜⎝

u
U(1)

U(2)

⎞
⎟⎠ = 0, (18)
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where coefficients ai j , bi j are functions of wave frequency ω,
rock parameters (φ0, Ks, N, K f1

, K f2
, Kb, ρs, ρ f1

, ρ f2
), and in-

clusion size R. The definitions of ai j , bi j can be found in (Ba
et al. 2011). For the sake of simplicity, we will not list the
formulas here.

Since the solid and fluid displacements are arbitrary, the
determinant of coefficients matrix must be zero, which yields
the dispersion relations between ω and k:∣∣∣∣∣∣∣

a11k2 + b11 a12k2 + b12 a13k2 + b13

a21k2 + b21 a22k2 + b22 a23k2 + b23

a31k2 + b31 a32k2 + b32 a33k2 + b33

∣∣∣∣∣∣∣ = 0. (19)

As a consequence, the P-wave dispersion/attenuation can
be represented by a complex velocity v = ω/k and complex
plane-wave modulus M∗ (Dutta and Odé 1979a):

vP = [
Re
(
v−1

)]−1
, α ( f ) = 54.58 tan (θ∗/2) , (20)

tan θ∗ (ω) = M∗
I (ω)

/
M∗

R (ω). (21)

Here M∗
I , M∗

R are the imaginary and real parts of M∗.
To predict the P-wave velocity, one needs the following pa-
rameters: φ0, Ks, N, K f1

, K f2
, Kb, ρs, ρ f1

, ρ f2
, κ, ηm, and patch

size Rp. The velocity v = ω/k is numerically calculated as the
solutions of equation (19).

The BR model has been verified by numerical examples
with a single set of rock parameters, and the P-wave veloc-
ity and attenuation have been shown to be functions of fre-
quency (Ba et al. 2011). Here, we test the BR model with more
data, namely, Casino Otway basin sandstone (Lebedev et al.

2009), French Vosgian sandstone (Bacri and Salin 1986), and
high-porosity Estaillades limestone (Cadoret et al. 1995). The
predicted P-wave velocities are represented as a function of
frequency and water saturation. In addition, we apply the BR
model to oil–water saturation, with oil/water being treated as
inclusions/host.

REVISED W HITE ’S MODEL A ND
JOHNSON’S M ODEL

White (1975) studied P-wave dispersion/attenuation in un-
consolidated rocks with partial gas saturation. The energy
loss mechanism is based on a spherical gas pocket embedded
in a concentric water sphere (White 1975). As a compressional
wave travels through such rock with mixed saturation, pres-
sure gradients are high near the inhomogeneities. Fluid flow
will be high at these local spots and induce high attenuation.
White’s work ascribed the P-wave dispersion and attenuation
to fluid flow at the mesoscopic level, and this is considered the

first patchy saturation model. Idealized concentric sphere ge-
ometry is adopted in White’s work. The spherical gas pocket
is located at the inner part of the concentric model, which
is elsewhere saturated with liquid (see Fig. 1). On the outer
surface, a specified fractional volume change is impressed at
a low frequency. The resulting pressure amplitude at the sur-
face is computed. Since the effects of fluid flow in the spherical
shell are included, the gas pocket provides a complete pressure
release. The ratio of pressure amplitude to the fractional vol-
ume change yields the complex bulk modulus (White 1975)

K∗ = K0

1 − K0W
, (22)

where W = 3a2(�1−�2)(−�1+�2)
b3ιω(Z1+Z2)

is a function of the gas pocket

radius a and water sphere radius b, acoustic impedance Z1

and Z2 of the diffusion waves, wave frequency ω, and other
factors such as the porosity, bulk moduli of the contents, etc.
K0 is the average bulk modulus of the two concentric spher-
ical bodies in the absence of fluid flow. Here, ι = √−1. The
definition of the coefficients (�1, �2, �1, �2, Z1, Z2) can be
found in White’s original paper (White 1975). For the sake of
convenience of reference, we list the most important formulas
in Appendix A. With the shear modulus N∗ = N̄ (fluid con-
tent not affecting shear modulus N̄), the composite density
ρ∗ = ρ0 = (1 − φ) ρs + φ (1 − SG) ρ f , and the complex bulk
modulus K∗, we can calculate the P-wave velocity and atten-
uation (White 1975), whereρs is the mineral grain density, ρ f

is the liquid density, SG is the gas saturation

v∗
P =

√∣∣K∗ + 4
3 N∗∣∣ /ρ∗

cos
(
θ∗

P/2
) , (23)

α∗
P = ω tan

(
θ∗

P/2
)

v∗
P

, (24)

θ∗
P = tan−1

(
Im
(
K∗ + 4

3 N∗)
Re
(
K∗ + 4

3 N∗)
)

(25)

Based on White’s patchy model, Dutta et al. (1979a) de-
veloped the theory of seismic wave dispersion/attenuation in a
more rigorous manner. When a plane wave propagates in a ho-
mogeneous medium, motions perpendicular to the plane-wave
front are expected (Dvorkin and Nur 1993; Dvorkin, Mavko,
and Nur 1995). Radial displacements of the fluid and solid
material are involved in the deformations from radial stress
applied to the outer boundary of the spherical unit cell. Dutta
et al. (1979a) observed that the P-wave velocity computed
by White’s method is not correct at the zero-frequency limit
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and proposed a correction (Dutta and Odé 1979b; Dutta and
Seriff 1979): in the derivation of the impedance Z1 and Z2,
the plane-wave modulus M should be replaced by the bulk
modulus K.

Here, we found that the original and the corrected
White’s models fail to predict the velocity of the partially satu-
rated media in the absence of gas. The reason of this failure is
that White’s model has an implicit gas saturation assumption
in the calculation of coefficients K1, K2. Consider the appli-
cation of a pressure P0 at the outer boundary, resulting in a
pressure Pi at the inner boundary. The outer and inner media
are characterized by Young’s modulus E and Poisson’s ratio
σ . White assumed that the central sphere is saturated with a
gas that is very light and compressible that the contribution
of the inner gas sphere to the plane-wave modulus can be
neglected. The Poisson’s ratio of the inner sphere (containing
gas) in White’s original work is (White 1975):

σ1 = M̄ − 2N̄

2
(
M̄ − N̄

) . (26)

Here, the plane-wave modulus M̄ and shear modulus N̄

are those of the dry skeleton, ignoring the existence of gas.
This expression of the plane-wave modulus is not valid

when the inner sphere is saturated with a liquid such as oil.
The assumption of light and compressible inner fluid fails in
this case. In order to include the contribution of the inner
liquid, we compute the Poisson’s ratio of the inner fluid by
replacing (M̄, N̄) by (M1, N1):

σ1 = M1 − 2N1

2 (M1 − N1)
, (27)

where

M1 = K1 + 4
3

N1, (28)

K1 = K̄ +
(
1 − K̄/Ks

)2(
φ/K f1

+ (1 − φ) /Ks − K̄/K2
s

) . (29)

In these expressions, K̄ is the bulk modulus of the dry
frame, and K1 is the bulk modulus of the porous rock sat-
urated with the inner fluid. N1 is the shear modulus of the
porous rock.

The same problem occurs for the effective density (equa-
tion 12 in White’s paper):

ρ∗ = ρ0 = (1 − φ) ρs + φ
(
1 − S f1

)
ρ f2

+ φS f1
ρ f1

, (30)

where S f1
and S f2

are the pore-space saturations of the dif-
ference types of fluids. The subscripts f1, f2 represent the

Table 1 Rock properties.

Property Value

φ 0.15
Ks (GPa) 35.00
ρs (kg/m3) 2650
Kb (GPa) 7.00
N (GPa) 9.00
κwater (m2) 1 × 10−13

ρwater (GPa) 2.25
ηwater (kg/m3) 990
Kwater (PaS) 1 × 10−3

Kgas (Pa) 1 × 105

ρgas (kg/m3) 100
ηgas (PaS) 1 × 10−5

R* (cm) 25

*All rock parameters are from (Toms et al. 2006).

inner and outer fluids. In this way, we can obtain the ve-
locity and quality factor when the inner fluid is a liquid.
Specific examples (oil–brine) are shown in the succeeding
section.

Johnson (2001) proposed a simple closed-form analytic
form of the dynamic bulk modulus

K∗ (ω) = KBGH − KBGH − KBGW

1 − ζ + ζ
√

1 − iωτ/ζ 2
, (31)

where τ, ζare functions related to the skeleton bulk modulus,
porosity, saturation, fluid viscosity, and permeability. Follow-
ing Johnson’s original work, we list the definitions of τ, ζ in
Appendix B. These functions are carefully constructed to be
consistent with the BGW and BGH limits.

ATTENUATION AND D ISPERS ION

We calculate the P-wave velocity and attenuation based on
the material properties (Toms et al. 2006) shown in Table 1.
The numerical example shows the P-wave velocity dispersion
(Figure 2) and attenuation (Figure 3) calculated with the
BR method compared with those of White’s and Johnson’s
models.

We keep all the parameters consistent with the origi-
nal work. The rock parameters, including inclusion radius of
25 cm, are based on (Toms et al. 2006).

The wave velocities converge to the Biot-Gassmann-
Wood theory limit at zero frequency, whereas at high frequen-
cies, the velocities approach the Biot-Gassmann-Hill limit.
At intermediate frequencies, a transition can be observed,
which is caused by the presence of the mesoscopic patches.
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Figure 2 P-wave dispersion as a function of frequency, corresponding
to the different models. Water saturation is 95%.

Figure 3 P-wave attenuation as a function of frequency, correspond-
ing to the different models. Water saturation is 95%. The vertical
dash-dot line represents Biot characteristic frequency fBiot= 2.4112
kHz.

The frequency-dependent velocity transition is located be-
tween fl=0.1 Hz and fh=100 Hz. The transition of the
Biot-Rayleigh theory occurs at lower frequencies, indicating
higher sensitivity to the mesoscopic heterogeneity in the low-
frequency band.

In this case, the diffusion wavelengths at fl and fh are
approximately λl=110 cm and λh=2.5 cm. Since the patch
size of the fluid heterogeneity, i.e., Rp= 25 cm, is smaller than
λl , there is enough time for the fluid to flow and equilibrate
the induced pressure differences at low frequencies, and the
velocities approach the BGW limit. When the wave frequency

is sufficiently high, e.g., f > fh, the patch size Rp is much
larger than λh, and the velocities approach the BGH limit.

The attenuation curves calculated in this example show
opposite behaviours in different frequency ranges. When the
frequency is below a transition frequency ft, the attenu-
ation is a linear function of frequency. The asymptote is
log10 Q−1 = a log10 f + b. Here a is the slope, and b is a con-
stant. When the frequency is higher than ft, the asymptote
slope is -0.5 for White’s and Johnson’s models. The BR model
has an asymptote slope a ≈ −1.0 before a small attenuation
peak (Biot dissipation). Then, the BR asymptote slope ap-
proaches that of White’s and Johnson’s models near the Biot
dissipation peak. At the high frequency limit, the BR asymp-
tote slope is again a ≈ −1.0.

The large BR peak represents local fluid flow attenuation,
and the smaller one indicates the Biot global flow attenua-
tion. Johnson’s model is valid for f << fBiot, where the Biot
crossover frequency is fBiot = ηφ

2πκρ f α∞
(Johnson 2001). Here

α∞ is the tortuosity. The dispersion/attenuation of the fast
compressional and shear waves related to Biot friction are ex-
plicitly neglected in Johnson’s theory. That is the reason why
the Biot attenuation peak is missing.

BR model incorporates two mechanisms: (i) local flow
and (ii) Biot global flow. For certain frequencies, the two peaks
may overlap. However, the two mechanisms are different. The
most interesting result is that the BR local flow peak scales
differently at high frequencies as compared with Johnson’s
model (see asymptote Q−1

BRl
in Figure 3). We interpret this

difference as follows.

a. Johnson’s asymptote slope f −0.5 represents a sharp con-
trast between the fluid patch and the background medium.
“Sharp” means that the length scale over which the induced
pressure gradient exists is small compared with the diffusion
wavelength (wavelength of the Biot slow P-wave).
b. In the BR model local flow, the dependence f −1 means
that the length scale over which the pressure gradient exists is
larger than the diffusion wavelength.

Both (a) and (b) are physically possible saturation
scenarios in rocks. It depends on the particular rock
which scenario is more applicable. For example, in rocks
where there are many small capillaries, it may be possi-
ble that there is a smooth transition from regions with
100% saturation to regions with no saturation. In such a
case, the BR model takes into account that feature and
therefore provides a more suitable dispersion/attenuation
mechanism.

C© 2014 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–13



8 W. Sun et al.

Another interesting point is that Johnson’s curve seems
to connect the low and high frequency peaks of the BR the-
ory. In this theory, the local flow peak and the Biot peak
represent two different mechanisms at different frequency
ranges, so that the two peaks occur in different bands. If we
connect the two peaks, the asymptote slope in the intermedi-
ate band behaves approximately as 1/

√
f , meaning that the

two mechanisms apply in this intermediate band. Actually,
there is a small change in the descending slope near the right
side of the attenuation peak in White’s and Johnson’s curves,
which may be a transition. The BR theory is very promising in
providing a precise description of the dissipation mechanism
at intermediate scales, rather than describing an average ef-
fect by means of a connecting line between the low and high
frequency limits.

Although the numerical predictions are nearly the same
for all the models, the theoretical foundations are quite dif-
ferent. In this work, the differences between White’s model,
Johnson’s model, and the BR model are clearly demonstrated.

i For White’s model, the P-wave velocity is obtained as the
square root of the complex bulk modulus divided by the den-

sity v∗
P =

√∣∣∣K∗+ 4
3 N∗

∣∣∣/ρ∗

cos(θ∗
P /2) . The main contribution of White’s the-

ory is the way how the complex bulk modulus K∗ is derived.
On the outer surface of concentric spheres, a specified frac-
tional volume change is imposed at a low frequency. The
resulting pressure amplitude at the surface is computed. The
gas pocket provides a complete pressure release when the fluid
flow in the spherical shell is included. The complex bulk mod-
ulus can be obtained by the ratio of pressure amplitude to the
fractional volume change. In brief, the velocity is predicted
by considering the concentric spheres as an effective homoge-
neous model.
ii In Johnson’s model, the complex bulk modulus is de-
rived with the branch function method within the context
of the quasistatic Biot theory. A simple closed-form analyt-
ical model is proposed in the complex ω-plane as K∗ (ω) =
KBGH − KBGH−KBGW

1−ζ+ζ
√

1−iωτ/ζ2
. It is obviously some kind of inter-

polation between the high- and low-frequency bulk modulus
KBGH, KBGW .
iii In the BR model, the complex P-wave is expressed as v =
ω/k. The relation between frequency ω and wavenumber k

is obtained from the Christoffel equation, which is derived
through the kinetic energy T, potential energy W, dissipation
energy D, and Lagrangian formulation of the equations of
motion. The approach is based on a physical theory describing
the local fluid flow mechanism.

Table 2 Rock properties used in ultrasonic wave dispersion calcula-
tion.

Parameter Values

φ 0.167
Ks (GPa) 37
ρs (kg/m3) 2650
ρ0 (kg/m3) 2200
Vp (m/s) 2450
Vs (m/s) 1840
κwater (D) 7.26×10−3

Kwater (GPa) 2.25
ρwater (kg/m3) 1000
ηwater (PaS) 0.001
Kgas (GPa) 0.050
ρgas (kg/m3) 1200
ηgas (PaS) 1.00×10−7

Rp
*(mm) 0.2

*All rock parameters are from (Lebedev et al. 2009) except Rp, which is selected
in this study.

L A B O R A T O R Y D A T A M O D E L I N G

Gas–water-saturated Casino sandstone

Ultrasonic velocities versus water saturation for the Casino
Otway basin sandstone from quasistatic and dynamic satura-
tion experiments have been obtained by Lebedev et al. (2009).
The P-wave dispersion and attenuation are calculated with
different models at a given frequency (1 MHz) as in the ex-
periments. The curves depend on saturation, frequency, and
water patch size. The rock parameters from (Lebedev et al.
2009) are used in the calculation (Table 2). The patch size is
selected in this study.

The results have a consistent increasing trend bounded
by the BGW and BGH limits (Figure 4). However, even at the
same frequency, porosity, and saturation, the P-wave disper-
sion changes as the patch size changes. As in White (1975) and
Dutta and Odé (1979a, b), the gas-filled regions are spherical,
and all have the same radius R. The cube is approximated
by a sphere with radius Rp, which has the same volume. The
gas saturation Sgas in the spherical unit cell is the same as
that in the original cubical cell, i.e., Sgas = (R/Rp)3. When
patch size Rp is fixed, the gas saturation can be determined by
varying R.

The diffusion length in the experimental data is of the
order of 0.1 mm (Lebedev et al. 2009). When a comparable
patch size Rp=0.2 mm (fitting parameter) is adopted, the ex-
perimental data can be fitted very well by the BR model. The
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Figure 4 Comparison between the measured and the predicted P-wave
velocities in Casino Otway basin sandstone. The experimental data
and BGW and BGH curves are shown.

mesoscopic fluid flow due to the heterogeneities is responsible
for the significant attenuation. The heterogeneities occur on
a scale greater than the pore size but smaller than the wave-
length. For a porous rock having only heterogeneities due to
the saturating fluids, the distribution of fluid pressures is gov-
erned by the diffusion equation with a diffusion length λd.
When λd is less than the patch size, the BGH bound is ex-
pected. On the contrary, if λd is larger than the patch size, the
velocities follow the BGW prediction. The transition between
these two bounds occurs when λd is comparable to the patch
size.

Oil–brine-saturated Vosgian sandstone

The velocity of sound in French Vosgian sandstone saturated
with oil and brine has been obtained by Bacri and Salin (1986).
This sandstone has an average porosity of 21%. The satu-
rations are achieved by imbibition and drainage methods. In
drainage, the sandstone is fully saturated with water, and then
oil is injected into the sample. The increase in oil content will
cease at an irreducible water saturation of around 33%. In
imbibition, the sample is fully saturated with oil. Then, small
amounts of water are injected into the sample until a residual
oil saturation of 35% is achieved. The sound velocities are
measured at 350 kHz.

The rock parameters reported by Bacri and Salin (1986)
are used in the calculation (Table 3). The patch size is selected
in this study.

In the case of drainage, the measured velocities have a
consistent increasing trend bounded by the BGW and BGH

Table 3 French Vosgian sandstone properties.

Property Value

φ 0.21
Ks (GPa) 37
ρs (kg/m3) 2650
Vp (m/s) 2050
Vs (m/s) 1240
κ (D) 0.11
Vp water (m/s) 1550
ρwater (kg/m3) 1015
ηwater (PaS) 0.001
Vp oil (m/s) 1275
ρoil (kg/m3) 755
ηgas (PaS) 0.076
Rp

* (mm) 1

*All rock parameters are from (Bacri and Salin 1986) except Rp, which is
selected in this study.

Figure 5 Comparison between the measured and the predicted P-wave
velocities in Vosgian sandstone as a function of water saturation.

limits (Figure 5). When a patch size Rp=1.0 mm is used, the
experimental data compare very well with the BR model. In
general, the predicted velocities by the BR model are in good
agreement with the measured data.

The imbibition velocities are very different from the
drainage values. Although the velocity of sound greatly de-
creases as in the case of drainage, the velocity at full oil satu-
ration is nearly the same of that at full water saturation. The
effect of grain contact and surface energy on frame moduli
was discussed by Bacri and Salin (1986). When the sample
is immersed in water, the surface energy greatly decreases,
and the frame moduli soften, and the compressional velocity
decreases from 2400 m/s to 2050 m/s. When the sample is
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Table 4 Properties of Estaillades limestone.

Property Value

φ 0.30
Ks (GPa) 76.8
ρs (kg/m3) 2710
Kb (GPa) 7.45
N (GPa) 6.09
κ(D) 0.225
Kwater (GPa) 2.25
ρwater (kg/m3) 997
ηwater (PaS) 0.001
Kgas (GPa) 1.44×10−5

ρgas (kg/m3) 1240
ηgas (PaS) 1.0×10−5

Rp*(mm) 1.05

*All rock parameters are from (Cadoret et al. 1995) except Rp, which is selected
in this study.

immersed in oil, the surface energy is slightly affected. Stiff-
ening of the rock skeleton has been observed when rock was
saturated by different fluids (Cadoret et al. 1998). In this ex-
ample, full oil saturation leads to a wave velocity larger than
that of the dry value (Bacri and Salin 1986). The surface ef-
fect causes discrepancies between the imbibition data and the
theoretical predictions. A detailed study of the pore–fluid in-
fluence on grain contacts and frame stiffness is required to
improve the velocity models.

Gas–water-saturated Estaillades limestone

Elastic wave velocities in homogeneous limestone were mea-
sured in the laboratory in three different frequency ranges
with varying water saturations by Cadoret et al. (1995). Eight
different quarry limestones covering a wide range of porosities
and permeabilities were chosen for the sonic and ultrasonic
experiments. The P-wave velocity of Estaillades limestone of
approximately 30% porosity and a permeability of 225 mD
has been obtained. Measurements were obtained using large
resonant bars at frequencies of approximately 1 kHz. The con-
ventional pulse transmission technique was used at 500 kHz.
The sample was saturated using drainage and imbibition tech-
niques (Cadoret et al. 1995), and the P-wave velocities were
measured at 1 kHz and 500 kHz.

The rock porosity and permeability used in the calcula-
tion (Table 4) are obtained from (Cadoret et al. 1995). The
mineral properties are obtained from (Mavko et al. 2009).
The patch size is selected in this study. The bulk modulus

Figure 6 Comparison between the measured and predicted P-wave
velocities for Estaillades limestone as a function of gas–water satura-
tion. The porosity is 0.30, and the frequency is 1 kHz.

Figure 7 Comparison between the measured and predicted P-wave
velocities for Estaillades limestone as a function of gas–water satura-
tion. The porosity is 0.30, and the frequency is 500 kHz.

Kb and shear modulus N are estimated from the measured
P-wave and S-wave velocities for dry rocks (Cadoret et al.

1995). With these parameters, we calculated Vp (Sw) for all
the models at 1 kHz (Figure 6) and 500 kHz (Figure 7).

In Figure 6, the experimental data (see Figs. 3 and 7
in Cadoret et al. 1995) and predicted velocities are bounded
by the BGW and BGH limits. In addition, the velocities are
close to the low-frequency velocity limit (BGW). There is a
sudden decrease in velocity when water saturation decreases
from 100% to 95%. As gas saturation increases, the velocity
gradually increases. Beyond 60% water saturation, the BR
model provides the best prediction of the experimental data.
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The velocity curves of the BR model are calcu-
lated as a function of given parameters. These are:
φm0, Ks, N, K f , Kb, ρs, ρ f ,κ (m=1,2), η, patch size Rp, and
wave frequency ω. The porosity in each phase is φm0. The
frame bulk modulus is Kb, and the solid and fluid bulk mod-
uli are Ks, K f . N is the shear modulus of the frame. Here
ρs, ρ f are mineral grain density and fluid density. κ is the per-
meability, and η is the fluid viscosity. The basic parameters for
the mineral, fluids, and dry rock are taken from (Cadoret et al.

1995) and (Mavko et al. 2009). Actually, the real patch size is
difficult to measure, and in most cases, there are no spherical
patches. All the models are based on idealized geometries, and
the patch size can be an adjustable parameter.

Figure 7 indicates that the experimental data are close
to the high frequency limit (BGH). At low SW , the predicted
data are very close to the experimental data. When SW ap-
proaches 100%, the experimental velocity greatly increases.
All the models, including the BGH limit, underestimate the
P-wave velocity at full water saturation. At high water satu-
ration, the BR model predictions are closer to the measured
data.

CONCLUSIONS

The purpose of this work is to quantitatively analyze the per-
formance of the main patchy-saturation models in predict-
ing the P-wave velocity dispersion/attenuation in real rocks.
The BR, White’s, and Johnson’s models are derived from dif-
ferent principles, the dispersion/attenuation trends of which
are similar but predictions are slightly different for partially
saturated media. Minor differences have been observed: (i)
Johnson’s model is robust and performs better in general, (ii)
White’s model provides similar results to Johnson’s model
but fails in the case of oil–water saturation, and (iii) only the
BR model describes both the local- and global-flow dissipa-
tion mechanisms. White’s model is extended here to the case
of liquid–liquid saturations (such as oil–water), based on a
modification of the Poisson’s ratio and the effective density.
Numerical/experimental data comparisons illustrate that by
using the Johnson’s and modified White’s models, the pre-
dicted P-wave velocities are approximately the same. The BR
predicted velocity is slightly higher than that of the John-
son’s and White’s models. In tight sandstones, this velocity
prediction agrees with the data, particularly for water satura-
tions between 30% and 70%. For limestone with a porosity
of φ =0.3, the BR model predicts the velocities at both the
sonic and ultrasonic ranges. The local-flow dissipation peak
of the BR model scales differently at high frequencies com-

pared with the Johnson’s and White’s models. This difference
may be due to the saturation contrast between the fluid patch
and the background medium. In the case of a smooth satu-
ration transition, the BR model may provide a more reliable
dispersion/attenuation description.
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APPENDIX A

WHITE ’S M ODEL: RELEVANT EQUATIONS

K0 = K̄3/(K̄2 − K̄1) (A1)

�1 =
K f1

φ

⎡
⎣
(
1 − K1/Ks1

)
(
1 − K f1

/Ks1

)
⎤
⎦ K̄1

K1
, (A2)

�2 =
K f2

φK2

⎡
⎣
(
1 − K2/Ks2

) (
1 − SGK̄1

)
(
1 − K f2

/Ks2

)
(1 − SG)

⎤
⎦ , (A3)

�1 = (
1 − K̄/Ks

) KA1

K1
, (A4)

�2 = (
1 − K̄/Ks

) KA2

K2
, (A5)

Z1 = η1a
κ1

[
1 − e−2α1a

(α1a − 1) + (α1a + 1) e−2α1a

]
, (A6)

Z2 = η2a
κ2

[ (
α2b + 1

)+ (
α2b − 1

)
e2α2(b−a)(

α2b + 1
) (

α2a − 1
)− (

α2b − 1
) (

α2a + 1
)

e2α2(b−a)

]
,(A7)

α1 = (
ιωη1/κ1 KE1

)1/2
, (A8)

α2 = (
ιωη2/κ2 KE2

)1/2
, (A9)

KE1 =
⎛
⎝1 −

K f1

(
1 − K1/Ks

) (
1 − K̄/Ks

)
φK1

(
1 − K f1

/Ks

)
⎞
⎠ KA1

, (A10)
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KE2 =
⎛
⎝1 −

K f2

(
1 − K2/Ks

) (
1 − K̄/Ks

)
φK2

(
1 − K f2

/Ks

)
⎞
⎠ KA2

, (A11)

where K f1
and K f2

are fluid bulk moduli; φ is porosity; η, κ

are viscosity and permeability, respectively; Ks is the solid
bulk modulus; and subscripts 1 and 2 refer to the inner sphere
and concentric shell, respectively. In the situation of a single-
porosity solid saturated with two immiscible fluids, κ1 = κ2 =
κ. The gas saturation is SG = a3/b3, where a, b are the radii
of the inner sphere and the concentric shell, respectively. The
parameters K̄1, K̄2, K̄3,K1, K2,KA1

, KA2
are defined as:

K̄1 = 3
(
1 − σ2

)
/2(

1 − 2σ1
) (

1 − SG
)

E2/E1 + SG
(
1 − 2σ2

)+ (
1 + σ2

)
/2

,(A12)
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(
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3
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, (A13)
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1/SG − 1

)
3
(
1 − 2σ2
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(
1 + σ2

)
/2

, (A14)

Km = K̄ +
(
1 − K̄/KS

)2(
φ/K fm

+ (1 − φ) /Ks − K̄/K2
s

) , m = 1, 2, (A15)

KAm
=
(

φ

K fm

+ 1 − φ

Ks
− K̄

K2
s

)−1

, m = 1, 2, (A16)

where E and σ are Young’s modulus and Poisson’s ratio, re-
spectively, and K̄ is the bulk modulus of skeleton.

APPENDIX B

JOHNSON’S M ODEL: RELEVANT
EQUATIONS

τ =
[

KBGH − KBGW

KBGHG

]2

(B1)

ζ = (KBGH − KBGW)3

2KBGWK2
BGHTG2

= (KBGH − KBGW)
2KBGW

· τ

T
(B2)

T = KBGWφ2

30κb3

{[
3η2g2

2 + 5 (η1 − η2) g1g2 − 3η1g2
1

]
a5 − 15η2g2 (g2 − g1) a3b2+5g2 [3η2g2

−(2η2 + η1) g1] a2b3 − 3η2g2
2b5

} (B3)

gm =
(1 − Kb/Ks)

(
1
/

KW − 1
/

K fm

)
(
1 − Kb

/
Ks − φKb

/
Ks + φKb

/
KW

) (B4)

G =
∣∣∣∣�pf

Pe

∣∣∣∣
2

· S
V

· i
q∗ (−iω)1/2 (B5)

�Pf

Pe
=
(
R2 + Q2

) [
K1 + (4/3) N

]− (
R1 + Q1

) [
K2 + (4/3) N

]
φS1 K2

[
K2 + (4/3) N

]+ φS2 K2
[
K1 + (4/3) N

] (B6)

Km =
Ks +

[
φ
(

Ks/K fm

)
− φ − 1

]
Kb

1 − φ − (
Kb/Ks

)+ φ
(

Ks/K fm

) , m = 1, 2, (B7)

S/V = 3a2/b3 (B8)

q∗ =
√

iω/D∗ · (B9)

D∗ =
[

κKBGH

η1
√

D1 + η2
√

D2

]2

· (B10)

Dm =
κK fm

ηmφ

{
1 +

K fm

φ
[
Kb + (4/3) N

]
{

1 + 1
Ks

[
4
3

N
(

1 − Kb

Ks

)

−Kb − φ

(
Kb + 4

3
N
)]}}−1

, m = 1, 2, (B11)

where �pf is the discontinuity in pore pressure across the

concentric sphere interface S; Pe is the applied external stress;
V is sample volume; a and b are the radii of the inner sphere
and the concentric shell, respectively; φ is porosity; and η and
κ are viscosity and permeability, respectively. The parameters
P, Q, R are:

Pm =
(1 − φ)

[
1 − φ − Kb/Ks

]
Ks + φ

(
Ks/K fm

)
Kb

1 − φ − Kb/Ks + φKs/K f

+4
3

N, m = 1, 2, (B12)

Qm =
(
1 − φ − Kb/Ks

)
φKs

1 − φ − Kb/Ks + φKs/K fm

, m = 1, 2, (B13)

Rm = φ2 Ks

1 − φ − Kb/Ks + φKs/K fm

, m = 1, 2, (B14)

where Ks is the solid phase bulk modulus, N is the solid phase
shear modulus, Kb is the porous skeleton bulk modulus, and
K f is the pore fluid bulk modulus. The effective modulus
of pore fluid given by Wood’s law (Wood 1955) for two

liquids is KW =
(

S1
K f1

+ S2
K f2

)−1
, where S1, S2 are saturations of

the liquids.
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