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Abstract: We study the wave anelasticity (attenuation and velocity dispersion) of a periodic set
of three flat porous layers saturated by two immiscible fluids. The fluids are very dissimilar in
properties, namely gas, oil, and water, and, at most, three layers are required to study the problem
from a general point of view. The sequence behaves as viscoelastic and transversely isotropic (VTI)
at wavelengths much longer than the spatial period. Wave propagation causes fluid flow and
slow P modes, inducing anelasticity. The fluids are characterized by capillary forces and relative
permeabilities, which allow for the existence of two slow modes and the presence of dissipation,
respectively. The methodology to study the physics is based on a finite-element uspcaling approach
to compute the complex and frequency-dependent stiffnesses of the effective VTI medium. The
results of the experiments indicate that there is higher dissipation and anisotropy compared to the
widely used model based on an effective fluid that ignores the effects of surface tension (capillarity)
and viscous flow interference between the two fluid phases.

Keywords: capillary pressure; two-phase fluids; porous medium; anisotropy, attenuation; finite
elements

1. Introduction

Wave anelasticity in porous media is a topic with applications in many areas of geo-
physics and material science [1]. Waves generate fluid flow in the pores and energy losses
that can be observed in field and laboratory experiments [2–4]. Recent laboratory experi-
ments performed in the seismic range have shown the frequency dependence of anelasticity
in sandstones with partial gas or oil saturations [5–7], while experiments conducted in
Reference [8] show a significant attenuation in the extensional and bulk deformation modes,
as well as numerical simulations in close agreement with laboratory data.

The theoretical pioneering work of Biot [9–11] describes waves propagation in porous
media saturated by single-phase fluids. The theory predicts a shear wave and two com-
pressional waves, a fast one, where the solid and fluid move together, and a slow one,
where the displacement is out of phase. At low frequencies, the slow wave is diffusive
and becomes a propagating wave at high frequencies. Significant anelasticity of the fast
wave is due to mode conversion at mesoscopic scale heterogeneities (mesoscopic loss).
White et al. [12] were the first to introduce this loss mechanism based on Biot’s theory for a
periodic sequence of two flat and thin porous layers saturated with a single-phase fluid.
This mechanism is also termed WIFF or wave-induced fluid flow loss.

The study of propagation in partially saturated porous media has been presented
in Reference [13–15]. Lo et al. [16] present an Eulerian model for waves propagating in
porous media saturated by two fluids. In this model, the stress-strain relations are obtained
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by taking into account capillary pressure assumed as a unique function of saturation and
ignoring hysteresis, while the dynamic equations are formulated from a mass balance
equation for each solid and fluid phase. Three compressional waves are predicted to exist,
one wavelike and two of them of diffusive type. The model is applied to analyze waves in
soils saturated by water with air or oil. A macroscopic model based on a two-component
Biot model and a mixture theory is presented in Reference [17]. Other models to analyze
the wave behavior in porous rocks saturated my immiscible fluids appeared in [1,15,18–22].

Concerning studies on porous media by using numerical simulations, the work by
Thovert et al. [23] analyzes wave propagation using an homogenization approach. The
authors consider the existence of connected pores that may or may not percolate, ob-
tain the macroscopic coefficients and apply the results to a synthetic porous medium.
Hamzehpour et al. [24] study acoustic waves in two-dimensional fractured porous media
using finite differences to discretize the differential equations. This analysis concludes that,
near the source, waves amplitude decay exponentially. A generalization of the Biot theory,
appearing in Reference [25], takes into account more than one fluid phase saturating the
pores, such as brine-gas and oil-gas mixtures. This theory predicts three compressional
waves and a shear wave. The stress-strain relations are derived from the complemen-
tary virtual work principle in order to include the capillary pressure relation, while the
dissipation function is defined in terms of Darcy’s law based on two fluids [26].

The presence of an additional slow wave is expected to induce more attenuation and
velocity dispersion, as shown in Reference [27], for the case of vertical propagation across a
periodic set of two thin layers saturated with two immiscible fluids. This work considers
the more general case of a sequence of three layers, also leading to a VTI behavior at long
wavelengths, but to a different frequency dependence of the velocity and attenuation.
Qi et al. [28] consider capillary effects in random media of patchy saturation by using a
membrane stiffness, but this approach leads to an increase in phase velocities and lower
attenuation. An experimental study on how capillarity affects the compressional P-wave
velocity for patchy saturation during an imbibition process is presented by Liu et al. [29],
where the patch size depends on the fluid saturation. The effect of capillarity is related
to the injection rate, changing with imbibition. The results exhibit an increase of the
experimentally measured P-wave static velocity as capillary pressure increases.

This study is based on the theory of Cavallini et al. [30] valid for periodic N layers
saturated for single-phase fluids and a FE procedure to obtain an equivalent VTI medium to
an horizontally layered medium consisting of a three periodic poroelastic solid saturated by
immiscible fluids. An FE procedure is used to determine a VTI medium equivalent at long
wavelengths to a periodic sequence of thin poroelastic layers. It consists of defining five
independent boundary-value problems, each one associated with either a compressibility
or shear time-harmonic test, whose solutions are obtained by the FE method. The results
are validated against the theory by Cavallini et al. [30] for effective single-phase fluids.
Then, several examples are given, where the velocities and attenuation are obtained by
using effective-single phase and two-phase fluids.

2. The Differential Model

The poroelastic medium is saturated by non-wetting and wetting fluid phases, whose
properties and variables are indicated by subscripts or superscripts “n” and “w”, respec-
tively. The corresponding saturations are denoted by Sw = Sw(x) and Sn = Sn(x), with
x = (x, y, z), respectively, with associated residual saturations Srw and Srn. It is assumed
that both fluid phases occupy the whole pore space and that a continuous network of these
phases exists (funicular regime) [31]. Thus,

Sw + Sn = 1, Srn < Sn < 1− Srw, Srw < Sw < 1− Sro.

The Fourier transforms of the particle displacement of the three phases composing
the material, i.e., the solid, non-wettting and phases phases, are denoted as us = (us

i ),
ũn = (ũn

i ), and ũw = (ũw
i ), i = 1, 2, 3, respectively. Set u = (us, un, uw). Define φ = φ(x)



Energies 2021, 14, 6528 3 of 16

as the matrix effective porosity, with the relative displacement and variation in fluid content
of each fluid phase defined as

uθ = φ(ũθ − us), ξθ = −∇ · uθ , θ = n, w.

Define Pw and Pn as the Fourier transforms of infinitesimal changes in the wetting
and non-wetting fluid pressures, respectively, with respect to an initial equilibrium state
of pressures P̄w, P̄n, porosity φ̄, and non-wetting saturation S̄n. The capillary relation
is [26,31,32]

Pca = Pca(Sn + S̄n) = P̄n + Pn − (P̄w + Pw) = Pca(S̄n) + Pn − Pw ≥ 0. (1)

Ignoring hysteresis, Pca is an increasing function of Sn and positive.
Let εij(us) and es = εii(us) be the Fourier transforms of the solid strain tensor and

corresponding linear invariant, respectively. Denoting with τij(u) the stress-tensor compo-
nents of the bulk material, the constitutive relations are:

τij(u) = 2µ εij + δij(λu es − B1 ξn − B2 ξw), (2)

Tn(u) = (S̄n + β)Pn − βPw = −B1 es + M1 ξn + M3 ξw, (3)

Tw(u) = S̄w Pw = −B2 es + M3 ξn + M2 ξw, (4)

where

β =
Pca(Sn)

P′ca(S̄n)
.

In (2), λu = Ku − 2
3 µ, with Ku and µ being the wet-rock bulk and dry-rock shear

moduli, respectively. Thus,

Eu = λu + 2µ (5)

is the wet-rock P-wave modulus. The coefficients in (2)–(4) can be determined as indicated
in Appendix A.

The model describing the response of a poroelastic medium saturated with two fluids
in the diffusive range of frequencies consists of a partial differential equations imposing
the stress equilibrium of the bulk material (Equation (6)), together with a generalization of
the two-phase Darcy law [26,31,32] (Equations (7) and (8)). Thus, if ω denotes the angular
frequency, these equations are

∇ · τ(u) = 0, (6)

iω dn un − iω dnw uw +∇Tn(u) = 0, (7)

iω dw uw − iω dnw un +∇Tw(u) = 0. (8)

The coefficients in (7) and (8) depend on the absolute permeability κ, fluid viscosities
ηl and relative permeabilities Krl(Sl), l = n, w. They are defined as

dl(S̄l) = (S̄l)
2 ηl

κKrl(S̄l)
, l = n, w, (9)

dnw(S̄n, S̄w) = ε(dn(S̄n)dw(S̄w)). (10)

The coefficient dnw(Sn) in (10) is a dissipative function, where ε is small. It describes
the viscous drag between the immiscible fluids. In the absence of experimental data, it has
the form given in (10).

3. The Equivalent Viscoelastic Transversely-Isotropic Medium

For long wavelengths, compared to the layer thicknesses, a fluid-saturated porous
medium is seen as an effective or equivalent VTI medium characterized by five frequency
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dependent and complex coefficients that can be determined by means of harmonic experi-
ments performed on a representative sample of the medium. These experiments, given
next for the 2D case, are defined as boundary value problems (BVPs), whose solutions are
obtained by using an FE method. For single-phase fluids, the analytical solutions given in
Appendix B are used to validate the numerical simulations.

Let us consider a representative squared sample Ω = (0, L)2 with boundary Γ in
the (x, z)-plane, where x and z denote the coordinates along the horizontal and vertical
directions. Let ΓR, ΓL, ΓT , and ΓB denote the right, left, top, and bottom boundaries of Ω.
In addition, let χ be a unit tangent on Γ oriented counterclockwise, and ν the unit outer
normal on Γ.

Let E(ũs) and T (ũs) be the Fourier transforms of the strain and stress tensors at
the macroscale, with ũs denoting the macroscopic displacement vector of the solid. The
stress-strain equations for a VTI medium can be stated as follows:

T11(ũs) = p11 E11(ũs) + p12 E22(ũs) + p13 E33(ũs), (11)

T22(ũs) = p12 E11(ũs) + p11 E22(ũs) + p13 E33(ũs), (12)

T33(ũs) = p13 E11(ũs) + p13 E22(ũs) + p33 E33(ũs), (13)

T23(ũs) = 2 p55 E23(ũs), (14)

T13(ũs) = 2 p55 E13(ũs), (15)

T12(ũs) = 2 p66 E12(ũs), (16)

where p12 = p11 − 2p66. To compute the five independent frequency dependent and
complex stiffness coefficients in (11)–(16), we solve Equations (6)–(8) in Ω imposing no
change in fluid content of both fluid phases, i.e., with the boundary conditions

un · ν = 0, uw · ν = 0, (x, z) ∈ Γ, (17)

and additional boundary conditions stated below for each coefficient pI J .
To determine p33, the boundary conditions are imposed:

τ(u)ν · ν = −∆P, (x, z) ∈ ΓT , (18)

τ(u)ν · χ = 0, (x, z) ∈ Γ, (19)

us · ν = 0, (x, z) ∈ Γ \ ΓT . (20)

The solution of this BVP satisfies the equations (cf. (2)) ε11 = ε22 = 0, εij = 0,
i 6= j, ξn = ξw = 0. Thus, E11 = E22 = 0, and (13) reduces to

T33 = p33E33. (21)

Now, p33 can be computed from (21) by calculating T33 and E33 as averages over the
sample Ω of τ33 and ε33, i.e.,

T33 =
1
Ω

∫
Ω

τ33dΩ, E33 =
1
Ω

∫
Ω

ε33dΩ. (22)

To determine p11, the following boundary conditions are implemented:

τ(u)ν · ν = −∆P, (x, z) ∈ ΓR, (23)

τ(u)ν · χ = 0, (x, z) ∈ Γ, (24)

us · ν = 0, (x, z) ∈ Γ \ ΓR. (25)

The solution of this BVP for p11 satisfies ε33 = ε22 = 0, εij = 0, i 6= j, ξn = ξw = 0.
Hence, E33 = E22 = 0 and (11) reduces to

T11 = p11E11. (26)
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Equation (26) determines p11 since T11 and E11 can be computed as averages over Ω
of τ11 and ε11, as indicated in (22), for determining p33.

The numerical experiment to determine p13 is defined by applying the
boundary conditions:

τ(u)ν · ν = −∆P, (x, z) ∈ ΓR ∪ ΓT , (27)

τ(u)ν · χ = 0, (x, z) ∈ Γ, (28)

us · ν = 0, (x, z) ∈ ΓL ∪ ΓB. (29)

In this experiment, ε22 = 0, εij = 0, i 6= j, ξn = ξw = 0. Then, ε11 and ε33 do not
vanish, and E11 and E33 can be obtained as

E11 =
1
Ω

∫
Ω

ε11dΩ, E33 =
1
Ω

∫
Ω

ε33dΩ. (30)

Next, from Equations (11) and (13), it follows that

T11 = p11E11 + p13E33ε33, T33 = p13E11 + p33E33. (31)

Note that it follows from (27) that T11 = T33 = −∆P, so that using (31) p13 is deter-
mined as

p13 =
p11E11 − p33E33

E11 − E33
. (32)

The following boundary conditions are used to determine p55:

−τ(u)ν = g, (x, z) ∈ ΓT ∪ ΓL ∪ ΓR, (33)

us = 0, (x, z) ∈ ΓB, (34)

where

g =


(0, ∆G), (x, z) ∈ ΓL,
(0,−∆G), (x, z) ∈ ΓR,
(−∆G, 0), (x, z) ∈ ΓT .

This BVP satisfies the conditions εij 6= 0 only for i = 1, j = 3, so that Eij 6= 0 only for
i = 1, j = 3, and (15) reduces to

T13 = 2 p55 E13. (35)

Next, by computing the average of the local strain ε13 over the sample

E13 =
1
Ω

∫
Ω

ε13dΩ, (36)

the stiffness p55 can be determined from (35).
Finally, p66 is computed by using the boundary conditions:

−τ(u)ν = g2, (x1, x2) ∈ ΓB ∪ ΓR ∪ ΓT , (37)

us = 0, (x1, x2) ∈ ΓL, (38)

where

g2 =


(∆G, 0), (x1, x2) ∈ ΓB,
(−∆G, 0), (x1, x2) ∈ ΓT ,
(0,−∆G), (x1, x2) ∈ ΓR.
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Then, p66 is determined as indicated for p55.
The five BVPs are solved with the FE method. The components of the displacement

vector of the solid are represented with locally bilinear polynomials, while global continuity
is imposed on Ω. Furthermore, only the normal components of the vector displacements
of the two fluids need to be continuous across the common edges of adjacent computational
cells. This condition is imposed by using polynomials linear in the x-direction and constant
in the z-direction to represent the first component of each fluid phase, while polynomials
constant in x and linear in z are used for the second component.

4. Results. Numerical Experiments

The solution of the five BVPs to determine the complex stiffnesses pI J stated in
Section 3 is obtained as a function of the propagation direction and frequency with the FE
method. Appendix A gives analytical expressions for the phase and energy velocities and
dissipation factors of the qP, qSV, and SH waves.

In all the experiments, the numerical samples are discretized with a 90 × 90 uniform
mesh representing six periods, each one with three layers of equal 20 cm thickness, satu-
rated with two fluids. The material properties of the solid and fluid phases are listed in
Tables 1 and 2.

Table 1. Physical properties of the frame.

L1 L2 L3

Ks (GPa) 33.4 33.4 33.4
ρs (g/cm3) 2.65 2.65 2.65
φ 0.3 0.2 0.1
Km (GPa) 7.2 14.5 23.5
µ (GPa) 6.5 13 21.1
κ (darcy) 1 0.24 0.02

Table 2. Physical properties of the fluids.

Brine Oil Gas

bulk modulus (GPa) 2.2 2 0.0096
density (g/cm3) 975 870 70
viscosity (Pa · s) 0.001 0.3 0.00015

The behavior of the two fluids is described with relative permeabilities, Krn(Sn) and
Krw(Sn), and capillary pressure function, Pca(Sn), defined by [33–35]:

Krn(Sn) = (1− (1− Sn)/(1− Srn))
2, (39)

Krw(Sn) = ([1− Sn − Srw]/(1− Srw))
2, (40)

Pca(Sn) = A
(

1/(Sn + Srw − 1)2 − S2
rn/[Sn(1− Srn − Srw)]

2
)

, (41)

with A in (41) being the capillary pressure amplitude. The wetting phase is brine, and
the non-wetting phase is oil or gas. In all the experiments, the residual saturations are
Srw = 0.01, Srn = 0, the capillary-pressure amplitude is 30 kPa, and ε = 0.01 in the defini-
tion of the coefficient dnw in (10). Other choices of ε yield similar results. The functions
in (39)–(41) are an analytical representation of the experimental curves obtained in labora-
tory experiments and used in the simulation of two-phase fluid flow and wave propagation.
The functions (39)–(41), of common use in reservoir engineering, are useful to model the
two-phase funicular regime. (see Reference [26,31,32,36] for additional information on flow
of two fluids in porous media). Capillary pressure and relative permeability functions may
be obtained from log-well data, as indicated in Reference [37].
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The experiments show dissipation factors and phase and energy velocities of waves
computed by using two and one fluid phases. The properties of the effective fluid (viscosity
η(∗), density ρ(∗), and bulk modulus K(∗)) are obtained with Reuss averages for the bulk
moduli and arithmetic averages for densities and viscosities:

η(∗) = ηnSn + ηwSw, (42)

ρ(∗) = ρnSn + ρwSw,
1

K(∗) =
Sn

Kn
+

Sw

Kw
.

The following cases are analyzed in the experiments

• Case 1: Six periods of three layers (L1, L2, L3) of layer thickness 20 cm, where the
non-wetting fluid saturations in each layer are L1: 1% gas, L2: 5% gas, and L3: 5% oil.
The curves labeled “single-phase” are obtained by using the classical Biot theory and
effective single-phase fluids.

• Case 2: Six periods of three layers (L1, L2, L3) of layer thickness 20 cm, where the
non-wetting fluid saturations in each layer are L1: 1% oil, L2: 5% oil, and L3: 5% gas.

The following notation is used in the figures: cpII and QII = Re(pII)/Im(pII) are the
phase velocity and dissipation factor of the waves traveling parallel and perpendicular to
the layering, “11-waves” and “33-waves”, respectively.

Figures 1a,b and 2a,b show the phase velocities and corresponding dissipation factors
of “33-waves” and “11-waves” as a function of frequency for Cases 1 and 2 computed with
the FE method. The plots compare the results for two fluids and one (effective) fluid, where
the latter is defined in Equations (42).

At low frequencies, the more realistic case of two-phase fluids has lower velocities
than for single-phase fluids, with similar asymptotic values at higher frequencies. As
expected, phase velocities for “33-waves” are lower than for “11-waves”.
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Figure 1. Phase velocity of “33-waves” (a) and “11-waves” (b) for Case 1 and 2 as a function
of frequency.
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Figure 2. Dissipation factor of “33-waves” (a) and “11-waves” (b) for Cases 1 and 2 as a function
of frequency.
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The dissipation factors corresponding to two-phase fluids (Figure 2) exhibit a very
different behavior as compared with the effective single-phase fluids, since there is an
additional attenuation peak at lower frequencies, much stronger for Case 2. This new
phenomenon can be explained as follows. Ignoring the cross-dissipative coefficient dnw, the
particle velocity of the l-phase iωul , l = o, g, b is equal to the gradient of the generalized
fluid pressure T l times the absolute permeability κ and the l-phase mobility γl(Sl), defined
as γl(Sl) = [Krl(S̄l)]/ηl [26]. For the values of brine, oil and gas saturation is used in the
examples, at 1% (5%) oil saturation, and γo is five (three) orders of magnitude lower than
γb and γg. Thus, fluid flows differently within the pore space, with the fluids interfering
each other and inducing additional energy losses, which are not taken into account by
the single-phase effective-fluid approach. Furthermore, Case 2 has more oil content than
Case 1, thus inducing higher attenuation (see Figure 2). Moreover, the attenuation peaks
for “33-waves” have higher amplitudes than for “11-waves”, a known effect in finely
layered porous media. An additional result observed in the experiments is that, at a given
saturation, varying the amplitude of the capillary pressure does not affect the attenuation.

Figures 3–7 exhibit polar plots of energy velocities and dissipation factors at 10 Hz
versus the propagation angle. They compare analytical solution for single-phase effective
fluids (Appendix B) to the FE solutions based on single-phase effective fluids and the
two-phase fluids. Figures 3, 5, and 7 show that the energy velocities of the three waves
have a perfect match, which validates the FE numerical scheme. On the other hand,
Figures 4 and 6 show a perfect agreement between the single-phase analytical and FE
dissipation factors of the qP and qSV waves (SH waves are lossless), but the attenuation
corresponding to the two-phase fluids, including capillarity effects, is higher, in agreement
with the previous remarks regarding Figure 2.
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Figure 3. Polar representation at 10 Hz of the energy velocities of qP waves for two-phase fluids
obtained with the FE method and single-phase effective fluids (analytical and numerical).
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obtained with the FE method and single-phase effective fluids (analytical and numerical).
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obtained with the FE method and single-phase effective fluids (analytical and numerical).
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Figure 7. Polar representation at 10 Hz of the energy velocity of SH waves for two-phase fluids
obtained with the FE method and single-phase effective fluids (analytical and numerical).

Figures 8 and 9 display the modulus of the vertical component of the particle velocities
vw = iωuw and vn = iωun of the wetting and non-wetting fluids at 10 Hz, respectively,
that appear in the left-hand side of the two-phase Darcy law (7) and (8). These vertical
components, corresponding to Case 2, are denoted by vn,z and vw,z in the plots. The higher
mobility γb, as compared with the gas and oil mobilities γg and γo, explains the higher
values of the wetting particle velocity in Figure 9 when compared with those of the non-
wetting phase in Figure 8. As stated above, the interference between the two fluid phases
due to their different particle velocities induces energy losses and velocity dispersion.
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Figure 8. Case 2. Modulus of the vertical component of the particle velocity of non-wetting fluids
vn,z = iωun,z obtained with the FE method. Frequency is 10 Hz.
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Figure 9. Case 2. Modulus of the vertical component of the particle velocity of wetting fluids
vw,z = iωuw,z obtained with the FE method. Frequency is 10 Hz.
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Finally, Figure 10 exhibits the modulus of the gradient of the total fluid pressure
T = Tn + Tw at 10 Hz for Case 2, which is clearly observed at the layer interfaces. This
pressure gradient is another useful illustration of the WIFF mechanism for the case of
two-phase fluid saturation.
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Figure 10. Case 2. Modulus of the gradient of the total fluid pressure T = Tn + Tw obtained with the
FE method. Frequency is 10 Hz.

5. Discussion

Wave-induced fluid flow in porous media is known to be a major cause of attenua-
tion and velocity dispersion. Concerning the existence of additional slow waves when
multiphase fluids saturate a porous medium, Albers [17] developed a macroscopic linear
model to study wave propagation in unsaturated soils. This model, which assumes that
capillary pressure and relative permeabilities depend on saturation, predicts the existence
of three compressional waves, one of them fast and two slow, and a shear wave, with phase
velocities and attenuation depending on saturation, and the coefficients in the stress-strain
relations derived as in Reference [25].

Furthermore, Lo and Sposito [16] present differential equations to model dilatational
waves in porous media saturated with two immiscible fluids. Their analysis predicts three
compressional waves (P1, P2, P3), with the attenuation of the P1 wave highly affected by
the pore fluids. On the other hand, the attenuation of the P2 and P3 waves is found to be
related to the inverse of the sum of the relative mobilities of the two fluids, thus dominated
by the fluid with larger relative mobility. This model also assumes that capillary pressure
is a unique function of saturation (ignoring hysteresis), with the dissipation coefficients
are defined in terms of the absolute permeability and the saturation-dependent relative
permeability functions using the form given in Reference [25]. Quoting these authors “the
model equations by Brutsaert [13], Garg and Nayfeh [14], Berryman et al. [15] and Tuncay
and Corapcioglu [19] can be considered as special cases (of Reference [16]) and Santos et al.
[25] (model) as a version based on a Lagrangian framework”.

6. Conclusions

Finite-element time-harmonic quasistatic experiments were used to study the wave
anelasticity of a periodic set of three thin and flat layers saturated with two fluids, focusing
on the effects of surface tension (capillarity forces). The results are compared with the case
in which the two fluids are replaced by an effective single-phase one. This later case is
validated against the analytical solution, whereas there is no analytical solution for the
more general and realistic scenario involving capillary forces. The results show that, in this
case, the loss is higher for both waves traveling normal and parallel to the layers, and there
are two attenuation peaks, as opposed to one peak for the effective single-phase fluid.

The energy velocities and dissipation factors of the three waves, shown as polar plots
at 10 Hz versus the propagation angle, exhibit a perfect agreement between the analytical
and FE single-phase fluid solutions. While the energy velocities coincide in all cases,
the dissipation factors are always higher for the case of two-phase fluids, as mentioned
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above. The physics can be explained by combined effects of capillary pressure and different
mobilities of each fluid phase in the two-phase Darcy law.

The existence of an additional slow wave compared to the classic slow wave of the
Biot theory is due to surface tension effects represented by a saturation-dependent capillary
pressure. On the other hand, relative mobilities induce relative motions between the fluids,
causing losses absent when an effective fluid is considered, as it is mostly the case in the
literature regarding wave propagation in porous media. Future work includes a more
detailed analysis of the influence of wettability, phase mobilities, and saturation on wave
anelasticity of rocks saturated with immiscible fluids.
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Appendix A. Determination of the Coefficients in the Constitutive Relations

Following Santos et al. [25], Ku is computed using the relations

Ku = Ks(Km + Ξ)/(Ks + Ξ),

Ξ = K f (Km − Ks)/φ̄(K f − Ks), (A1)

K f = α(γS̄nCn + S̄wCw)
−1, α = 1 + (S̄n + β)(γ− 1),

γ =
(
1 + P′ca(S̄n)S̄nS̄wCw

)(
1 + P′ca(S̄n)S̄nS̄wCn

)−1,

where Km(x), Ks(x), Kw, and Kn are the bulk modulus of the empty matrix, of the grains,
and the wetting and non-wetting fluid phases, respectively, with compressibilities
Cl = K−1

l , l = m, s, n, w, c.
The remaining coefficients can be obtained by using the following relations:

B1 = χKc[(S̄n + β)γ− β],

B2 = χKc[(S̄w], (A2)

M1 = −M3 − B1Cmδ−1, M2 = (rB2)q−1,

M3 = −M2 − B2Cmδ−1,

with

χ = [δ + φ̄(Cm − Cc)]
{

α
[
δ + φ̄

(
Cm − C f

)]}−1
,

q = φ̄
(
Cn + 1/P′ca(S̄n)S̄nS̄w

)
, δ = Cs − Cm, (A3)

r = (S̄n + β)Cs + (Cc − Cm)
[
qB2 + (S̄n + β)

(
1− CsC−1

c

)]
.

Appendix B. Analytical Solution

Appendix B.1. Frequency-Dependent Stiffnesses

Cavallini et al. [30] (Appendix A.4, specifically, Equation (61)) yield the frequency
dependent and complex stiffness, p33, of a set of N porous layers, each of thickness di, such
that the stratification period is d = ∑N

i di. The assumptions of theory are that the stiffnesses
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matrix is symmetric and the flow is normal to the layering. Each layer is defined by the
porosity: φ, grain and fluid bulk moduli: Ks and K f , dry-rock bulk and shear moduli: Km
and µ, grain and fluid densities: ρs and ρ f , fluid viscosity: η and permeability: κ.

The White model was generalized by Krzikalla and Müller [38] to anisotropic media,
to obtain the five stiffnesses, pI J , of the symmetric 6 × 6 matrix of the effective transversely
isotropic medium,

pI J(ω) = cI J +

(
cI J − cr

I J

c33 − cr
33

)
[p33(ω)− c33], (A4)

where cr
I J and cI J are the relaxed and unrelaxed values, i.e., the low- and high-frequency

values. Gelinsky and Shapiro [39] (their Equations (14) and (15)) give the expressions of
these stiffnesses,

cr
66 = B∗1 = 〈µ〉,

cr
11 − 2cr

66 = cr
12 = B∗2 = 2

〈
λmµ

Em

〉
+

〈
λm

Em

〉2〈 1
Em

〉−1
+

B∗6
2

B∗8
,

cr
13 = B∗3 =

〈
λm

Em

〉〈
1

Em

〉−1
+

B∗6 B∗7
B∗8

,

cr
33 = B∗4 =

〈
1

Em

〉−1
+

B∗7
2

B∗8
=

[〈
1

Em

〉
−
〈

α

Em

〉2〈 EG
MEm

〉−1
]−1

,

cr
55 = B∗5 = 〈µ−1〉−1,

B∗6 = −B∗8

(
2
〈

αµ

Em

〉
+

〈
α

Em

〉〈
λm

Em

〉〈
1

Em

〉−1
)

,

B∗7 = −B∗8

〈
α

Em

〉〈
1

Em

〉−1
,

B∗8 =

[〈
1
M

〉
+

〈
α2

Em

〉
−
〈

α

Em

〉2〈 1
Em

〉−1
]−1

,

(A5)

where λm = Km − (2/3)µ, Em = Km + (4/3)µ, and the brackets indicate the average
〈ζ〉 = d−1 ∑i diζi. In the unrelaxed regime, there is no interlayer flow, and the stiffnesses are

c66 = cr
66,

c11 − 2c66 = c12 = 2
〈
(EG − 2µ)µ

EG

〉
+

〈
EG − 2µ

EG

〉2〈 1
EG

〉−1
,

c13 =

〈
EG − 2µ

EG

〉〈
1

EG

〉−1
,

c33 =

〈
1

EG

〉−1
,

c55 = cr
55

(A6)

where

EG = Em + α2M, with α = 1− Km

Ks
, M =

(
α− φ

Ks
+

φ

K f

)−1

(A7)

is the Gassmann P-wave modulus.
Because the relaxed and unrelaxed shear moduli coincide, there is no shear dissipation

along and normal to layering. The qSV wave suffers attenuation because it is coupled
with the qP wave, and the SH wave is not dispersive, since c55 = cr

55 and c66 = cr
66 imply

p66 = c66 and p55 = c55. A set of thin layers saturated with different fluids but with the
same shear modulus is isotropic. The average density of the medium is simply ρ = 〈ρ〉.
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Appendix B.2. Wave Velocities and Dissipation Factors

For homogeneous viscoelastic waves, the complex velocities of the three waves are

vqP = (2ρ)−1/2
√

p11l2
1 + p33l2

3 + p55 + A

vqSV = (2ρ)−1/2
√

p11l2
1 + p33l2

3 + p55 − A

vSH = ρ−1/2
√

p66l2
1 + p55l2

3

A =
√
[(p11 − p55)l2

1 + (p55 − p33)l2
3 ]

2 + 4[(p13 + p55)l1l3]2,

(A8)

where l1 = sin θ and l3 = cos θ, and θ is the angle between the symmetry axis and
wavenumber vector. The phase velocity is

vp =

[
Re
(

1
v

)]−1
, (A9)

where v represents the above velocities. The energy-velocity vector of the qP and qSV
waves is ve

vp
= (l1 + l3 cot ψ)−1ê1 + (l1 tan ψ + l3)−1ê3, (A10)

where

tan ψ =
Re(β∗X + ξ∗W)

Re(β∗W + ξ∗Z)
(A11)

defines the angle between the z-axis and the energy-velocity,

β =
√

A± B,
ξ = ±pv

√
A∓ B,

B = p11l2
1 − p33l2

3 + p55 cos 2θ,
(A12)

where the lower and upper signs correspond to the qSV and qP waves, respectively. Moreover,

W = p55(ξl1 + βl3),
X = βp11l1 + ξ p13l3,
Z = βp13l1 + ξ p33l3,

(A13)

where “pv” indicates the principal value.
Moreover, the SH-wave energy velocity is

ve =
1

ρ̄vp
(l1c66ê1 + l3c55ê3), (A14)

and

tan ψ =

(
c66

c55

)
tan θ. (A15)

The quality factor is

Q =
Re(v2)

Im(v2)
, (A16)

and the dissipation factor is defined as the inverse of Q.

References
1. Pham, N.H.; Carcione, J.M.; Helle, H.B.; Ursin, B. Wave velocities and attenuation of shaley sandstones as a function of pore

pressure and partial saturation. Geophys. Prospect. 2002, 50, 615–627. [CrossRef]
2. Mavko, G.; Mukerji, T.; Dvorkin, J. Rock Physics Handbook; Cambridge University Press: Cambridge, UK, 2009.
3. Müller, T.M.; Gurevich, B.; Lebedev, M. Seismic wave attenuation and dispersion resulting from wave-induced flow in porous

rocks—A review. Geophysics 2010, 75, 147–163. [CrossRef]

http://doi.org/10.1046/j.1365-2478.2002.00343.x
http://dx.doi.org/10.1190/1.3463417


Energies 2021, 14, 6528 15 of 16

4. Pride, S.R. Relationships between seismic and hydrological properties. In Hydrogeophysics; Chapter 9; Rubin, Y., Hubbard, S., Eds.;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 253–290.

5. Tisato, N.; Quintal, B. Laboratory measurements of seismic attenuation in sandstone: Strain versus fluid saturation effects.
Geophysics 2014, 79, WB9–WB14. [CrossRef]

6. Tisato, N.; Quintal, B.; Madonna, C.; Grasselli, G. Seismic attenuation in partially saturated rocks: Recent advances and future
directions Lead. Edge 2014, 640–646. [CrossRef]

7. Spencer, J.W.; Shine, J. Seismic wave attenuation and modulus dispersion in sandstones. Geophysics 2016, 81, D211–D231.
[CrossRef]

8. Chapman, S.; Borgomano, J.V.M.; Quintal, B.; Benson, S.M.; Fortin, J. Seismic wave attenuation and dispersion due to partial fluid
saturation: direct measurements and numerical simulations based on X-Ray CT. J. Geophys. Res. Solid Earth 2021, 126, 1404–1430.
[CrossRef]

9. Biot, M.A. Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 1956, 27, 459–467. [CrossRef]
10. Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J. Acoust. Soc. Am.

1956, 28, 168–178. [CrossRef]
11. Biot, M.A. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 1962, 33, 1482–1498. [CrossRef]
12. White, J.E.; Mikhaylova, N.G.; Lyakhovitskiy, F.M. Low-frequency seismic waves in fluid saturated layered rocks. Phys. Solid Earth

1975, 11, 654–659. [CrossRef]
13. Brutsaert, W. The propagation of elastic waves in unconsolidated unsaturated granular mediums. J. Geophys. Res. Solid Earth

1964, 69, 243–257. [CrossRef]
14. Garg, S.K.; Nayfeh, A.H. Compressional wave propagation in liquid and/or gas saturated elastic porous media. J. Appl. Phys.

1986, 60, 3045–3055. [CrossRef]
15. Berryman, J.G.; Thigpen, L.; Chin, R.C.Y. Bulk elastic wave propagation in partially saturated porous solids. J. Acoust. Soc. Am.

1988, 84, 360–373. [CrossRef]
16. Lo, W.; Sposito, G. Wave propagation through elastic porous media containing two immiscible fluids. Water Res. Res. 2005, 41,

W02025. [CrossRef]
17. Albers, B. Analysis of the propagation of sound waves in partially saturated soils by means of a macroscopic linear poroelastic

model. Transp. Porous Media 2009, 80, 173–192. [CrossRef]
18. Tuncay, K.; Corapcioglu, M.Y. Body waves in poroelastic media saturated by two immiscible fluids. J. Geophys. Res. 1996, 111,

149–159. [CrossRef]
19. Tuncay, K.; Corapcioglu, M.Y. Wave propagation in poroelastic media saturated by two fluids. J. Appl. Mech. 1997, 64, 313–320.

[CrossRef]
20. Wei, C.; Muraleetharan, K.K. A continuum theory of porous media saturated by multiple immiscible fluids: I. Linear poroelasticity.

Int. J. Eng. Sci. 2002, 40, 1807–1833. [CrossRef]
21. Dutta N.C.; Odé, H. Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation

(White model). Part I: Biot theory. Geophysics 1979, 44, 1777–1788. [CrossRef]
22. Pride, S.R.; Berryman, J.G.; Harris, J.M. Seismic attenuation due to wave-induced flow. J. Geophys. Res. 2004, 109, B01201.1.

[CrossRef]
23. Thovert, J.F.; Li, X.Y.; Malinouskaya, I.; Mourzenko, V.V.; Adler, P.M. Propagation of acoustic waves through saturated porous

media. Phys. Rev. E 2020, 102, 023001. [CrossRef]
24. Hamzehpour, H.; Kasani, F.H.; Sahimi, M.; Sepehrinia, R. Wave propagation in disordered fractured porous media. Phys. Rev. E

2014, 89, 023301. [CrossRef]
25. Santos, J.E.; Corberó, J.M.; Douglas, J., Jr. Static and dynamic behaviour of a porous solid saturated by a two-phase fluid. J. Acoust.

Soc. Am. 1990, 87, 1428–1438. [CrossRef]
26. Peaceman, D.W. Fundamentals of Numerical Reservoir Simulation; Elsevier: Amsterdam, The Netherlands, 1977.
27. Santos, J.E.; Savioli G.B. Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids. Geophys. J. Int.

2018, 214, 302–314. [CrossRef]
28. Qi, Q.; Müller, T.; Gurevich, M.B.; Lopes, S.; Lebedev, M.; Caspari, E. Quantifying the effect of capillarity on attenuation and

dispersion in patchy-saturated rocks. Geophysics 2014, 79, WB35–WB50. [CrossRef]
29. Liu, J.; Müller, T.M.; Qi, Q.; Lebedev, M.; Sun, W. Velocity-saturation relation in partially saturated rocks: modelling the effect of

injection rate changes. Geophys. Prospect. 2016, 64, 1054–1066. [CrossRef]
30. Cavallini, F.; Carcione, J.M.; Vidal de Ventós, D.; Engell-Sørensen, L. Low frequency dispersion and attenuation in anisotropic

partially saturated rocks. Geophys. J. Int. 2017, 209, 1572–1584. [CrossRef]
31. Scheidegger, A.E. The Physics of Flow through Porous Media; University of Toronto: Toronto, ON, Canada, 1974.
32. Bear, J. Dynamics of Fluids in Porous Media; Dover Publications: New York, NY, USA, 1972.
33. Douglas, J., Jr.; Furtado, F.; Pereira, F. On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs.

Comput. Geosci. 1997, 1, 155–190. [CrossRef]
34. Douglas, J., Jr.; Paes-Leme, P.J.; Hensley, J.L. A limit form of the equations for immiscible displacement in a fractured reservoir.

Transp. Porous Media 1991, 5, 549–565. [CrossRef]

http://dx.doi.org/10.1190/geo2013-0419.1
http://dx.doi.org/10.1190/tle33060640.1
http://dx.doi.org/10.1190/geo2015-0342.1
http://dx.doi.org/10.1029/2021JB021643
http://dx.doi.org/10.1063/1.1722402
http://dx.doi.org/10.1121/1.1908239
http://dx.doi.org/10.1063/1.1728759
http://dx.doi.org/10.1121/1.1995164
http://dx.doi.org/10.1029/JZ069i002p00243
http://dx.doi.org/10.1063/1.337760
http://dx.doi.org/10.1121/1.396938
http://dx.doi.org/10.1029/2004WR003162
http://dx.doi.org/10.1007/s11242-009-9360-y
http://dx.doi.org/10.1029/96JB02297
http://dx.doi.org/10.1115/1.2787309
http://dx.doi.org/10.1016/S0020-7225(02)00068-X
http://dx.doi.org/10.1190/1.1440938
http://dx.doi.org/10.1029/2003JB002639
http://dx.doi.org/10.1103/PhysRevE.102.023001
http://dx.doi.org/10.1103/PhysRevE.89.023301
http://dx.doi.org/10.1121/1.399439
http://dx.doi.org/10.1093/gji/ggy136
http://dx.doi.org/10.1190/geo2013-0425.1
http://dx.doi.org/10.1111/1365-2478.12376
http://dx.doi.org/10.1093/gji/ggx107
http://dx.doi.org/10.1023/A:1011565228179
http://dx.doi.org/10.1007/BF00137849


Energies 2021, 14, 6528 16 of 16

35. Douglas, J., Jr.; Paes-Leme, P.J.; Pereira, F.; Yeh, L.M. A massively parallel iterative numerical algorithm for immiscible flow in
naturally fractured reservoirs. Int. Ser. Numer. Math. 1991, 114, 75–93.

36. Chavent, G.; Jaffre, J. Mathematical Models and Finite Element Methods for Reservoir Simulation; Elsevier: North Holland, The
Netherlands, 1986.

37. Li, K. Interrelationship between resistivity index, capillary pressure and relative permeability. Transp. Porous Media 2011, 3,
385–398. [CrossRef]

38. Krzikalla, F.; Müller, T. Anisotropic P-SV-wave dispersion and attenuation due to inter-layer flow in thinly layered porous rocks.
Geophysics 2011, 76, WA135–WA145. [CrossRef]

39. Gelinsky, S.; Shapiro, S.A. Dynamic-equivalent medium approach for thinly layered saturated sediments. Geophys. J. Int. 1997,
128, F1–F4. [CrossRef]

http://dx.doi.org/10.1007/s11242-011-9745-6
http://dx.doi.org/10.1190/1.3555077
http://dx.doi.org/10.1111/j.1365-246X.1997.tb04086.x

	Introduction
	The Differential Model
	The Equivalent Viscoelastic Transversely-Isotropic Medium 
	Results. Numerical Experiments
	Discussion
	Conclusions
	Determination of the Coefficients in the Constitutive Relations
	Analytical Solution
	Frequency-Dependent Stiffnesses
	Wave Velocities and Dissipation Factors

	References

