
Seismic velocity and Q anisotropy in fractured poroelastic media

Juan E. Santos a,b,c,n, Robiel Martinez Corredor d, José M. Carcione e

a CONICET, Instituto del Gas y del Petróleo, Facultad de Ingeniería, Universidad de Buenos Aires, Av. Las Heras 2214 Piso 3 C1127AAR, Buenos Aires, Argentina
b Universidad Nacional de La Plata, La Plata, Argentina
c Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, USA
d Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
e Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, 34010 Sgonico, Trieste, Italy

a r t i c l e i n f o

Article history:
Received 6 May 2013
Received in revised form
19 April 2014
Accepted 5 May 2014

Keywords:
Fractures
Poroelasticity
Anisotropy
Velocity dispersion
Attenuation
Finite elements

a b s t r a c t

A fluid-saturated poroelastic isotropic mediumwith aligned fractures behaves as a transversely isotropic and
viscoelastic (TIV) medium when the predominant wavelength is much larger than the average distance
between fractures. A planar fracture embedded in a fluid saturated poroelastic background medium can be
modeled as a extremely thin and compliant porous layer. P-waves traveling in this type of medium induce
fluid-pressure gradients at fractures and mesoscopic-scale heterogeneities, generating fluid flow and slow
(diffusion) Biot waves, causing attenuation and dispersion of the fast modes (mesoscopic loss). A poroelastic
medium with embedded aligned fractures exhibits significant attenuation and dispersion effects due to this
mechanism, which can properly be represented at the macroscale with an equivalent TIV medium. In this
work, we apply a set of compressibility and shear harmonic finite-element (FE) experiments on fractured
highly heterogeneous poroelastic samples to determine the five complex and frequency dependent
stiffnesses characterizing the equivalent medium. The experiments consider brine or patchy brine-CO2

saturated samples and a brine saturated sample with a heterogeneous (fractal) skeleton with fractures. We
show that fractures induce strong seismic velocity and Q anisotropy, both for qP and qSV waves, enhanced
either by patchy saturation or frame heterogeneity.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Seismic wave propagation through fractures is an important
subject in hydrocarbon exploration geophysics, mining and reser-
voir characterization and production [1]. In particular, naturally
fractured reservoirs have received interest in recent years, since,
generally, natural fractures control the permeability of the reser-
voir. In geophysical prospecting and reservoir development,
knowledge of fracture orientation, densities and sizes is essential
since these factors control hydrocarbon production [2,3]. This is
also important in CO2 storage in geological formations to monitor
the injected plumes as faults and fractures are generated, where
CO2 can leak to the surface [4]. Among papers presenting numer-
ical approaches to determine effective media corresponding to
fractured rocks, Grechka and Kachanov [5,6] performed 3D static
FE simulations, summing up the individual contributions of the
fractures and ignoring their interactions. Also, Saenger et al. [7]
presented numerical simulations in 2D and 3D media saturated
with fluids to analyze Biot's predictions in the high and low

frequency limits of poroelasticity, while Wenzlau et al. [8] per-
formed FE simulations to analyze anisotropic dispersion and
attenuation in poroelastic materials.

A dense set of horizontal fractures in a fluid-saturated poroe-
lastic medium behaves as a TIV mediumwhen the average fracture
distance is much smaller than the predominant wavelength of the
traveling waves. This leads to frequency and angular variations of
velocity and attenuation of seismic waves. A major cause of
attenuation in porous media is wave-induced fluid flow, which
can take place at mesoscopic-scale heterogeneities, when the fast
P-wave is converted into diffusion-type Biot slow waves. Wave
anelasticity and anisotropy are significant in fractured poroelastic
rocks due to this mechanism [9].

White et al. [10] were the first to introduce the mesoscopic-loss
mechanism in the framework of Biot theory considering porous and
thin plane layers. Next, Gelinsky and Shapiro [11] obtained the relaxed
and unrelaxed stiffnesses of the equivalent poro-viscoelastic medium
to a finely layered horizontally homogeneous material. Krzikalla and
Müller [12] combined the two previous models assuming that fluid
flow is perpendicular to the layering plane and independent of the
loading direction; they obtained the five complex and frequency-
dependent stiffnesses of the equivalent TIV medium [13].

A planar fracture embedded in a fluid-saturated poroelastic
background is a particular case of the thin layer problem, when
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one of the layers is very thin and compliant. FE harmonic
compressibility and shear tests were first presented in [15] to
obtain a viscoelastic medium long-wavelength equivalent to a
highly heterogeneous isotropic sample. Then, in [14,16,13] the
procedure was extended to determine long-wave equivalent
media to finely layered viscoelastic and poroelastic materials.
The procedure used here was validated using the analytical
solution presented in [12,9].

In this work, we apply these harmonic FE harmonic tests to
saturated isotropic poroelastic samples having a dense set of
horizontal fractures modeled as very thin layers. The samples
contained mesoscopic-scale heterogeneities due to patchy brine-
CO2 saturation and fractal porosity and consequently, fractal
permeability and frame properties. We analyze attenuation and
velocity dispersion as a function of frequency and
propagation angle.

2. The Biot model, equivalent medium and seismic properties

Let us consider isotropic fluid-saturated poroelastic layers and
let usðxÞ ¼ ðus

1;u
s
2;u

s
3Þ and uf ðxÞ ¼ ðuf

1;u
f
2;u

f
3Þ indicate the time

Fourier transform of the displacement vector of the solid and fluid
relative to the solid frame, respectively. Here, if Uf denotes the
fluid displacement vector, uf ¼ϕðUf �usÞ, where ϕ is the porosity.

Set u¼ ðus;uf Þ and let rðuÞ and pf ðuÞ denote the time Fourier
transform of the total stress and the fluid pressure, respectively,
and let eðusÞ be the strain tensor of the solid phase. On each plane
layer n in a sequence of N layers, the frequency-domain stress–
strain relations are [17]

sklðuÞ ¼ 2μeklðusÞþδklðλG∇ � usþαM∇ � uf Þ; ð1Þ

pf ðuÞ ¼ �αM∇ � us�M∇ � uf : ð2Þ
The coefficient μ is the shear modulus of the bulk material,
considered to be equal to the shear modulus of the dry matrix.
The other coefficients in (1) and (2) can be obtained from the
relations [17]

λG ¼ KG�
2
3
μ; KG ¼ Kmþα2M;

α¼ 1�Km

Ks
; M¼ α�ϕ

Ks
þ ϕ
Kf

� ��1

; ð3Þ

where Ks;Km and Kf denote the bulk moduli of the solid grains,
dry matrix and saturant fluid, respectively.

Denoting by ω¼ 2πf the angular frequency, Biot's equations of
motion in the diffusive range, stated in the space–frequency
domain, are

∇ � rðuÞ ¼ 0; ð4Þ

iωη
κ

uf þ∇pf ðuÞ ¼ 0; ð5Þ

where η is the fluid viscosity and κ is the frame permeability.
Let us consider x1 and x3 as the horizontal and vertical

coordinates, respectively. Gelinsky and Shapiro [11] showed that
the medium behaves as a TI medium with the vertical symmetry
axis at long wavelengths. They obtained the relaxed and unrelaxed
limits, i.e., the low- and high-frequency limit real-valued stiff-
nesses, respectively. At all frequencies, the medium behaves as an
equivalent TIV medium with complex and frequency-dependent
stiffnesses, pIJ, I; J ¼ 1;…;6. For the case of flow normal to the
fracture layering and independent of the loading direction, these
complex stiffnesses can be determined as presented by Krzikalla
and Müller in [12] and Carcione et al. [13].

Denoting by τ the stress tensor of the equivalent TIV
medium and by ε the solid strain tensor at the macroscale, the

corresponding stress–strain relations, stated in the space–fre-
quency domain, are [18,17]

τ11ðuÞ ¼ p11ε11ðusÞþp12ε22ðusÞþp13ε33ðusÞ; ð6Þ

τ22ðuÞ ¼ p12ε11ðusÞþp11ε22ðusÞþp13ε33ðusÞ; ð7Þ

τ33ðuÞ ¼ p13ε11ðusÞþp13ε22ðusÞþp33ε33ðusÞ; ð8Þ

τ23ðuÞ ¼ 2 p55ε23ðusÞ; ð9Þ

τ13ðuÞ ¼ 2 p55ε13ðusÞ; ð10Þ

τ12ðuÞ ¼ 2 p66ε12ðusÞ: ð11Þ
Here, we have assumed a closed system, for which the variation of
fluid content ζ ¼ �∇ � uf is equal to zero. This formulation
provides the complex velocities of the fast modes at the macro-
scale and takes into account interlayer flow effects.

The coefficients pIJ in (6)–(11) can be determined by applying
five compressibility and shear harmonic FE tests to a representa-
tive 2D sample of the fractured poroelastic material. These tests
are associated with boundary value problems for Biot's equations
(4) stated in the space–frequency domain. The different boundary
conditions represent the following virtual experiments [13]:

(1) A compressibility test in the parallel direction to the fracture
layering to determine p11.

(2) A compressibility test in the normal directions to the fracture
layering to determine p33.

(3) A test applying simultaneous compressions in both, the
normal and parallel directions to the fracture layering to
determine p13.

(4) A shear test applied in the ðx1; x3Þ-plane to determine p55.
(5) A shear test in the ðx1; x2Þ plane to determine p66.

Regarding the spatial discretization, the computational domain
was partitioned uniformly into square cells of side length h. The
FE spaces employed to represent each component of the solid
displacement vector us are locally bilinear functions which
are globally continuous. The local degrees of freedom (DOF's) are
the values of the components of us at the four corners of the
computational cells.

On the other hand, the relative fluid displacement uf was
represented using the vector part of the Raviart–Thomas FE space
of zero order [19]. The local DOF's are the values of the normal
component of uf at the mid points of the faces of the computa-
tional cells.

The arguments presented in [15] can be applied here to show
that the error of the FE procedure is of the order of h1=2 in the
energy norm and of the order h in the L2-norm.

For a detailed description of the FE tests used in this work, we
refer to [13], where the model for these stiffnesses proposed by
[12] was employed to validate the procedure.

The complex velocities of the equivalent TIV anisotropic med-
ium are [17]

vqP ¼ ð2ρÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11l

2
1þp33l

2
3þp55þA

q
;

vqSV ¼ ð2ρÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11l

2
1þp33l

2
3þp55�A

q
;

vSH ¼ ρ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p66l

2
1þp55l

2
3

q
;

A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðp11�p55Þl21þðp55�p33Þl23�2þ4½ðp13þp55Þl1l3�2

q
;

where ρ ¼ 〈ρ〉 is the thickness weighted average of the bulk
density, l1 ¼ sin θ and l3 ¼ cos θ are the directions cosines, θ is
the propagation angle between the wavenumber vector and the
x3-symmetry axis and the three velocities correspond to the qP, qS
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and SH waves, respectively. The seismic phase velocity and quality
factors are given by

vp ¼ Re
1
v

� �� ��1

and Q ¼ Reðv2Þ
Imðv2Þ; ð12Þ

where v represents either vqP, vqSV or vSH.
The energy-velocity vector ve of the qP and qSV waves is

ve
vp

¼ ðl1þ l3 cot ψ Þ�1be1þðl1 tan ψþ l3Þ�1be3; ð13Þ

with ψ being the angle between the energy-velocity vector and the
x3-axis [17], while the energy velocity of the SH wave is [17]

ve ¼ 1
ρvp

ðl1p66be1þ l3p55be3Þ: ð14Þ

3. Numerical results

The FE procedures described above were implemented in
FORTRAN language and run in the SUN workstations of the
Department of Mathematics at Purdue University. This approach
yields the five complex stiffnesses pIJ as a function of frequency
and the corresponding phase velocities and dissipation coeffi-
cients. For each frequency, the five discrete problems associated
with the harmonic compressibility and shear tests were solved
using a public domain sparse matrix solver package. This approach
yields directly the frequency dependent velocities and dissipation
coefficients, instead of solving Biot's equation in the space–time
domain and using Fourier transforms to obtain the desired
frequency domain characterization at the macroscale.

In all the experiments the numerical samples were discretized
using a 160�160 uniform mesh representing 10 periods of 15 cm
background sandstone and 1 cm fracture thickness. Both back-
ground and fractures have grain density ρs ¼ 2650 kg=m3, bulk
modulus Ks¼37 GPa and shear modulus μs ¼ 44 GPa.

The dry bulk and shear modulus of the samples were deter-
mined using the Krief model [20],

Km

Ks
¼ μ
μs

¼ ð1�ϕÞ3=ð1�ϕÞ: ð15Þ

A set of numerical examples consider the following cases:
Case 1: A brine-saturated sample with fractures.
Case 2: A brine-CO2 patchy saturated sample without fractures.
Case 3: A brine-CO2 patchy saturated sample with fractures.
Case 4: A brine saturated sample with a fractal frame and

fractures.
Porosity is ϕ¼0.25 in the background and ϕ¼0.5 in the

fractures. Using (15) we obtained Km¼1.17 GPa and μ¼1.4 GPa
for the background and Km¼0.58 GPa and μ¼0.68 GPa for the
fractures.

Permeability is obtained as [21]

κ ¼ r2gϕ
3

45ð1�ϕÞ2
ð16Þ

where rg ¼ 20 μm is the average radius of the grains.
Although the algorithm has already been validated in [13], we

include, for completeness, a comparison of the analytical and
numerical solutions for Case 1. Figs. 1 and 2 show plots of the
dissipation factors and energy velocities of qP and qSV waves at
300 Hz, respectively, where it can be observed a very good match
between the theoretical and numerical results.

Fig. 3 shows plots of the dissipation factors of qP waves at
50 Hz and 300 Hz, for the Cases 1, 2 and 3, while Fig. 4 displays the
corresponding polar plots of the qP energy velocity. Loss is
negligible in Case 1 along the direction of the fracture plane.

Strong velocity and Q anisotropy can be observed, with higher
attenuation at 300 Hz and patchy brine-CO2 saturation. Energy
losses are much higher for angles between 601 and 901, i.e., for
waves traveling in the direction incident normal to the fracture
layering.

On the other hand, velocity anisotropy caused by the fractures
in Cases 1 and 3 is enhanced for the case of patchy saturation, with
lower velocities when patches are present. The velocity behaves
isotropically in Case 2.

Figs. 5 and 6 show the fluid pressure distribution at frequencies
50 Hz and 300 Hz, respectively, for Case 3 and compressions
normal to the fracture layering. It can be observed that pressure
gradients take their highest values at the fractures and at 300 Hz
remain always higher than at 50 Hz. This explains the higher
losses for qP waves at 300 Hz as compared with the 50 Hz
experiment observed in Fig. 3.
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Denoting by QP1;QP2 and QP3 the qP-quality factors associated
with Cases 1, 2 and 3, respectively, Fig. 7 shows the approximate
validity of the commonly used approximation for the dissipation
factors of qP waves

Q �1
P3 ¼ Q �1

P1 þQ �1
P2 ð17Þ

relating different attenuation mechanisms for these cases at
300 Hz as a function of the propagation angle. This approximation
was also tested in [22,23]. Numerical experiments have shown
that this equation cannot be used as an approximation in Case 4.

Fig. 8 shows polar plots of the dissipation factors of qSV waves
at 50 Hz and 300 Hz for the three cases. For both frequencies, Case
2 is lossless, while for a fractured sample brine or patchy saturated
(Cases 1 and 3), Q anisotropy is strong for angles between 301 and

601, with about a 50% increase in attenuation at 300 Hz with
respect to 50 Hz.

Fig. 9 displays polar plots of the qSV and SH energy velocities at
50 Hz. Both for qSV and SH waves, velocity anisotropy is observed
to be induced by fractures (Cases 1 and 3), while patchy saturation,
as expected, does not affect the anisotropic behavior of the qSV
and SH velocities. On the other hand, Case 2 shows isotropic
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Fig. 3. Dissipation factors of qP waves at 50 and 300 Hz for Cases 1, 2 and 3.
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Fig. 5. Fluid pressure distribution at 50 Hz for the compressibility test for Case
3 with compression normal to the fracture plane (‘33’).
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velocity for both waves, with higher velocity values than for the
fractured cases. The corresponding qSV energy velocities at 300 Hz
are almost identical to those at 50 Hz and are not shown. Also, SH
energy velocities at 300 Hz are identical to those 50 Hz, since there
is no energy loss (p55 and p66 are real [9]).

In Fig. 10 we analyze the variations in attenuation of qP and qSV
waves for Case 3 due to changes in CO2 saturation, with attenua-
tion coefficients computed at 300 Hz. For qP waves, an increase of
CO2 saturation from 10% to 50% induces a noticeable decrease in
attenuation for angles close to the normal orientation of the
fractures. Furthermore, for qSV waves the same decrease in
attenuation is observed, but for angles between 301 and 601.

On the other hand, it was observed that qP energy velocities
decrease for increasing CO2 saturation, with the greater decreases
for angles closer to the normal layering of the fractures. For qSV

and SH waves, energy velocities show almost no change between
the two CO2 saturations. The related plots are omitted for brevity.

Next, we analyze the behavior of waves as a function of
frequency in the range 1 Hz–1 kHz at 10% CO2 saturation. Fig. 11
displays dissipation factors for Cases 1, 2 and 3 of waves parallel
(‘11’ waves ) and normal (‘33’ waves) to the fracture layering,
respectively, while Fig. 12 shows the corresponding velocities.

Fig. 11 indicates that ‘11’ waves for Case 1 (brine-saturated
homogeneous background with fractures) are lossless, while the
cases of patchy saturation with and without fractures suffer from
similar attenuation, though there is a change from lower to higher
attenuation for the patchy saturated case with fractures (Case 3) at
a frequency of about 40 Hz.

On the other hand, the curves for ‘33’ waves displayed in Fig. 11
show much higher attenuation than those for ‘11’ waves for the
three cases. The case of patchy saturation with fractures (Case 3) is
the one exhibiting the highest attenuation values for all frequen-
cies. Besides, the case of brine-saturated homogeneous back-
ground with fractures (Case 1) shows a much higher attenuation
than the non-fractured patchy saturated case (Case 2) starting at a
frequency of about 26 Hz, while below such frequency the oppo-
site behavior is observed, though with quite similar attenuation.
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Fig. 12 shows that for the case of brine-saturated homogeneous
background with fractures (Case 1), ‘11’ velocities are essentially
independent of frequency. In the case of patchy saturation with
fractures (Case 3), velocities are always smaller than in Case 1, i.e.,
the presence of CO2 patches induces a velocity decay in the whole
range of frequencies analyzed. On the other hand, velocities for
patchy saturation with or without fractures show a similar
increasing behavior with frequency.

Fig. 12 also shows that ‘33’ waves have the higher frequency
dependent behavior for the case of a patchy saturated fractured
medium (Case 3), with lower values than in the other two cases
and increasing behavior after 10 Hz. When the sample is brine
saturated with fractures (Case 1), velocities are higher than in Case
3. On the other hand, the patchy saturated case without fractures
exhibits the highest velocity values with a moderate increase with
frequency. Thus, for ‘33’ waves the presence of fractures induces a
noticeable reduction of velocities normal to the fracture plane,
either for brine or patchy saturation.

The last experiment (Case 4) analyzes the effects of the
presence of heterogeneities in the skeleton or frame of the
fractured sample. The binary fractal permeability is obtained with
the following logarithmic relation [24,25]:

log κðx; zÞ ¼ 〈log κ〉þ f ðx; zÞ ð18Þ

with f ðx; zÞ being the fractal representing the spatial fluctuation of
the permeability field, chosen to be of fractal dimension D¼2.2,
correlation length 2 cm and average permeability 0.25 Darcy in the
background and 4.44 Darcy in the fractures. Porosity was obtained
using the Kozeny–Carman relation. Thus, the heterogeneous
sample was constructed as a fractal perturbation of the sample
in Case 1. Fig. 13 shows the Lamé coefficient λG of the brine
saturated fractal sample used in Case 4.

Fig. 14 compares the qP and qSV dissipation factors of this case
at 50 Hz with those of Case 1, while Fig. 15 compares the
corresponding energy velocities. As in the patchy saturation case,
frame heterogeneities induce a noticeable increase in Q anisotropy
for qP waves for angles normal to the fracture plane and for qSV
waves for angles between 301 and 601. From Fig. 14 we conclude
that qSV wave attenuation is more affected than qP attenuation
when frame heterogeneities are present. Also, from Fig. 15 we see
the expected energy velocity reduction in the heterogeneous case,
and that velocity anisotropy is less affected by frame heterogene-
ities than Q anisotropy. Concerning SH velocities, they show
anisotropy and a moderate reduction in velocity and negligible
attenuation in the heterogeneous case. The SH energy velocity is
similar to that in Case 1 of Fig. 9 and the plot is omitted.

4. Conclusions

We have presented a set of numerical quasi-static harmonic
experiments to determine the complex and frequency dependent
stiffnesses of a viscoelastic transversely isotropic homogeneous
medium equivalent to a fluid-saturated poroelastic material con-
taining a dense set of planar fractures. The numerical simulators
are based on the finite-element solution of Biot's equations in the
diffusive range with boundary conditions representing compres-
sibility and shear tests. The fractures are modeled as very thin
highly permeable poroelastic layers of small frame moduli.

The numerical experiments consider brine, patchy brine-CO2

saturation and fractal frame heterogeneities, with and without
fractures. Attenuation, velocity dispersion and anisotropy are
analyzed as a function of both propagation angle and frequency.
The effects of variation in CO2 saturation have also been analyzed.

Strong velocity and attenuation anisotropy can be observed in
the qP and qSV wave modes, with attenuation enhanced when
patches of CO2 are present, and decreasing attenuation with
increasing CO2 patchy saturation. While the higher values of the

101 102 103
2.5

3.0

3.5

4.0

4.5

Ve
lo

ci
ty

 (k
m

/s
)

Frequency (Hz)

1. Brine saturated medium with fractures
2. Patchy saturated medium without fractures
3. Patchy saturated medium with fractures

33

11
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dissipation factor for qP waves are found to be at angles close to
the normal direction to the fracture layering, for qSV waves the
higher values are found at angles between 301 and 601. Both,
qP and qSV waves, show a decrease in velocity when fractures
are present, and Q anisotropy is more pronounced than velocity
anisotropy.

There is no shear loss in the absence of fractures, since the
attenuation mechanism is only affecting the P waves. Fractures
induce anisotropy and the P-S coupling generates losses in the
shear waves as well.

On the other hand, the horizontally polarized S-wave (the SH
wave) is lossless because it is a pure mode in transversely isotropic
media, although exhibits velocity anisotropy, as expected.

The analysis of waves traveling parallel (‘11’) and normal (‘33’)
to the fracture plane as a function of frequency has been
performed in the range 1 Hz–1 kHz. It has been observed lower
dissipation factors for ‘11’ than for ‘33’ waves, as expected, and the
attenuation peak for ‘11’ waves at a lower frequency than that for
‘33’ waves.

Regarding the velocities, ‘11’ waves show a stronger depen-
dency on frequency as compared with ‘33’ waves, and the
presence of fractures induces a noticeable reduction in velocities
in all the frequency range analyzed for ‘33’ waves and at low
frequencies up to about 90 Hz for ‘11’ waves.

In the last experiment, based on frame heterogeneities, it has
been observed a similar effect on velocity and Q anisotropy than in
the patchy saturation case, with enhanced Q anisotropy and
energy velocity reduction in all waves, being the qSV waves the
more affected by the fractal variations of the porous frame.
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