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poroelasticity describes wave propagation in fluid-saturated poroelastic media
including the temperature. In the model analyzed here, the constitutive equations

é‘(;z:)rz;fl;;)roelasticity in Biot’s theory are modified by introducing coupling temperature terms, while the
Variational formulation heat equation is generalized by including the coupling with the elastodynamic field
Existence and relaxation terms, the latter to model finite velocities. This analysis shows the
Uniqueness existence of a unique solution, given in terms of displacements of the solid and fluid

phases and temperature, and proves its regularity in the space and time variables.
© 2020 Published by Elsevier Inc.

1. Introduction

The study of wave propagation in a fluid-saturated porous medium taking into account the effect of
temperature has applications in many fields like hydrocarbon reservoirs and crustal rocks. In the case of
elastic bodies, Zener [25-27] associated attenuation to stress inhomogeneities generating local heat currents.
Treitel [24] analyzed seismic attenuation in the context of thermoelasticity. Biot [2] used differential equations
based on the classical Fourier law of heat conduction to model waves in elastic media taking into account
temperature, but the model yields infinite velocities due to the diffusive character of the heat equation.
Lord and Shulman [14] analyzed linear thermoelasticity introducing time relaxation terms to avoid infinite
speeds associated with the diffusive heat equation. The approach is based on Cattaneo’s generalization of
the Fourier equation [8].

* Corresponding author.
E-mail address: jba@188.com (J. Ba).

https://doi.org/10.1016/j.jmaa.2020.124907
0022-247X/© 2020 Published by Elsevier Inc.


https://doi.org/10.1016/j.jmaa.2020.124907
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2020.124907&domain=pdf
mailto:jba@188.com
https://doi.org/10.1016/j.jmaa.2020.124907

2 J.E. Santos et al. / J. Math. Anal. Appl. 499 (2021) 124907

For fluid-saturated poroelastic media, the general theory of wave propagation was presented by Biot
[3] but this theory does not take into account the temperature. Biot’s theory predicts the existence of
two compressional waves, one fast and one slow, and one shear wave. The slow P-wave is diffusive at low
frequencies and becomes a truly propagation at high frequencies. The existence of solutions in the case of
porous media are reported, for instance, in [19] and [5], but these works deal with a different theory and
do not consider the relaxation terms, which constitute the main problem to prove the solution existence.
A review of the existent literature on the subject can be found in [23]. In this work, we use a new form
of the thermo-poroelastic equations as a generalization of the ones given in [22] and [6]. This formulation
involves coupling Biot’s equation of motion with a hyperbolic heat equation having a relaxation term to
avoid infinite speed of heat conduction as in [14].

We formulate an initial boundary value problem (IBVP) for the thermo-poroelastic equations on an
open bounded domain €2 with piecewise smooth boundary under boundary conditions specifying stress,
fluid pressures and heat flux across I' = 0f) and initial conditions on the solid and fluid displacements and
temperature on 2. To demonstrate the existence and uniqueness of the solution of the IBVP, following the
ideas in [13], we first give a variational formulation of the IBVP and obtain a bounded sequence of smooth
solutions. Then, we use a compactness argument to show the existence of the limit of the sequence in the
weak—"* topology. Assuming regularity of the solution of the IBVP for the thermoporoelasticity equations
in the form used in [21], we demonstrate that the limit solution satisfies the given boundary and initial
conditions. A similar approach was used in [20] to show existence and uniqueness of an IBVP for Biot’s
equations of motion.

2. The model equations

We consider a porous medium saturated by a single phase, compressible viscous fluid and assume that
the whole aggregate is isotropic. Let u® = (uf) and u/ = (u{ ) denote the averaged displacement vectors of
the solid and relative fluid phases, respectively and set u = (u®,u’). Let e(u®) = (g;;(u®)) be the strain
tensor of the solid. Also, let o(u,0) = (0;5(u,8)), and ps = pr(u,0) denote the stress tensor of the bulk
material and the fluid pressure, respectively, with 6 being the increment of temperature above a reference
absolute temperature T, for the state of zero stress and strain. The stress-strain relations are [6]:

0i;(u,0) =2pe;(u’) + 0(Ay V-u® + BV - u — B8, (1)

pr(u,0) = =BV -u® — MV -u’ + 5,0, (2)

where p is the wet- or dry-rock shear modulus, ¢ is the porosity,

K,
o 2 1 m
Ay =A+a*M, a=1 ~ (3)
a—¢ 10) -t
[\/i = —_— B: [\/1 = 4
( K. Kf) s aM, B=pn ﬁfv ()

with A being the Lamé coefficients of the dry matrix and K, K,, and K denoting the bulk moduli of the
solid grains composing the solid matrix, the dry matrix and the saturant fluid, respectively. The coefficient
Ay is the Lamé parameter of the saturated matrix. The positive coupling coefficients 3,, and 3; are the
coefficients of thermoelasticity of the frame (or matrix) and fluid, respectively.
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2.1. Dynamical equations
Let

oy = (1—9)ps + ¢py

denote the mass density of the bulk material, with ps and p; being the mass densities of the solid grains
and fluid, respectively. Let the positive definite matrix P and the nonnegative matrix B be defined by

0l 0f
_ (I psl _
P= <pr gl > , B= (0] g[) ’ (5)

where I is the identity matrix in R4*?, with d = 2,3, 1 is the fluid viscosity, « is the permeability and

S
g= %, where S is the tortuosity.

Let £(u, ) be the second-order differential operator defined by
L(u,0) = (V- 0o(u,0),-Vps(u,b)).
Then Biot’s dynamical equations taking into account temperature are [6]
Pia+ Bul — L(u,0)) =f. (6)
The heat equation is

Telh+ch—V-(3V0)+ (1—¢)BnToV -0 + ¢B;THV -/ -
+7(1 = @) BT,V - i° + 793, T,V - it) = —q,

where

v =(1=9)Vm + vy, (8)

is the bulk coefficient of heat conduction (or thermal conductivity), with -, and -, being the heat conduction
of the solid frame and the fluid, respectively. Also,

c=(1-9¢)em + pcy, 9)

is the bulk specific heat of the unit volume in the absence of deformation, 7 is a Maxwell-Vernotte-Cattaneo
relaxation time and ¢ is a heat source. These equations assume thermal equilibrium between the solid and
the fluid, i.e., the temperature in both phases is the same. Thermal equilibrium is valid when the interstitial
heat transfer coefficient between the solid and fluid is very large and the ratio of pore surface area to pore
volume is sufficiently high.

Equation (7) is obtained as follows. The heat-balance equation for each phase is

em(Tmb +0) =V - (Y V0) + TofBm (V- 0° + 7,V - i) = 0,
(10)
Cf(Tfé-i- 0)—V- (WVG) + ToBy (V af + 1,V ﬁf) =0.

These equations have been taken from [16](egs 2.1 and 2.2), by neglecting the advection term in the fluid
equation and adding the inertial terms related to the deformation. Each of these equations is the same as
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that used in single-phase media (e.g. Carcione et al., 2018). Taking averages over an elemental volume of the
medium for the solid and fluid phases, and adding the resulting equations, we obtain equation (7), where
we have assumed 7, = 7.

Next, we compare our equations with other formulations presented in the literature. Biot [2] and Dere-
siewicz [9] do not consider the relaxation term, leading to unphysical results (see [7]). McTigue [15] and
Bonafede [4] treat the static problem, so that there are no inertial terms (accelerations) and no relaxation
effects. Sharma [22] obtains similar equations, but with different coefficients, where 5 = ., + afy [instead
of equation (7)], and the heat equation is different.

The heuristic heat equation (7) reduces to that of linear thermoelasticity if ¢ = 0 (no fluid) and to
the heat equation of the fluid if ¢ = 1, as expected. If one wishes to allow for heat transfer between
the solid and the fluid, a starting point to do this is given by Nield and Bejan [16] (egs. 2.11 and 2.12),
where the inertial terms have to be included [those related to V - us and V - uy in equation (7)]. Noda
[18] (eq. 6) neglects the inertial terms in the temperature equation, but includes the non-linear advection
term. This author relates these coeflicients to the coefficients of thermal expansion, a,, and oy, as B, =
(K + (a—@)> M)y, + ¢(a— d)May] and Bf = 3¢ M |[(av — @) + pars]. The behavior of these quantities
is such that for ¢ =0, K,,, = K, @ =0, 8y, = 3Ksay, and Sy = 0,and for ¢ =1, K, =0, a =1, M = Ky,
Bm = 0 and By = 3Ksay. Here, we consider ,,, B¢, v and c as parameters, obtained from experiments or
from a specific theoretical model.

2.2. The initial boundary value problem

The initial boundary value problem is formulated in the 2D case (with obvious extension to the 3D case)
for the case of thermal equilibrium in an open bounded domain 2 with piecewise smooth boundary and a
time interval J = (0,T) as follows: Find (u, #) such that

Pua+ Bil — L(u,0)=Ff, (x,t)eQxJ (11)
Tcl+ch—V-(YVO) + (1 —¢)BnToV -0 + ¢p;THV - 0 (12)
+7(1 = @)Bn T,V - i* + 78T,V - i) = —q  (x,t) € Q x J,

with initial conditions

u(z,0) = u’, z €0, (13)
u(r,0) =u', 2 €Q, (14)
0(x,0) =0° = €Q, (15)
0(z,0) =0 z € Q, (16)
and boundary conditions
o(u,0) v=g(zt), zel, telJ, (17)
pr(u,0) = —x(z,t), ze€l, tel, (18)
VO v =h(z,t), xz€l, tel (19)

In (11)-(12) f = (£%,£7) is an external force and q is a heat source.
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3. The existence and uniqueness results

In order to demonstrate the main result, we need to introduce some notation. For Q C R? with boundary
I' =09, let (-,-)o and (-, ). denote the L?(2) and L?(I") inner products for scalar, vector, or matrix valued
functions. Also, for s € R, || - ||s,o and || - ||s,r will denote the usual norms for the Sobolev space H*(f2)
and H*(I'), respectively. If X = Q or X =T, the subscript {2 may be omitted such that (-,-) = (-,-)q or

{:) = (). Let
H(div;Q) = {v € [L*(Q)]*: V-v € L*(Q)},
provided with the norm
IV lacaiviy = (VI + 197 - vII8]™".
We also will refer to the space
H'(div;Q) = {ve [H'(Q): V-ve H(Q)}).

The following known results will be used [11]

[v- V||—1/2,F < CHVHH(div;Q)> (20)
1/2 1/2
Vo < ClIvIga VIS < Clviva. (21)

Here and in what follows C' denotes a generic constant that may take different values at different places.
Also recall Korn’s second inequality [10,17]

Y (e () A+ |Iv[§ = ClIv]E. (22)
Q L#i
Next, we introduce the space
V= [H'(Q)]” x H(div; ),

provided with the natural norm
s112 f112 1/2 s 1 2 . f :
IVl = (V12 + 1/ ey ) v € Q)2 v € H(divs ).
Let V' be the dual space of V, with the duality between V' and V denoted by [-,].
Note that [H(div;§2)]’ can be identified with a closed subspace of [L?(2)]?, so that any element u in the
dual space V' can be represented by (u1, uz, us, s, us), where uy, us € H=1(Q), uz, uq, us € L*().

Next, let D(Q) = C§°(Q2) denote the space of C°° functions having compact support in 2, and by D’'(Q2)
the space of distributions on . Also, for any Banach space Y let

T
ﬁMYF%ﬁJ%YWUﬁy:/W@Wﬁ<wL
0

LX¥(LY) ={f: T =Y |[fllFy = ess.supe s ILf()lly }-
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To obtain a variational formulation of the initial boundary value problem (11)-(19), multiply (11) by
v = (v, vl) eV, (12) by w € H (), use integration by parts and the boundary conditions (17)-(19) to

obtain
(Pia(x),v) + (Laf vF) + Au,v) = (86,9 -v*) — (56,9 - v7) (23)
+ (reb,w) + (c 0,w) + (vVO, V) + (1 — ¢)Br TV - i°, w)
+ (B4 ToV - 0! w) + (7(1 — ¢)BnToV - 0, w) + (1B ToV - i/, w)
= (£,v) = (g w) + (g, v*) + (x, v/ - v) + (h,w)
v=w v w)eVxH(Q),te

where A(u,v) is the bilinear form

A(w,v) =) (o1m () et (v¥)) = (€ €(u) ,€(v)). (24)

l,m

In (24), the matrix £ and the column vector €((u)) are defined by

Au+ 20 A B 0 e11(u’)
Au Ay + 2u B 0 ~ 822(113)

&= B B Moo | g(u) = v.ul | (25)
0 0 0 4,& 812(115)

The term (€ €(u),€(u)) in (24) is associated with the strain energy of the system, so that the symmetric
matrix & must be positive definite. Furthermore, A(u,v) < C|jul|y||v|y. Also, note that using (22), if A\ is
the minimum eigenvalue of &,

AV, v) 2 Co|Iv[}, = AZ[vI3- (26)

Let

Mg (£,2,4,h,X) = If11 727 222 + IE1 720 L2 02) (27)

+||f|\%2(J,L2(Q)]2) + Hg”%Q(J,[Hl(Q)]?) + ||g||2Loo(J,[H1(Q)]2)

+||§H%°°(J,[H1(Q)]2) + ||g|\%2(J,[H1(Q)]2) + HXH%Q(LHl/?(F))

02 e g3 2y + I sy + 152 sy

+||h||%°°(J,H1(Q)) + ||h||2Loo(J,H1(Q)) + HHH%P(J,Hl(Q))?

NG = [[a®)13 + [[u'[fF + 16°13 + (16113 + [1EO)I5 + [1E(0)1[5 (28)
HIEO)IF + &)1 /2,0 + IO /2,0 + 1X(O)IIF /2.
HIX(O)3 2,0 + RO 2,0 + RO 2 + 1.

Now, we demonstrate the following theorem:

Theorem 1. Let Q C R? be an open bounded domain with piecewise smooth boundary. Assume that all
coefficients in (1), (2) and (12) are in C%(Q) with gradients belonging to [L°°(Q)]?, that & and P in (25)
and (5) are positive definite and that B in (5) is nonnegative. Also assume that My (f,g,q,h,x) < oo,
Ny < oo. Then, there exists a unique solution (u,8) of problem (11)-(19) such that u,u,i € L (J,V),
W e L, [L2(Q)]4, 0,0 € L=(J,H (Q)),0 € L>(J, L*(Q)).
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Proof. The outline of the demonstration of the theorem is as follows:

i)- Construct a sequence of approximate solutions of problem (11)-(19) using the Galerkin method.

ii)- Obtain a priori bounds of the approximate solutions in terms of the initial and boundary conditions
data.

iii)- Use a compactness argument to show the existence of the limit of a subsequence of the approximate
solutions in the weak—* topology.

iv)- Show that such limit satisfy the given initial and boundary conditions.

To demonstrate the existence of a unique solution (u,6) of (11)-(19), following the ideas in [13] we
take a sequence of functions (v, = (v5,, v/} ))n>1 in [H2(Q)]* and (w,),>1 in H2(Q) such that for all m
{v1,--+, v} and {w1, -+ ,w,,} are linearly independent, the linear combinations of the vis are dense in
[H2(2)]* and the linear combinations of the w!s are dense in H%(). Let

Srl;L = Span{vla T avm}, an = Span{wla e wm}a m = Su X Se

Then, consider the solution of the set of initial boundary value problems: Find (v, 0,,) € V., such that

(Pitn (), v) + (gufn,vf) AU, V) — (80, V - v¥) (29)

— (B0, V- vI) + (T ¢ by w) + (¢ b, w)

+ (Y0, Vo) + (1 = 8)BnToV - 155,., w) + (¢85 THV - 1, w)
(T(L = 9)BnToV - iy, w) + (165, ToV - i)y, w)

= (£,v) = (g, w) + (g, v*) + (x, v/ -v)
+ (hyw), v= (vs,vf,w) €V, te,

U, (2,0) € S, u,(z,0) ——u’ in [H*(Q)]*,

m—o0

(
W (2,0) € Sy (2, 0) —— u' in [HY(Q)], (31)
O (,0) € S8, 0, (,0) — 6° in H*(Q), (32)
O (2,0) € S . 6, (,0) Twl in HY(Q). (33)
Choose vV = 1, w = ,, in (29) to obtain

1d .

Sq [(Pum( ), W) + A, uy) + (YV0, VO,) + (TC 97,l,0m)] (34)

+ (ZLaf, ah,) = (30 - 63) = (B0, V- 61,) + (¢ 0. 61)

+ (1= $)BaToV - 15y, 0n) + (68, IOV - 0y, 6,

+ (T( ﬂmTOv u m) + (¢ﬁfTOV . ufnaem)

= (f,um) — (¢,0 )+<g,u;>+<x,ﬁ;-u>+<h,ém>, ted

Next, we obtain lower bounds satisfied by the terms (7(1 — ) B ToV - i, 6‘m) and (qufToV if Hm) in
the right-hand side of (34). Take time derivative in (29) to obtain

(Pl (), V) + (gug,vf) + A0y, V) = (B, V- v°) (35)

— (B0, V V) + (T 0 o w) + (¢ Oy w)
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+ (YV0m, V) + (1 = )BTV - i1, w) + (¢BToV - i, w)
+(7(1 = )BnToV - Uy, w) + (68,T0V - Uy, w)

=(f,v) = (¢w) + (& v*) + (X, v/ - v)

—|—<h,w>, v=w v w) eV tel

Choosing v* = i, v/ = 0,w = 0 in (35) we get

(U5, 15,) + (pr 0, 5,) + (A + 2p)enn (05,), €11 (i5,)) (36)
+ (A + 2p)ess(@)m®), e33(11y,)) + (Auess(ia,), €11 (17,))

+ (Ayer1(0g,), ess(y,)) + (duers(g,), e1s(iy,)) + (Bvufn,Vﬁfn)

— (B0, Viis,) = (F5,115,) + (g, 105,) .

Also, the choice v® = 0,v/ = i}, ,w = 0 in (35) yields
e . n.. .
(ppuas,al) + (gul af) + (Eu%,um) (BVus,, Viil,) (37)
+ (MY, Vi) = (B0, Vir) = (£7,6f,) + (v, - v).
From (36)-(37) we get the relations

(T(1 = ¢)BmToV - 115, 0n) > C* (BViS,, 0) (38)
= CF [(p},,15,) + (o0, 5,) + (A + 200 (85,), e11 (i85,))
+ (A + 2p)es3(@)m?), e33(15,)) + (Auesa(By,), €11 (iy,))
+ (Mg (05,), e33(i5,)) + (dpers(ag,), e13(is,)) + (BV),, Vi, )
(£, 15,) — (& ,)]

and
(r¢B;ToV it 6,) > CF (B, Vir],, ) (39)
= Cf (priis,.6f,) + (9], if,) + (Zaf,. 6f, ) + (BV,, Vi)
+ (Ml Vi) - (€,6],) - (i, - v)]
where
C = infyeq (MTTTO@") , O] =infreq (d’;—?}) . (40)

Using (38) and (39) in (34) we get

+/AX(1'1m7um) + (YV0,,,VO,,) + (Tcém,ém)}

+(gﬁfn )+Cf(77 fm"m) (80, V - 05,) — (BOm, V -1l
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+ (¢ Om, b)) + (( — ) B ToV -, 0m) + (68 ToV -1l 6,,)
= (f,0,) — (¢,0m) + (g, 0,) + (x,af, - v) + (h,0,,)
+Cy (£ i,) + Cf (17,6,

(&,

T)’L

+Cf<X, >7 tEJv

where

and

CP(Ma+2u)  CPA.  CFB 0
CPA.  Cp(A,+2u) CPB 0| = (Cglpbl Cglpfl>
f f f ) = ! f
clB olB clMm o ClosI  Chgl
0 0 0 4u

)
I

(43)

Since the coeflicients C'j* and Cg are strictly positive, the positive definiteness of the matrices P and € in
(43) is inherited from that of the matrices £ and P in (5) and (25). Furthermore,

A(v,v) = Cs|lv][ = AZ|IvIi5, (44)

where )\‘f denotes the minimum eigenvalue of E.
Next, take (1, (2 such that

At (v,v) = A(v,v) + G |[v]2 = Cy||vI3, (45)
Ao (v,v) = A(v,v) + G|[v|2 > Cul|v]3, (46)

and add to (41) the inequalities
¢l < (anl + o) €= G106
L1920l < (I 20l13 + 15720 13)

to obtain

[(an, ) + (ﬁum um) + A, (W, uy) (47)

DN —
) &

Ry (W, 0) + (YO0, V) + (7€ O, ém)}

+ (Zug;,ufn) +cf (gufnug;)

< C (I llf + [1om lI§ + 18ml[5 + [10m 13 + 110,115 + 1£115 + I£15 + 1lal13)
+ (B0, V - 05,) + (B0, V - 1]

—((1 = )BTV - 05, 0m) — (885 T0V - 1a),, 01

+ (g, u3,) + (x.ul, - v) + (h6,,)

+O (g i) + CL (x, il vy, tel
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Next, we obtain bounds for the integrals in time of the last seven terms in the right-hand side of (47). First,

t

/ (B0 (5), V - @5,(5)) + (B10m(5), V - it (5))] ds
0

so/(||em<s>||o(||v-u ()llo + 1V - 6, ()llo)) ds
0

<c / (10 (5)[2 + ([ (5)][2) ds

0

Similarly,

/ ((1 - ¢)BmTOV : ufn(‘S)? em(S)) ds

t

Next, using (21),

t
/<g<s>,' ) / )15, ()| ads
0
t
<c (||g||%2<J,[H1(Q>P) n / ||um<s>||%) ds.
0

Also, using (20),

t

/(X(S%%(S)'V) ds SC/tIIflf;(S)
0

(8)|l1/2,rds

0

t
<€ [ (IO o+ 1 )y ds
0

i
<C <|X|2L2(J,H1/2(r)) +/|ﬁm(3)||\2;d5) :
0

t
+ / (68, TV - 0f,(5)., 6, (5)) ds / 1m(S)IIZ + [ (5)]2) ds
0 0

(48)

(51)

A bound for the last three terms in the right-hand side can be obtained using integration by parts in time

and (20)- (21) as follows.

/(h(s),ém(s)>ds
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(1(2). (0 = (1(0).6,0)) = [ (h(5).00(5)) s
0
< (O + € (10mO)IZ + 1311

t
+(Hh||%2(J,H1(Q)) +/||9m(5)||§d5) )
0

[ ) ds (53)

t
(B(0),15,(6)) — ((0),55,(0)) — [ (B(6) 0 (5)) ds
0
< el (O8-+ < € ([N OV + 121~ 00
t
HNENZ 2,121 (2 +/|1'1m(5)|%d3) )
0

and

/<X(s), uf;(s) . V> ds (54)
0

(x(0), 65,(t) - ) — (3(0), 1L, (0) - ) — / (%(s), 0, (s) - ) ds
0

< ellan @) +C (||1'1m(0)|\% + (X (211720
t
HIXN T2 111720 +/||um(5)||$;d~9) :
0

Then, integrate in time in (47) and use the estimates (48)-(54) to obtain

1PV 2@ (015 + P> ()5 + Collwm ()15 + Csllam ()] (55)
HIY20m ()11 + 117 )20 ()13
< e ([am@®I% + 10m®I3) + C (HF + Mg (£, 8,47, X))

t

+/ [l ()1 + i ()15 + lam ()1 + [10m ()17 + 16m()]13] ds,
0

where

HE = [ () + [l (0) 13 + ([ (0)1F + 16 ()15 + (16 (03 (56)

The term ||ii,, (0)||2 in (56) can be estimated as follows. Choose v = ii,,,w = 0 in (29), use integration
by parts in the A(u,,,u,,)-term and set ¢ = 0 to obtain
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(Piinn (0), it (0)) + (2207, (0), ],(0)) = (£(wn(0), 8 (0)). it (0)) (57)
= (£(0), 1 (0)) .
Hence,
[ (0)ffo < C ([ (0)flo + [ (0)[l2 + 10 (0|2 + [[£(0)[l0) < No- (58)
Thanks to (30)-(33), all other terms in (56) are bounded in terms of |[u®|2, [[ut||1, [|6°||2 and |01 |1, so that
HZ < N2 (59)

Thus, using in (55) that P and P are positive definite, absorbing the e— terms in the left-hand side of
(55) and applying Gronwall’s Lemma [12,1], we get the estimate

[ (e () + 117 (1) + 8l T (22 0)10) (60)
H0m 1 F e (111 ) + 10m 17 (L2 < C (NG + Mg (£,8,9, b, %)) -
Next, we obtain additional estimates for time derivatives of u and 6. Take time derivative in (35) and
choose v¢ = u$ v/ =0 and v® = 0,v/ = U], to obtain the estimates
(Tl = @)BuToV - W5, 0m) > CF' (BVS,.0) (61)
= COF [(pi5,, 05,) + (pg 6, 65,) + (A + 2p)enn (i,), 11 (W5,))
+ (A + 2p)ess(W)m®), e33(07,)) + (Auess (i, ), €11 (U7,))
+ (Auen (5,), 33(05,)) + (dpers(w,), e13(,)) + (BVid,, Vi)
(£, 155,) — (& 3,)]
and
(r¢B;ToV - 1, 6,) > Cf (B, VL, 6) (62)
= |(ppiws,, ul)) + (gl ul) + sl + (BVis Vil
B f Y m m m m K m m m
+ (MVif, Vi) - (ff, ufn) — (%, i, - u>} ,

Thus, using (61) and (62) in the time derivative of (35) for the choice v = i1i,w = 6, using the argument
leading to (41) we obtain

di[pum (”Pu (z), m) + Ay, 1) (63)

N =

K(um,um) (nyém,Vém) + (Tc ém,ém)}
+ (o al) + Of (Ll ) = (30, - 5) = (B, V- 1)
+ (¢ Om,0m) + ( — @)BmTOV - Sy, 0n) + (#B;T0V - itf,, 0,)
= (f.iim) — (4,0m) + (g, 65,) + (X, 0l - v) + (7, 0,)
o (6, 15,) + Cf (4],

+CF (g, 05,) + CL (%, ), - v), teld
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Next, add to (63) the inequalities

to obtain

d,. . )
¢ lmlle < C(lamll§ + [laml5) ¢ =i G

d . :
2013 < (10263 + 15283

1d
2dt
8, (it ) + (Y9, Vi) + (7€ G, 6 |

[(Pum, i) + (ﬁum um) 4 Ag, (i, )

< C (1l + l[im 1§ + 1 Emll§ + 10m 15 + 1615 + 113 + 1E15 + 11413)
+ (B0m, V- 55,) + (B0, V - 0]

—((1 = @) BnToV - 5y, 0,) — (88 T0V -0l 0,)
g s,) + (il v) + (B )

+OP (g, 05,) + CF (.1, vy, teld

13

(64)

Next we derive bounds for the integrals in time of the last nine terms in the right-hand side of (64). First,

and

/m%@wnmm+%%@wnmmw
0

<c [ (01 + lanI) ds
0

/ (1= @)BnToV - 115, (s), 0 (s)) ds
0

(@31 - (5). () ds| < C [ (1B (S)F + 10 (5) ) .
0

Also, using (20) and (21)

[ @) +| [ (.00 v) ds
0 0

t
<C (||g||2L2(J,[H1(Q)]2) HXNZ2 g, m1r2ry) + / ||ﬁm(8)|%;d5) .
0

Using integration by parts in time and (20)- (21),

(65)

(66)
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/ (i(s), 6 (s)) ds (68)

t

= (0,6 0) — (400, 00)) — [ (), (5))

0

< ellbm(@®)I +C (Ilém(O)Hf Bl g1 )

t
Su(11 / 16m(s)2ds | .
0

t
= |(&(t), 6y, (t)) — (8(0),15,(0)) */(g(s)’ﬁm(sﬁds
0
< el (B + C ([iam ()5
t
FNENT e o mr zy + &N 2012 (2 +/||ﬁm(8)||%;d3 )
0

and

t

/ (s), L, (s) - v) ds (70)

0
= <>'<', ufn . 1/> (t) — <)'(,ﬁfn . u> (0) — / <X, ﬁfn . 1/> (s)ds
0
< el ()15 + C ([[im (0)]15

¢
+H>'€Hioo(],H1/2(r)) + ||X||iz(],H1/2(r)) + / [t ()5 ds
0

Then, integrate in time in (64), use that P and P are positive definite, apply the estimates (65)-(70), absorb
the e-terms in the left-hand side of the resulting inequality and apply Gronwall’s Lemma [12,1] to get

[ ()1 2o vy + |7 oo (g vy + 18l Foe (22000 (71)

01 11 0 + 10012 (7,220
< C(Hf + Mg (f,8,9,h,X))

where
H} = [ (0[5 + [1m 0)[[3 + [ m (0)1I5 + [16m (0)[IF + 116 (0)]I5- (72)

Let us bound the term |,,(0)||2 in (72). Choose v = ii,,,w = 0 in (35), use integration by parts in the
A(Qy,, i, )-term and set ¢ = 0 to obtain
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(P (0), W (0)) + (2], (0), 5, (0)) = (£t (0), 0 (0)), i1 (0))
= (£(0), 1 (0)) (73)
Hence,

[ (0)llo < C ([l (0)llo + 3, (O) 2 + 18], (0) 1 avser
+[0m (0) [ + [£(0) lo) - (74)

To bound |[ag, (0) |2 and [[1f, (0) | z1(aiv.0) in (74), we assume that problem (11)-(19) satisfy the regularity
assumption [21]

ol + 0 ey + 101 (75)
< C(lIfllo+ lglyz,r + Ixlyzr + IRllj2r), ted,
and that (75) also holds for time derivatives of u®, u/ and 6. Hence,
[0 ()2 + 17 (0) |11 aiviery (76)

< C (IIEO)llo + 1§11 /2,0 + 15O 11 /2,0 + 140} |1 /2,r) -

Then, assuming in (35) that

4,(0) ——a(0) in [HX(Q), (77)
we get
105, (012 + [[0f, (0) 1712 aivicry (78)

< 5, (0) — @ (0) |2 + [[a°(0) |2 + [0, (0) — &/ (0)]| i1 aiviqr)
[l (0) ]| 12 aivse)
< e+ C([[£0)lo + 1&0) 12,0 + X ()1 /2,0 + 12(0)]l1/2,0) < No.

To bound ||it,, (0)[|3 and ||6,,,(0)||3 in the expression for H; in (72), using that second derivatives at t = 0
satisfy (75) we see that

16(0) [l + 16(0)llo < [[6°(0) |z + [[67 (O)] 2 aiwssr) + [16(0)]2 (79)
< C (IIEO)llo + €)1 /2,0 + 1X(O0) 11 /2,0 + 12(0) |1 /2,r) -

Thus, assuming in (35) that

i (0) ——(0) in [H'(Q), (80)
0, (0) — 6(0) in HY(Q), (81)
we get the estimates
([t (0) [y < [[t(0) — @ (0)[|y + [[@(0)[|y (82)
< e+ C ([EO)llo + I1EO) 1 /2,0 + 1X0) 1720 + [2(0)[1/2,r) < No,
16(0)[lo < 116 (0) = (0|1 + [16(0) |1 (83)

<e+C (||f(0)||0 +1&(0)[[1/2,0 + IX(0) |1 /2,0 + |\B(O)H1/2,r) < Np.
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Next, using (30)-(33), (74), (78), (82) and (83), we have
HE < [l |3+ 165 + 1EO)IF + I1€O)IIF 2. + %O 2. (84)
HIRO) 13 2.0 + I£0)1F < NG
Combining (60), (71) and the bounds for Hy and H; in (59) and (84), we conclude that
[ ()17 (1) + 1m 17 oo gy + Nl oo (g00) + 18mllT oo (121 00) (85)

+||0m||%°°(J,H1(Q)) + ||9m||2Lw(J,H1(Q)) + HémH%oo(J,Lz(Q))
< C (N3 + M (f.8,q.h,X)) -

It follows from (85) that there exist subsequences of (Wm,)m>1 and (6,,)m>1, that to avoid notation we
denote again by (W,)m>1 and (0,)m>1, such that

Uy ———u in L>®(J,V) weak —* (86)
Uy, — u in L*®(J,V) weak —* (87)
Uy ——— 1 in L*(J,V) weak — (88)
Om —— 0 in L>®(J,HY(Q)) weak — (89)
Oy, me’ in L®(J,HY(Q)) weak—*, (90)
Orm, mé’ in L°(J,L*()) weak —*. (91)
Thus,

T T

/v up)(t)dt —— [[v,ul(t)dt Vv e LY(J,V), (92)

0 0

and similarly for (87)-(91).
Next, we observe that for each v € S2 and g(t) € L'(J), Pvg(t) € L*(J,[L*(2)]*) and consequently
from (88)

T T
/ Pit,,,v) g(tdt —— [ (P v) g(t)dt. 93)
0 0
Hence,
(Pity,v) —— (Pit,v) in L®(J) weak —". (94)

m—r oo

Similarly, from (86)-(91), it follows that for each v € S% w € S

left-hand side of (29) converge in L>°(J) weak—* when m — co.
Thus taking limit in m in (29), we see that

all other inner product terms in the

(Pit(a), v) + (Tl v ) + A(u,v) = (50,7 -v*) = (5,6, -v7) (95)
+(tc é,w) + (c 0, w) + (YV6, Vw)
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+((1=9)BmToV - 0%, w) + (68, TpV - o/, w)

+(r(1 = )BnToV - °,w) + (108, TV - i/, w)

(f,v) = (¢, w) + (g, v")

+<X,V -V>—i—<h,w>7 v=w v w)ev,, tecl

The density of V,,, in [H%(2)]® implies that (95) also holds for any v € [H?(Q2)]*,w € H?(2). Then the
density of [C°°(2)]° in [H%(Q)]® and in V x H!(Q2) implies the validity of (95) in V x H* ().
Next, taking in (95) v = (v*,vf) € [D(Q)]*,w € D(Q),
A(u,v) = (86,V -u®) — (850, V -ul) = = (L(u,0),v), (96)

Thus, equation (95) reduces to

(Pir(z),v) + (gﬁf’vf> ~(L(u,0),v) o)
+(redw) + (cb,w) = (V- (390),w) + (1 - 9B, TV - 0", w)
+ (8B ToV -0 w) + (7(1 = 9)BnToV - i, w) + (768 ToV - i/, w)

=(Ev)—(gw), v=(,v,w)eDQF, ted

Hence
Pit + ﬂuf —L(u,0)=f, in [D'(Q)]4, tedJ, (98)
K

Tel+c—V-(yV0) + (1 —¢)BnToV -0 + ¢B;TyV - uf (99)
+7(1 = ¢)BmToV - 0° + 166 ToV - i/ = —¢ in D'(Q), tel
Since f € [L2(Q)]* and by (88) @ € V,uf € H(div;Q), then L(u,0) € [L?(2)]* so that (98) also hold as
functions in [L2(Q)]*.

Also ¢ € L*(J,L*(Q)) and by (87), (88), (90) and (91) € L>®(J,(H*(R)), § € L>=(J,L*(Q)) and
V-ud, Vi, V-ul,V-af € L>(J, L3(Q)), respectively. Thus, V - (vV6) € L2(J, L?(2)) so that (99) also
hold in L2(2).

To verify that (u, #) satisfy the boundary conditions, we observe that since £(u, ) € [L?(Q)]*, V-(yV#0) €
L?(Q)), we can integrate by parts in (95) to get

(P, v) + (ﬂuf,vf) — LW, 0) + (o v,v) — (p, v V) + (V0 v, w)
+((1 = 9)BnToV -0, w) + (68, THV - 0, w)
+(1(1 = ¢)BnToV - 0, w) + (T¢B;ToV - i/, w) (100)
= (£,v) = (g w) + (g, v*) + (x, v/ - v) + (h,w) ,
v=wvIw)eVxH(Q),tec
Using (98) and (99) in (100) we obtain

(o-v,v%) =(g,v®) v*e[H'(Q)te ], (101)
— <pf,vf . V> = <X,vf ~V> vl € H(div;Q),t € J, (102)
(VO -v,w) = (h,w), wec H(Q). (103)
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From (101) and (103), we see that the boundary conditions (17) and (19) are satisfied. Next, recall that for
any z € H~'/2(T") there exists v/ € H(div;Q) such that v/ -v = z [11], and consequently (102) implies that
the boundary condition (18) is satisfied.
To verify that the initial conditions are satisfied, we take a function ¢(t) € C°°[0,T] such that ¢(0) =
1,o(T) = 0. From (87) we know that
T T
/ U, V) p(t)dt —— [ (0, V) p(t)dt. (104)
0

m—00
0

Also, since (0, v) and (u,v) are continuous in [0, 7], using integration by parts,

/T () Ot = ()} = [ () () (105)

and
T T
/(1'1, V) =—(u’v) - / (u,v) ' (t)dt. (106)
0 0
Taking limit in m in (105) we get
T T
/(l'l,v) o(t)dt = —limity,— oo (W, (0 / . (107)
0 0

Since from (30) u,,(0) — u' strongly in [L2(92)]%, from (105)-(107) and the uniqueness of the weak
m (o)
limit in [L?()]* we conclude that

limit,y, 500y, (0) = u°. (108)

A similar argument shows that the other initial conditions (14)-(16) are satisfied.
To demonstrate uniqueness, let (uy, 61), (us,62) be two solutions of problem (11)-(19). Then (u,6) =
(u; — ug, ) — 62) satisfy the equations

Pii+ Bl — L(u,0)) =0, [L2Q)]* x J, (109)
Tcl+ch—V-(YVO) + (1 —¢)BnToV -0 + ¢p;THV - uf (110)
+7(1 = @) BT,V - 0* + 7B, T,V - i) =0, L*(Q) x J,

with vanishing initial and boundary conditions. Then a repetition of the argument leading to (95) shows

that

(Pit(a), v) + (Tl v ) + A(u,v) = (50,7 -v*) = (5,6, -v7) (111)
+ (TC H,w) + (c 0, w) + (vV6,Vuw)
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(1= @)BnToV -0, w) + (¢8;ToV -0, w)
( ( )ﬂmT’Ov : ﬁsa w) + (T¢ﬂfT0V : ﬁf’ w) = O
v= (v viw)eVxH(Q), tel

Next, choose v =11, w = 6 in (111) and follow the ideas leading to (60) to obtain the inequality

)17 vy + 18T g0y + 1001 200 (112)
HNONZ o (1,501 (62)) + ||9\\%w(J,L2(Q)) <0,

so that u(t) = 0,0(t) = 0 and uniqueness is demonstrated.
This completes the proof.

Next we analyze the case of the model equations in [6], where the constitutive and dynamic equations
are

0i5(0,0) = 2uei;(u®) + 6;j(A, V-u® + BV -uf — 30), (113)
pr(u,0) = —BV-u® — MV -u’ + 5,0, (114)
Pa+Bal — L(u,0)=f, (z,t)€QxJ, (115)
Tel+ch—V-(4V0)+ BT (V-a*+V-uf) (116)
+78T, (V-4 + V- itf) = —q (2,t) € A x J.
The proof of the existence and uniqueness of the solution (u, ) of an IBVP for (115)-(116) with the initial
conditions (13)-(15) and the boundary conditions (17)-(19) follows with minor changes in the arguments
given in the proof Theorem 1. In fact: Note that (116) can be obtained by changing (1 — ¢)83,, and ¢8; by

B in (7). Then an inspection of the argument given in the proof of Theorem 1 shows that for this problem
Cy =1, C’é = /3%’ so that and existence and uniqueness for an IBVP for (115)-(116) can be demonstrated

with identical argument of that of Theorem 1 using these new definitions of the coefficients C'j* and CZ; .
4. Thermoelasticity

We consider the equations in [14] and [7] in an open bounded domain € with piecewise smooth boundary.
With & = (0;;) denoting the stress tensor in a linear isotropic thermoelastic medium, the constitutive
equations are

5:;(u®,0) = 2pe;;(u®) + 6 (AV - u® — 80). (117)

The IBVP can be formulated as follows. Find (u®, ) such that

pu’ —V.o(u’)=1° (x,t) € QxJ, (118)

Tcl+ch—V- (V) + BTV - (119)
+7BT,V -0’ =—q (x,t) € QxJ,

uf(z,0) =u*? z€Q, (120)

w'(z,0) =u®t, z€Q, (121)

0(x,0) =6 zcQ, (122)
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0(z,0) =0' = € Q, (123)
o(u’0) - v=gzt), xzel,tel, (124)
YWVO-v=h(zt), xzel,tel (125)

The IBVP for thermoelasticity formulated in (118)-(125) can be obtained by omitting the fluid terms
and setting ¢ = 0,8, = 8y = B in equations (1) and (7). Thus the argument leading to (23) yields the
following variational formulation for (118)-(125): Find (u®,#) such that

(P, v) + Aw®,v) = (80, V - u”) + (7 c f,w) (126)
+ (e 6,w) + (770, V) + (BToV - &®,w) + (rATyV - i°,w)
= (V) = (g w) + (g V) + (hw),  (v,w) e x[H(QP, t €,

where A(u®,v) is the bilinear form

AW, V) = 3 @m0, et (v)) = (€ du?),e(v)) (127)

In (127), the matrix € and the column vector &((u®)) are defined by

N )\+2,u A 0 Ell(us)
&= ( A A+2p 0 ) , E(u’) = <822(U.s)> : (128)
0 0 4y

The term (5 E(u),?(u)) in (127) represents the strain energy of the system, so that £ must be positive
definite. Furthermore,

A(u®, v) < Cllully vl (129)
Also, using Korn’s second inequality (22), if )\f is the minimum eigenvalue of £ ,
A, v) 2 Co|lv[[ = AV ll5. (130)

Next, using (129)-(130) and ignoring all fluid terms, the argument used in the proof of Theorem 1 can be
applied to the thermoelasticity case to demonstrate the following existence and uniqueness Theorem for
(117)-(125): Let
M7 (£°,8,q,h,) = |1€(172(s. 202y + 150720 L2y + 1€ 1172 0 z2 2
||g||%2(J,[H1(Q)]2) + +||g||%°°(J,[H1(Q)]2) + ||gH%°°(J,[H1(Q)]2) + ||§H%2(J,[H1(Q)]2)
+||h||%°°(J,H1(Q)) + Hh”QLoo(J,Hl(Q)) + HBH%Q(J,Hl(Q))a
N7 = (w3 + [l 7+ 16°13 + 16413 + IEO)IF + [1£2(0)[1F + I1£2(0)13
HIEO)IE 2,0 + 15O 2.0 + 12(0) 12 2.
HIEOF 2.0 + IXOIF j2.p + [BO)IF o0 + 1.

Theorem 2. Let Q C R? be an open bounded domain with piecewise smooth boundary. Assume that all
coefficients in (117) and (119) are in C%(Q) with gradients belonging to [L*°(Q)]? and that the matriz
£ in (128) s positive definite. Also assume that M; (f,g,q,h,x) < o0, N1 < oo. Then, there exists a
unique solution (u®,0) of problem (118)-(125) such that u®,u*,0* € L>(J,[H*(Q)]?), u* € L>(J,[L*(Q)]?,
0,6 € L=(J,H (Q)),6 € L>(J, L*(Q)).
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5. Conclusions

The differential equations of thermo-poroelasticity combine Biot’s equations of motion in fluid-saturated
porous media with a new heat equation with relaxation times to avoid infinite signal speeds. In this approach,
the heat equation contains coupling terms consisting of first and second order time derivatives of the
dilatations of the solid and fluid phases weighted by the corresponding thermal expansions of the phases.
Under appropriate assumptions on the coefficients, the initial conditions and the open bounded domain
where the solution is searched, an argument is given to ensure that these additional terms still allow the
existence and uniqueness of the solution of the initial boundary value problem. The existence and uniqueness
of the solutions of the corresponding problem for a previous thermo-poroelasticity formulation and single-
phase thermoelasticity are shown to follow immediately from the novel formulation.
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