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SUMMARY

The anelastic properties of porous rocks depend on the pore characteristics, specif-

ically, the pore aspect ratio and the pore fraction (related to the soft porosity).

At high frequencies, there is no fluid pressure communication throughout the pore

space and the rock becomes stiffer than at low frequencies, where the pore pres-

sure is fully equilibrated. This causes a significant difference between the moduli at

low and high frequencies, which is known as seismic dispersion and is commonly

explained by the squirt-flow mechanism. In this paper, we consider and contrast

three squirt-flow dispersion models: the modified Mavko-Jizba model, valid for a

porous medium with arbitrary shapes of the pores and cracks, and two other mod-

els, based on idealized geometries of spheres and ellipsoids: the EIAS (equivalent

inclusion-average stress) and CPEM (cracks and pores effective medium) models.

We first perform analytical comparisons and then compute several numerical exam-

ples to demonstrate similarities and differences between the models. The analytical

comparison shows that when the stiff pores are spherical and the crack density is

small, the theoretical predictions of the three models are very close to each other.

However, when the stiff pores are spheroids with an aspect ratio smaller than 1
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2 Y. Sun et al.

(say, between 0.2 and 1), the predictions of inclusion based models are not valid at

frequencies of ultrasonic measurements on rock samples. In contrast, the predictions

of the modified Mavko-Jizba model are valid at ultrasonic frequencies of about 106

Hz, which is a typical frequency of laboratory measurements on core samples. We

also introduce Zener-based bulk and shear dispersion indices, which are proportional

to the difference between the high- and low-frequency stiffness moduli, and are a

measure of the degree of anelasticity, closely related to the quality factors by view of

the Kramers-Kronig relations. The results show that the three models yield similar

moduli dispersion with very small differences when the crack density is relatively

high. The indices versus crack density can be viewed as a template to obtain the

crack properties from low- and high-frequency velocity measurements.

Key words: Acoustic properties; Seismic attenuation; Microstructure.

1 INTRODUCTION

Wave propagation in rocks shows anelastic properties, namely, velocity dispersion and dissi-

pation of energy depending on frequency (Jones 1986; Müller et al. 2010; Carcione 2014, e.g.).

In many rocks the dispersion is caused by squirt flow, that is by fluid pressure equilibration

between stiff pores, which occupies almost all the pore space, and soft pores or cracks, whose

overall volume is very small but which strongly affect the overall rock moduli and are them-

selves sensitive to effective pressure (Walsh 1965; Zimmerman 1991; Zhang et al. 2019a,b,

e.g.). At low frequencies, the pore fluid has enough time to equilibrate throughout the pore

space, and the wet-rock moduli are given by Gassmann (1951) equations. Conversely, at high

frequencies, there is not enough time for fluid pressure to equilibrate between soft and stiff

pores, and hence the overall moduli become higher. The difference between low and high

frequency moduli quantifies seismic dispersion (Mavko & Nur 1975; O’Connell & Budiansky

1977; Palmer & Traviola 1980; Murphy III et al. 1986; Dvorkin et al. 1995; Chapman et al.

2002; Pride et al. 2004; Alkhimenkov et al. 2020).

Several theoretical models have been proposed to quantify this dispersion. Mavko & Jizba

(1991) proposed a model for so-called unrelaxed frame, whose soft pores are liquid saturated

while stiff pores are dry. The moduli of the fully liquid-saturated rock are then computed

using Gassmann equation (in which the dry bulk modulus is replaced with the modulus of the
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Dispersion models’ comparison 3

unrelaxed frame). In the Mavko & Jizba (1991) (MJ) model, the pore fluid must be liquid, but

Gurevich et al. (2009) generalized the MJ model to fluids of arbitrary bulk modulus. Similarly

to Gassmann equation, both the original MJ model and the generalized version of Gurevich

et al. (2009) (MJG) do not depend on the parameters of the pore space, such as aspect ratios,

explicitly.

In contrast, the Equivalent Inclusion-Average Stress (EIAS) model (Endres & Knight

1997) and the Crack-Pores Effective Medium(CPEM) model (Adelinet et al. 2011) use effective

medium theory designed for elastic media with pores and cracks of oblate spheroidal shape, and

their predictions explicitly depend on these aspect ratios and volume fractions of these pores

and cracks. Thus, the question arises as to whether their predictions are the same or similar.

Neither Endres & Knight (1997) not Adelinet et al. (2011) compare their results to the MJ

model. Adelinet et al. (2011) numerically compared the CPEM results to the EIAS results

and found a significant discrepancy, which they attribute to the use of Kuster & ToksÃűz

(1974) model (KT) in the EIAS. This explanation is unconvincing as both Kachanov (1993)

and KT models are based on the same Eshelby (1957) theory.

In general, it is extremely difficult to observe dispersion in seismic or acoustic field data due

to limited frequency range of field data, which seldom cover more than one decade in frequency.

However dispersion is directly related to attenuation, which is known to affect seismic and

acoustic field data. Precise dependence of attenuation on frequency is controlled by details

of the pore shape distribution. However, the Zener or standard-linear solid model(Carcione

2014, e.g.) provides a precise mathematical relation between the amount of dispersion and the

minimum quality factor, Q0, of the relaxation peak, or equivalently, the maximum dissipation

factor, Q−10 . The model satisfies the Kramers-Kronig relations (Carcione et al. 2019). We

introduce here the bulk and shear dispersion indices based on the Zener model, which are

proportional to the difference between the high- and low-frequency stiffness moduli, and are a

measure of the degree of anelasticity. The associated quality factor is that of the Zener model,

which is a good representation of the relaxation peaks related to the squirt-flow attenuation

mechanism, by which flow from fluid-filled microcracks (and grain contacts) to the stiff pore

space and vice versa, induces energy dissipation (Carcione & Gurevich 2011). Biot (1962) was

the first to discuss this mechanism and proposed a viscoelastic mechanical model to describe

it.

In this paper, we perform a detailed analytical comparison of the dispersion predicted

by the three models, CPEM, MJ with its generalization MJG and EIAS with its dilute ap-

proximation, and illustrate their similarities and differences by numerical examples. Plots of
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4 Y. Sun et al.

the dispersion indices as a function of the crack fraction and aspect ratio can be viewed as

templates to obtain these properties from low- and high-frequency velocity measurements.

2 THE DISPERSION MODELS

We study three models, namely, the generalized MJ model (Mavko & Jizba 1991; Gurevich

et al. 2009), the EIAS model by Endres & Knight (1997) and CPEM model of Adelinet et al.

(2011). In the EIAS and CPEM models, the medium under study consists on an isotropic

distribution of pores or cracks, respectively spheres and spheroids, whereas the MJ model

considers pores and cracks of of more general shapes (with aspect ratio on the order of 1 for

pores and � 1 for cracks). Here, the crack fraction is denoted by c and the aspect ratio by a.

The EIAS and CPEM models yield the low-frequency bulk and shear moduli, K0 and µ0,

and the high-frequency bulk and shear moduli, K∞ and µ∞, as functions of the aspect ratio

and crack fraction. Both models have their root in the work of Eshelby (1957). The physics

behind these inclusion-based models is as follows. A wave induces a higher fluid pressure in

the cracks and the excess pressure is relieved to the spherical pores, so that K∞ > K0. This

effect increases as the crack aspect ratio decreases.

2.1 The EIAS model

Endres & Knight (1997) assume that the stiff pores are spheres and the soft pores are

spheroidal (penny-shaped) cracks of aspect ratio a � 1. At high frequencies they assume

that cracks are hydraulically isolated from the pores. The corresponding moduli K∞ and µ∞

predicted by Endres & Knight (1997)(equations (32) and (33)), are

K∞ = Ks +
φ(Kf −Ks)γ

1− φ(1− γ)
,

µ∞ =
µs(1− φ)

1− φ(1− χ)
,

(1)

where Kf is the fluid bulk modulus, φ is the total porosity, and

γ = (1− c)P1 + cP2,

χ = (1− c)Q1 + cQ2

(2)

(Endres & Knight 1997, equations (54) and (55)) with
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Dispersion models’ comparison 5

P1 =
Ks + 4µs/3

Kf + 4µs/3
,

P2 =
Ks

Kf + πaβ
, β = µs ·

3Ks + µs
3Ks + 4µs

Q1 = 1 + µs/ζ, ζ =
µs
6
· 9Ks + 8µs
Ks + 2µs

,

Q2 =
1

5

[
1 +

8µs
πa(µs + 2β)

+ 2 · Kf + 2µs/3

Kf + πaβ

]
,

(3)

where P1 and Q1 correspond to spherical (stiff) pores and P2 and Q2 to penny-shaped (soft)

cracks, with very low aspect ratios. Coefficients P2 and Q2 are approximations for a� 1. Ks

and µs are the bulk and shear moduli of the grains.

At low frequencies, Endres & Knight (1997) assume complete fluid pressure communication

between pores and cracks, the effective moduli are (Endres & Knight 1997, equations (34) and

(35)),

K0 = Ks +
φKs(Kf −Ks)γ0

(1− φ)(Ks −Kf ) + [Kf + φ(Ks −Kf )]γ0
,

µ0 =
µs(1− φ)

1− φ(1− χ0)
,

(4)

where γ0 and χ0 corresponds to the values of γ and χ when Kf = 0.

The EIAS model is consistent with the Hashin-Shtrikman bounds when applied to two-

phase systems regardless of the pore shape spectrum. It has no restrictions on the crack

density, since it includes interactions between cracks in some form. Endres & Knight (1997)

also developed a dilute approximation given by their equations (48)-(51). We refer to this

dilute EIAS model as EIASD. Since both MJ and CPEM models assume a dilute concentration

of cracks, the EIASD model is more suitable for comparison with these other models. The

high-frequency wet moduli predicted by the EIASD model are

K∞ =
K2
s

Ks + φ(Ks −Kf )γ

µ∞ =
µs

1 + φχ
,

(5)

where γ and χ are given in equation (2). Taylor expansion of the r.h.s of equations (1) and

(5) in powers of φ shows that they coincide for φ� 1.
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6 Y. Sun et al.

2.2 The CPEM model

An alternative dispersion model was porposed by Adelinet et al. (2011), who also describe the

pore space by a combination of spherical pores and penny-shaped cracks. Their high-frequency

wet-rock moduli are given by

Ks

K∞
= 1 + φp

3(1− νs)
2(1− 2νs)

(
δp

1 + δp

)
+

16(1− ν2s )

9(1− 2νs)

(
δc

1 + δc

)
ε (6)

and

µs
µ∞

= 1 + φp
15(1− νs)

7− 5νs
+

[
16(1− νs)

15(1− 0.5νs)
+

32(1− νs)
45

(
δc

1 + δc

)]
ε, (7)

where φp = φ(1− c) is the stiff porosity,

δp =
2Ys

9(1− νs)

(
1

Kf
− 1

Ks

)
, δc =

πYsa

4(1− ν2s )

(
1

Kf
− 1

Ks

)
, (8)

and

Ys =
9Ksµs

3Ks + µs
and νs =

3Ks − 2µs
2(3Ks + µs)

(9)

are the mineral Young modulus and Poisson ratio, respectively. ε is the crack density defined

by

ε =
3φc
4πa

=
3φc

4πa
(10)

(Gurevich 2003, equation (36)), where φc = φc is the soft porosity.

The high-frequency dry-rock moduli, Km0 and µm0, can be obtained from equations (6)

and (7) by taking δp → ∞ and δc → ∞, so that δp/(1 + δp) = 1 and δc/(1 + δc) = 1. The

low-frequency wet-rock moduli K0 and µ0 are given by Gassmann equations

K0 =
Ks −Km0 + φKm0 (Ks/Kf − 1)

1− φ−Km0/Ks + φKs/Kf
and µ0 = µm0, (11)

where Km0 and µm0 are the high-frequency dry-rock moduli previously obtained. Actually,

the low and high-frequency dry-rock moduli are identical (no dispersion in dry rock, Adelinet

et al. (2011)).

2.3 Mavko-Jizba moduli

Mavko & Jizba (1991) proposed a model for squirt dispersion in cracked rocks, where the main

results are the so-called unrelaxed frame bulk and shear moduli, Km∞ and µm∞, obtained

under an assumption that the stiff pores are dry but the soft (compliant) pores are filled with

a fluid.

The unrelaxed frame bulk and shear moduli Km∞ and µm∞ are given by
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Dispersion models’ comparison 7

1

Km∞
≈ 1

Kh
+

(
1

Kf
− 1

Ks

)
φc (12)

and

1

µm∞
=

1

µm0
− 4

15

(
1

Km0
− 1

Km∞

)
, (13)

where Kh is the dry bulk modulus of the rock without soft porosity (without cracks).

However, the MJ model is only valid for liquid-saturated rocks. For rocks with much softer

fluids (e.g., gas), Gurevich et al. (2009) generalized equation (12) to

1

Km∞
=

1

Kh
+

1
1

1

Km0
− 1

Kh

+
1(

1

Kf
− 1

Ks

)
φc

. (14)

while shear modulus is given by the same equation (13).

Then, the high-frequency wet-rock bulk and shear moduli are given by Gassmann equa-

tions,

K∞ =
Ks −Km∞ + φKm∞ (Ks/Kf − 1)

1− φ−Km∞/Ks + φKs/Kf
and µ∞ = µm∞. (15)

Effectively, the unrelaxed frame consists of two “minerals”, the original mineral and the

fluid in the cracks, but strictly speaking, this system is not actually Gassmann consistent and

the full Brown-Korringa extension for mixed mineralogy should be used (Brown & Korringa

1975). Usually, this approach is impractical as there is no rigorous recipe to define the extra

constant.

3 ANALYTICAL COMPARISON OF DISPERSION MODELS

In this section, we perform a detailed analytical comparison of the dispersion predicted by the

three models and illustrate their similarities and differences. We first compare one of inclusion-

based models, CPEM, against the MJG model, and then show that the moduli predicted by

the two inclusion-based models are almost identical.

3.1 Comparison between the CPEM and MJG models

3.1.1 Bulk modulus

As discussed above, the MJG model relates the high-frequency modulus of the saturated rock

to the dry-rock modulus of the same rock but without cracks. To obtain a similar relationship

from the CPEM model, we note that the dry-rock bulk modulus Km0 can be obtained from

equation (6) by taking δp →∞ and δc →∞,
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8 Y. Sun et al.

Ks

Km0
=
Ks

Kh
+

16(1− ν2s )

9(1− 2νs)
ε, (16)

where

Ks

Kh
= 1 +

3(1− νs)
2(1− 2νs)

φp. (17)

Here, we have used the identity

16(1− ν2s )

9(1− 2νs)
εδc =

φcYs
3(1− 2νs)

(
1

Kf
− 1

Ks

)
= φcKs

(
1

Kf
− 1

Ks

)
. (18)

which follows from the second equation (8) and the definition of crack density (10).

The bulk modulus of the unrelaxed frame Km∞ can be obtained from equation (6) by

assuming that the stiff pores are dry, and hence δp →∞,

Ks

Km∞
=
Ks

Kh
+

16(1− ν2s )

9(1− 2νs)
ε

(
δc

1 + δc

)
. (19)

or

Ks

Km∞
=
Ks

Kh
+

 1

16(1− ν2s )

9(1− 2νs)
ε

+
1

16(1− ν2s )

9(1− 2νs)
εδc


−1

. (20)

Using (16) and (18), equation (20) becomes

1

Km∞
=

1

Kh
+

1
1(

1

Km0
− 1

Kh

) +
1

φc

(
1

Kf
− 1

Ks

) . (21)

This equation is identical to the MJG equation (14) in form.

Rewriting (6) as

Ks

K∞
= 1 + φp

3(1− νs)
2(1− 2νs)

(
δp

1 + δp

)
+

 1

16(1− ν2s )

9(1− 2νs)
ε

+
1

16(1− ν2s )

9(1− 2νs)
εδc


−1

, (22)

we obtain

1

K∞
=

1

Ksat
h

+
1

1(
1

Km0
− 1

Kh

) +
1

φc

(
1

Kf
− 1

Ks

) , (23)

where Ksat
h is the bulk modulus of the fluid-saturated rock without soft porosity (without

cracks),

Ks

Ksat
h

= 1 + φp
3(1− νs)
2(1− 2νs)

(
δp

1 + δp

)
. (24)

Equations (23) and (21) are similar. Indeed, the second terms in the right-hand sides of the
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Dispersion models’ comparison 9

two equations are identical. The difference is that equation (21) is written for the unrelaxed

frame, while equation (23) is for the fully saturated medium. An approximate equivalence

between these equations can be established by applying Gassmann equation to both sides of

equation (21). This is done in Appendix A, where we show that equation (23) is consistent

with Gassmann equation.

3.1.2 Shear modulus

The dry-rock shear modulus µm0 can be obtained from equations (7) by taking δc → ∞, so

that δc/(1 + δc)→ 1,

µs
µm0

= 1 + φp
15(1− νs)

7− 5νs
+

[
16(1− νs)

15(1− 0.5νs)
+

32(1− νs)
45

]
ε. (25)

Subtracting this equation from (7) gives

µs
µ∞
− µs
µm0

= −32(1− νs)
45

ε

δc + 1
. (26)

Similarly, for the bulk modulus, subtracting equation (16) from (19), we obtain

Ks

Km∞
− Ks

Km0
= −16(1− ν2s )

9(1− 2νs)

ε

δc + 1
. (27)

Combining equations (26) and (27) gives

1

µ∞
− 1

µm0
=

2Ks(1− 2νs)

5µs(1 + νs)

(
1

Km∞
− 1

Km0

)
(28)

or

1

µ∞
=

1

µm0
− 4

15

(
1

Km0
− 1

Km∞

)
. (29)

If the stiff pores are spherical, then the shear modulus of the rock without cracks is independent

of the fluid compressibility, µ∞ = µm∞, and hence equation (29) is identical to equation (13).

3.1.3 Fluid effect in stiff pores

As discussed previously, if the stiff pores are spherical, the high-frequency limit wet-rock

moduli predicted by the CPEM model are identical to those given by the MJG model. However,

in real rocks, stiff pores are unlikely to have aspect ratio close to 1. More likely stiff pores could

be approximated by spheroids with an aspect ratio as between 0.1 and 1 (or a range of aspect

ratios). For bulk modulus, the KT approximation is consistent with Gasssman equation for

a dilute concentration of spheroidal pores of any single aspect ratio. Indeed, the Gassmann

theory assumes that the fluid pressure is the same in all the pores. Even though the KT theory

assumes that pores are isolated, bulk compression will induce the same fluid pressure in all

the spheroidal pores. However if stiff pores are a mix of spheroids with more than one aspect

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggaa274/5855493 by U

ppsala U
niversitetsbibliotek user on 15 June 2020



Un
co
rr
ec
te
d
Pr
oo
f

10 Y. Sun et al.

ratio as (Zimmerman, 1991; Xu and White, 1995), the predictions of the KT and Gassmann

equations will differ. In fact, the KT theory assumes that pores are isolated; hence the fluid

pressure in pores of different aspect ratio will be different. Even if all pores are interconnected,

in the high-frequency limit the fluid pressure will not have enough time to equilibrate, and

hence in this limit the moduli should be consistent with the KT theory.

For the shear modulus, the high-frequency limit of the rock with stiff pores only computed

using an effective medium theory (Kuster & ToksÃűz 1974; Berryman 1980) will deviate from

the dry-rock modulus even when all of the stiff pores have a single aspect ratio as � 1. Indeed,

this theory assumes that pores are isolated, and hence pressure induced by shear deformation

in differently oriented spheroidal pores will be different. Thus, the resulting shear modulus

will depend on the fluid compressibility unless all pores are spherical.

The high-frequency (or no-flow) limit predicted by the effective medium theory is only

attained at frequencies above the characteristic frequency of squirt flow between stiff pores,

fsq = a3sµs/η (Here as refers to the characteristic aspect ratio of a range or distribution of

aspect ratios of pores), where η is dynamic viscosity of the pore fluid (Jones 1986; Gurevich

et al. 2010). For a water-saturated quartz sandstone and as = 0.2, fsq ≈ 3.5 · 1011 Hz. Typical

frequencies of ultrasonic rock-physics measurements are between 0.1 and 1 MHz, which are

much smaller than fsq. At these frequencies, fluid pressure will have ample time to equilibrate

between stiff pores, and hence the moduli of the crack-free rock should be given by Gassmann

equation. Hence, the contribution of stiff pores to the moduli should be computed with the

Gassmann equation, as is done in the MJ and MJG models, rather than with any effective

medium theory designed for isolated pores.

3.2 Comparison between the CPEM and EIASD models

The CPEM and MJG models are “non-interactive”, that is, the effect of the compliant pores

(cracks) on the elastic compliances is linear in crack density (or crack porosity). Hence, strictly

speaking, these models are only valid for a dilute crack concentration, although Grechka &

Kachanov (2006) showed numerically that non-interactive models often provide reasonable

approximations for crack densities as high as 0.2.

In contrast, the EIAS model attempts to account for interaction between cracks, and thus

the effect of cracks on the rock compliance is non-linear. Thus, the EIAS model will only

agree with the CPEM for a dilute concentration of cracks. Below, we compare the dispersion

predicted by the CPEM and EIASD models.
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3.2.1 Bulk modulus

For the bulk modulus of fluid-saturated rocks, we rewrite the EIASD model by Endres &

Knight (1997)(equation 48) as

Ks

K∞
= 1 +

Ks −Kf

Ks
(φpP1 + φcP2) . (30)

Substituting the pore-shape factor P2 from the second equation (3) gives

Ks

K∞
= 1 + φp

Ks −Kf

Ks
P1 + φc

Ks −Kf

Kf + πaβ
. (31)

On the other hand, the CPEM equation (6) gives

Ks

K∞
= 1 + φp

 1

3(1− νs)
2(1− 2νs)

δp

+
1

3(1− νs)
2(1− 2νs)


−1

+

 1

16(1− ν2s )

9(1− 2νs)
εδc

+
1

16(1− ν2s )

9(1− 2νs)
ε


−1

. (32)

Furthermore, from equations (8) and (9), we have

3(1− νs)
2(1− 2νs)

δp =
3Ys

3(1− 2νs)

(
1

Kf
− 1

Ks

)
=
Ks −Kf

Kf
,

3(1− νs)
2(1− 2νs)

=
3Ks + 4µs

4µs
,

16(1− ν2s )

9(1− 2νs)
ε =

φcKs

πaβ
.

(33)

Substituting equations (18) and (33) into (32) gives

Ks

K∞
= 1 + φp

(Ks −Kf )

Ks
P1 + φc

Ks −Kf

Kf + πaβ − πaβKf

Ks

. (34)

Equations (31) and (34) differ by a term using the first-order Taylor expansion

∆ = φc
Ks −Kf

Ks

πaβKf

(Kf + πaβ)2
(35)

For a small aspect ratio a, the difference in equation (35) is always on the order of aφc and

hence is negligible compared to the third term in equation (31), which is always on the order

of a
φc

. Thus the EIASD and CPEM predictions for the bulk modulus are almost identical.

3.2.2 Shear modulus

For the shear modulus of fluid-saturated rocks, we rewrite the EIASD model by Endres &

Knight (1997)(their equation 49) as

µs
µ∞

= 1 + φγ = 1 + φpQ1 + φcQ2. (36)
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12 Y. Sun et al.

Substituting the pore-shape factor Q2 from equation (3) gives

µs
µ∞

= 1 + φpQ1 +
8µsφc

5πa(µs + 2β)
+

4

15

µsφc
Kf + πaβ

(
1 +

3

2

Kf

µs

)
+
φc
5
. (37)

On the other hand, the CPEM equation (7) reads

µs
µ∞

= 1 + φpQ1 +

[
16(1− νs)

15(1− 0.5νs)
ε+

32(1− νs)
45

ε

(
1 +

1

δc

)−1]
. (38)

Furthermore, from equations (10) and 1− νs = µs/(2β), we have

16(1− νs)
15(1− 0.5νs)

ε =
8µsφc

5πa(µs + 2β)
,

32(1− νs)
45

ε

(
1 +

1

δc

)−1
=

4

15
φcµs

Ks −Kf

Ks(πaβ +Kf )−Kfπaβ
.

(39)

Using the identities (39) in (38) gives

µs
µ∞

= 1 + φpQ1 +
8µsφc

5πa(µs + 2β)
+

4

15
µsφc

Ks −Kf

Ks(πaβ +Kf )−Kfπaβ
. (40)

If, as usually assumed, the aspect ratio a is small, then πaβKf � KsKf , hence, equation (40)

reduces to

µs
µ∞

= 1 + φpQ1 +
8µsφc

5πa(µs + 2β)
+

4

15

µsφc
Kf + πaβ

(
1− Kf

Ks

)
. (41)

Equations (37) and (41) differ by a term

∆ =
φc
5

+
4

15

µsφcKf

Kf + πaβ

(
3

2µs
+

1

Ks

)
. (42)

For a small aspect ratio a, the crack porosity is also small and hence the term φc/5 is always

negligible. Furthermore, the second term in the right-hand side of (42) is on the order of 2φc/3

or smaller, and hence is also negligible. Thus the EIASD and CPEM predictions for the shear

modulus are almost identical, with a relative difference on the order of the crack porosity.

The above analysis shows that the dispersion predicted by the three models (we compared

the EIASD instead of the EIAS model for a dilute concentration of cracks) are almost identical

with a very small difference. This consistency will be illustrated more clearly in the next

section.

4 NUMERICAL COMPARISON OF DISPERSION MODELS

4.1 The dispersion index

Following equation (B.4), the bulk and shear dispersion indices are defined as

DK =
K∞ −K0

2
√
K0K∞

and Dµ =
µ∞ − µ0
2
√
µ0µ∞

. (43)
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Dispersion models’ comparison 13

respectively, and are directly related to the bulk and shear quality factors. These indices,

inspired by the Zener model described in Appendix B, are similar to those defined by Endres

& Knight (1997), i.e., D = (M∞ −M0)/M0.

The P-wave dispersion index is

DP =
E∞ − E0

2
√
E0E∞

, (44)

where

E = K +
4

3
µ. (45)

The S-wave dispersion index is DS = Dµ.

Assuming that M is the P-wave modulus, a dispersion index for the P-wave velocity can

be defined from equation (B.5) as

Dv =
v∞
v0
− 1 ≈ 1

QP
= DP , (46)

where QP is the P-wave quality factor. A similar equation for the S wave can be obtained.

4.2 Parametrization of the models

In the three models discussed above, the MJG and CPEM models assume a small crack

density. In contrast, the EIAS model is not restricted to a small crack density as it includes

the interaction between cracks in some form. Indeed, the approach of Endres & Knight (1997)

ensures that the EIAS predictions are always within the Hashin-Shtrikman bounds. However

inclusion interactions, and hence accuracy of the EIAS model, depend on crack size distribution

and the spatial distribution of crack centers.

Hence, in order to illustrate the similarities and differences of the dispersion predicted

by the three models, we first compare the EIAS model and its dilute approximation—EIASD

model. We then present the results of the comparison of the EIASD, MJG and CPEM models.

The aim in this step is to make their parameters consistent. To this end, we assume that the

dry-rock moduli Km0 and µm0 in the MJG model are given by equation (5) of the EIASD

model with Kf = 0. Also, Kh is the bulk modulus of the dry rock with pores only (no cracks)

and hence should be given by the first of equations (5) with

Kh =
Ks

1 + φpP1
, (47)

with P1 is given by the first equation (3) and Kf = 0.

We assume that Ks = µs = 39 GPa, Kf = 2.25 GPa (water) and φ = 0.1. Numerical

comparisons of the model predictions are presented in the next section.
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14 Y. Sun et al.

4.3 Numerical results

The low- and high-frequency bulk (a) and shear (b) moduli predicted by the EIAS and EIASD

models for a = 0.001 are displayed in Figure 1. The pore fluid is water. As can be seen, the

EIASD model gives an almost same dispersion range for bulk modulus with values shifted

up compared to the EIAS model but a narrow dispersion range for shear modulus. The bulk

dispersion predicted by the EIAS and EIASD models is much higher than the shear dispersion.

Figure 2 shows the low- and high-frequency bulk (a) and shear (b) moduli of the water-

saturated rocks predicted by the EIASD, MJG and CPEM models for a = 0.001. The normal-

ized bulk and shear differences of the MJG and EIASD models relative to the CPEM model

are presented in Figure 2c and d. As can be observed, in all cases, the low-frequency (re-

laxed) moduli are lower than the high-frequency (unrelaxed) ones as expected (the dispersion

index should be positive). At low frequencies, the EIASD and MJG models have the same

predictions for bulk and shear moduli compared to those given by the CPEM model. At high

frequencies, the EIASD has the same prediction for bulk modulus but a smaller prediction

for shear modulus compared to those given by the CPEM model when the crack density is

relatively high. Different from the performance of the EIASD model, the MJG model gives a

higher prediction for the bulk modulus but a smaller prediction for the shear modulus com-

pared to those given by the CPEM model when the crack density is relatively high. These

behaviours are demonstrated more clearly in Figure 2c and d, which are consistent with the

previous analytical comparison in section 4.2. The agreement between the three models is very

good also for other aspect ratios.

Figure 3 shows the bulk (a) and shear (b) dispersion indices predicted by the MJG model

when the fluid is water, compared to those of the EIASD model. The differences at relatively

high crack density, from a practical point of view, are actually small. Basically, the dispersion

(and attenuation) increases with increasing crack density and decreases with increasing aspect

ratio. Aspect ratios equal or greater than 0.1 show very weak attenuation, with bulk and shear

quality factors Q > 1/10−3 ≈ 1000. Although strictly not applicable due to the non-interaction

assumption, it can be shown that for ε > 0.3 all the three models show a very good agreement.

Figure 3c and d shows the same data displayed in Figure 3a and b but in terms of the Zener

quality factor, where it can clearly be seen that attenuation is higher for the smaller aspect

ratio, i.e., a higher dispersion index.

Figure 4 compares the bulk (a) and shear (b) dispersion indices estimated from the EIASD

and CPEM models. As can be seen, the two models yield very similar values, showing the

consistency of the results by using two different theoretical approaches.
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Dispersion models’ comparison 15

Figure 5 compares the bulk (a) and shear (b) dispersion indices by using the MJG (solid

and dash lines) and (open circles and squares) MJ models when the fluid is gas, with Kf

= 0.01 GPa, which roughly corresponds to methane at a pore pressure of 30 MPa and a

depth of 3 km. As can be seen, the MJ model cannot be used for relatively high aspect ratios

(e.g., say a > 10−4), since it yields negative values of the dispersion index. This confirms

the recognition that the original MJ model is valid only for liquid (Gurevich et al. 2009).

Anelasticity for gas is weaker compared to water, i.e., for ε=0.1 and a = 0.001 the bulk

quality factor is approximately 96 in Figure 5a (dash line), whereas it is 15 in Figure 3a.

Figure 6 shows the bulk (a), shear (b) and P-wave (c) dispersion indices of the MJG

model (open circles) when the fluid is gas, compared to those of the EIASD model (solid

lines). Dispersion and attenuation is lower than for water-saturated rocks (Figure 3), and

is significant only at low aspect ratios and high crack density. Figure 6d shows the P-wave

indices of the MJG model when the fluid is water, compared to those of the EIASD model.

It shows similar characteristics as those of Figure 6c, with higher bulk and shear dispersion

indices. It can be shown that the dispersion index of the P-wave velocity [equation (46)] is

almost identical to that of the P-wave modulus E for QP � 1 (not shown).

It should be noted that the above comparisons are based on the assumption that the stiff

pores are spherical. In real rocks stiff pores may have a lower aspect ratio, e.g., lie in a range

0.1 < a < 1. For stiff pores in a shape of an oblate spheroid with an aspect ratio as ≤ 1, the

coefficients P1 and Q1 in the first and third equations (3) are

P1 =
1

3
Tiijj , and Q1 =

1

5
(Tijij − P1), (48)

where Tiijj and Tijij are given in Appendix A of Berryman (1980) or in page 189 of Mavko

et al. (2009) (the inclusion moduli should be taken equal to zero).

The effect of the aspect ratio of the stiff pores on the bulk and shear moduli (a-b) and

Zener quality factor (c-d) is illustrated in Figure 7. We compare the MJG results for spherical

stiff pores (as = 1) and oblate spheroidal stiff pores (as = 0.2). The fluid is water. As can be

observed, at constant crack density the dispersion and attenuation are weaker for decreasing

aspect ratio of the stiff pores, and the low-frequency (relaxed) moduli are the same at high

crack density. Figure 8 compares the MJG and EIASD models for as = 0.2. Both the moduli

and quality factors (and dispersion indices as a consequence) are similar. Similar behaviours

are obtained for the bulk and shear moduli.
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16 Y. Sun et al.

5 CONCLUSIONS

We have performed a comparative analysis of Zener-based dispersion indices obtained with

the generalised Mavko-Jizba relations, and two inclusion-based models that incorporate pore

geometry and fluid pressure communication to model the elastic behaviour of porous rocks.

The inclusion based models models are based on a combination of stiff (equant) pores and

penny-shaped cracks. The low-frequency moduli correspond to full fluid pressure equilibration

between cracks and pores, whereas at high frequencies the cracks are hydraulically isolated

from pores. The difference between these two conditions results in significant moduli and

velocity dispersion.

As demonstrated by the numerical comparisons, such dispersion (and attenuation) in-

creases with crack density and decreases with increasing aspect ratio. Bulk modulus dispersion

and attenuation are stronger than those for shear deformations. Aspect ratios equal or greater

than 0.1 show very weak attenuation. Both analytical and numerical comparisons show that

the three models yield very similar values, showing the consistency of the results by using two

idealized theoretical approaches (EIASD and CPEM) compared to the MJG relations. Anelas-

ticity for gas-saturated rocks is weaker than for liquid saturation. The dispersion indices can

be viewed as a template to obtain the crack properties from low- and high-frequency velocity

measurements.

Theoretical analysis and numerical examples show that when stiff pores are spherical

and crack density is small, the predictions of all the models considered are almost identical.

However when stiff pores are oblate spheroids with an aspect ratio less than 1 (say between

0.2 and 1), the high-frequency moduli predicted by inclusion-based models are considerably

higher than the predictions of the MJG model. This is because the inclusion-based models

assume that at high frequencies the pores are hydraulically isolated from each other, and

hence correspond to the true high-frequency limit, which is attained at frequencies of 109 Hz

or higher, which are irrelevant for measurements on rocks. In contrast, in the MJG model,

the effect of stiff pores is modeled with Gassmann’s theory, and hence its high-frequency limit

corresponds to a case where pores are assumed disconnected from cracks, but interconnected

with each other. Our analysis shows that these assumptions of the MJG model hold at ul-

trasonic frequencies on the order of 106 Hz. The two inclusion based models can be easily

made consistent with the MJG model by accounting for the effect of fluid in stiff pores using

Gassmann’s theory.

Since predictions of all the three models are very similar, the preference for one model

or another is a matter of convenience. When the specific pore space geometry is known or
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Dispersion models’ comparison 17

assumed, the inclusion based models would be preferred (but the effect of fluid in stiff pores

should be treated with Gassmann’s theory). Of the inclusion based model, the non-interactive

models are simpler and hence preferred when the crack density is low, but the EIAS model

must be used for high crack densities. Conversely, when not much is known about pore geom-

etry, the MJG model would be the most logical choice.
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Gassmann, F., 1951. Über die Elastizität poröser Medien, Veirtel. Naturforsch. Ges. Zürich, 96,

1–23.

Grechka, V. & Kachanov, M., 2006. Effective elasticity of fractured rocks, Lead. Edge, 25(2), 152–155.

Gurevich, B., 2003. Elastic properties of saturated porous rocks with aligned fractures, J. Appl.

Geophys., 54(3), 203–218.

Gurevich, B., Makarynska, D., & Pervukhina, M., 2009. Ultrasonic moduli for fluid-saturated rocks:

Mavko-jizba relations rederived and generalized, Geophysics, 74(4), N25–N30.

Gurevich, B., Makarynska, D., de Paula, O. B., & Pervukhina, M., 2010. A simple model for squirt-

flow dispersion and attenuation in fluid-saturated granular rocks, Geophysics, 75(6), N109–N120.
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Pride, S. R., Berryman, J. G., & Harris, J. M., 2004. Seismic attenuation due to wave-induced flow,

J. Geophys. Res., 109(B1).

Walsh, J. B., 1965. The effect of cracks on the compressibility of rock, J. Geophys. Res., 70(2),

381–389.

Zhang, L., Ba, J., Carcione, J. M., & Sun, W., 2019a. Modeling wave propagation in cracked porous

media with penny-shaped inclusions, Geophysics, 84(4), WA141–WA151.

Zhang, L., Ba, J., Fu, L., Carcione, J. M., & Cao, C., 2019b. Estimation of pore microstructure by

using the static and dynamic moduli, Int. J. Rock. Mech. Min., 113, 24–30.

Zimmerman, R. W., 1991. Compressibility of Sandstones, Elsevier, Amsterdam.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggaa274/5855493 by U

ppsala U
niversitetsbibliotek user on 15 June 2020



Un
co
rr
ec
te
d
Pr
oo
f

20 Y. Sun et al.

APPENDIX A: WET-ROCK BULK MODULUS BASED ON THE

UNRELAXED MJG MODULUS

To verify if equations (23) and (14) are equivalent, we need to rewrite equation (23) for a

saturated medium. A wet-rock modulus K∞ for a medium with a high-frequency unrelaxed

bulk modulus Km∞, is given by the Gassmann equation

K∞ = Km∞ +KhS(Km∞), (A.1)

where S(Km∞) = α2M/Kh, α = 1−Km∞/Ks, andM = Ks/ [(1−Km∞/Ks)/Ks − φ(1−Ks/Kf )]

(e.g., Carcione, 2014).

We know that for most rocks Kf � Km and hence the Gassmann correction to the

unrelaxed modulus [the second term in the right-hand side of equation (A.1)] is small compared

to the first term. We can make this fact explicit by introducing a small parameter δ into

equation (A.1),

K∞ = Km∞ + δKhS(Km∞). (A.2)

Note also that by construction the second term in the right-hand side of equation (14) is very

small, so that we can write

Km∞ ≈ Kh(1 + εh). (A.3)

where εh = Khφc(1/Ks−1/Kf )� 1. Substitution of equation (A.3) into equation (A.2) gives

K∞ = Kh (1 + εh + δS [Kh(1 + ε)]) . (A.4)

Expanding S[Kh(1 + εh)] in powers of εh yields

K∞ = Kh (1 + εh + δ [(S(Kh) + εhS1]) , (A.5)

or

K∞ = Kh(1 + εh + δS(Kh) + δεhS1). (A.6)

The last term in equation (A.6) contains a product of two small parameters and hence

can be neglected, thus equation (A.6) reduces to

K∞ = Kh [1 + εh + δS(Kh)] . (A.7)

Considering Ksat
h = Kh[1 + δS(Kh)] equation (A.7) simplifies to

K∞ = Ksat
h + εhKh = Ksat

h

(
1 + εh

Kh

Ksat
h

)
. (A.8)

Similar to εh , we define εsath = Ksat
h φc(1/Ks − 1/Kf )� 1 and obtain
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K∞ = Ksat
h

(
1 + εh

Kh

Ksat
h

)
= Ksat

h

1 + εsath

(
Kh

Ksat
h

)2
 . (A.9)

Since εsath � 1 and Kh/K
sat
h ≈ 1− δS(Kh), equation (A.9) reduces to

K∞ = Ksat
h (1 + εsath ). (A.10)

Equation (A.10) approximates to equation (23).

APPENDIX B: THE ZENER MODEL

A classical model of viscoelastic behaviour is the Zener model, which is defined by the complex

modulus

M(ω) = M∞ −
M∞ −M0

1 + iωτ
, (B.1)

where ω is the angular frequency, τ is a relaxation time, M0 = M(0) and M∞ = M(∞) are the

relaxed and unrelaxed moduli (low and high frequency, respectively), i =
√
−1, and M∞ ≥M0

holds (Carcione 2014, e.g.). The Zener model satisfies the Kramers-Kronig relations (Carcione

et al. 2019, e.g.). Function (M −M∞)(ω) has a unique pole in the upper half ω-plane, i.e., at

i/ω and therefore it is analytic in the lower half ω-plane as required by causality. Its inverse

time Fourier transform is causal and smooth for t > 0, since it is basically an exponential

function of time.

The quality factor is defined as

Q(ω) =
MR

MI
=
M0 +M∞(ωτ)2

ωτ(M∞ −M0)
(B.2)

(e.g. Carcione 2014, p.91) which has the minimum value

Q0 =
2
√
M∞M0

M∞ −M0
=

2v∞v0
v2∞ − v20

(B.3)

(Carcione 2014, p.96), where we have defined the phase velocities at zero and infinite frequency

as v0 and v∞, such that M0 = ρv20 and M∞ = ρv2∞, where ρ is the mass density.

Let us define the Zener dispersion index as the inverse of the minimum quality factor, or

dissipation factor, as

D =
1

Q0
=
M∞ −M0

2
√
M∞M0

=
v2∞ − v20
2v∞v0

(B.4)

It is easy to show that the amount of velocity dispersion is

∆v = v∞ − v0 = v0

(
Q−10 +

√
1 +Q−20 − 1

)
≈ v0
Q0

, (B.5)

where the approximation holds for low-loss solids (Q0 � 1). This is a simple relation between
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the maximum velocity dispersion and the minimum Q (higher attenuation). The Kramers-

Kronig relations are more general and reflect the fact that if velocity dispersion is known for

all frequencies then Q is known for all frequencies and vice versa.
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Figure 1. Comparison between the EIAS (dash-dotted and solid lines) and EIASD (dotted and dashed

lines) low- and high-frequency bulk(a) and shear(b) moduli as a function of the crack density and an

aspect ratio a = 0.001. The fluid is water.
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Figure 2. Comparison between the MJG, EIASD and CPEM low- and high-frequency bulk (a) and

shear (b) moduli as a function of the crack density and an aspect ratio a = 0.001. (c) and (d) correspond

to the normalized bulk and shear differences of the MJG and EIASD models in high-frequency limits

relative to those given by the CPEM model. The fluid is water.
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Figure 3. Comparison between the EIASD (circles) and MJG (lines) bulk and shear dispersion indices

(a-b) and their Zener quality factors (c-d) as a function of the crack density and three values of the

aspect ratio a. The fluid is water.
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Figure 4. Comparison between the EIASD ( circles) and CPEM (lines) bulk (a) and shear (b) dis-

persion indices as a function of the crack density and three values of the aspect ratio. The fluid is

water.
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Figure 5. Comparison between the MJG (solid an dash lines) and original MJ (open circles and

squares) bulk (a) and shear (b) dispersion indices as a function of crack density and two values of the

aspect ratio. The fluid is gas. The open squares with a = 10−3 represent unphysical values, since the

dispersion index is negative
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Figure 6. Comparison between the EIASD (circles) and MJG (lines) bulk (a), shear (b) and P-wave

(c) dispersion indices as a function of crack density and three values of the aspect ratio. The fluid is

gas. Figure 6(d) is the P-wave dispersion indices for water-saturated condition.
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Figure 7. Effect of the aspect ratio of the stiff pores, as, on the low (relaxed) and high (unrelaxed)

bulk (a) and shear (b) moduli and bulk (c) and shear (d) quality factors. The aspect ratio of the cracks

in Figure 7(a) and (b) is a = 10−3 and the fluid is water. The model is based on the MJG relations.
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Figure 8. Comparison between the EIASD (symbols) and MJG (lines) bulk (a), shear (b) moduli and

bulk (c) and shear (d) quality factors as a function of crack density and three values of the aspect

ratio. The aspect ratio of the stiff pores is as = 0.2 and the aspect ratio of the cracks in Figure 8(a)

and (b) is a = 10−3. The fluid is water.
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