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S U M M A R Y
Analytical evaluations of the reflection coefficients in anelastic media inherently suffer from
ambiguities related to the complex square roots contained in the expressions of the vertical
slowness and polarization. This leads to a large number of mathematically correct but physically
unreasonable solutions. To identify the physical solution, we compute full-waveform synthetic
seismograms and use a frequency-slowness method for evaluating the amplitude and phase
of the corresponding reflection coefficient. We perform this analysis for transversely isotropic
media. The analytical solution space and its ambiguities are explored by analysing the paths
along the Riemann surfaces associated with the square roots. This analysis allows us to choose
the correct sign. Although this approach is generally effective, there are some cases that
require an alternative solution, because the correct integration path for the vertical slowness
does not exist on the corresponding Riemann surface. Closer inspection then shows that these
‘pathological’ cases, which are essentially characterized by a higher-attenuation layer overlying
a lower-attenuation layer, can readily be resolved through an appropriate change of direction
on the Riemann sheet. The thus resulting recipe for the analytical evaluation of plane-wave
reflection coefficients in anelastic media is conceptually simple and robust and provides correct
solutions beyond the equivalent elastic critical (EEC) angle.

Key words: Elasticity and anelasticity; Seismic anisotropy; Seismic attenuation; Computa-
tional seismology; Theoretical seismology.

1 I N T RO D U C T I O N

Earth media are generally both attenuating and anisotropic, and

hence conventional elastic isotropic approximations prove to be in-

adequate for fully exploiting the information contained in modern

seismic data (Tsvankin & Thomsen 1994; Carcione 2007). It is, in

part, for this reason that the problem of effectively evaluating seis-

mic reflection coefficients for layered attenuating media has recently

received a significant amount of attention. Although the underlying

mathematics is well understood, the problem per se must be regarded

as unresolved (Nechtschein & Hron 1996; Červený & Pšenčı́k 2005;

Ruud 2006; Krebes & Daley 2007). This is primarily due to the am-

biguities related to the signs of the complex-valued square roots

involved in the expression of the vertical slownesses, which result

in a set of mathematically correct but physically unreasonable plane-

wave reflection coefficients.

There are a number of approaches attempting to eliminate these

ambiguities. Convergence tests with regard to the well constrained

elastic case represent one option. In this case, the reflection coef-

ficient is expected to change smoothly from the purely elastic case

to the weakly anelastic case. Although there has been doubt as to

the validity of this approach, it is by now widely accepted (Krebes

1984; Richards 1984; Hearn & Krebes 1990). However, Krebes

(1984) found that the introduction of little attenuation may lead to

substantial phase changes.

Ruud (2006) analysed different criteria to obtain the correct

sign of the square roots by comparing seismograms based on

analytical reflection coefficients with seismograms computed with

a reflectivity algorithm. The presence of a phase difference seems

to be related to a particular choice of the anelastic properties

for which the amplitudes of reflected/transmitted waves grow

exponentially with distance from the interface (Cooper 1967;

Richards 1984). The criteria for isotropic media, which are phys-

ically relevant but not universally valid, can be summarized as

follows.

(1) Impose continuity/smoothness of the reflection coefficient as

a function of the incidence angle.

(2) Choose the signs of the square roots according to the direc-

tion of the energy-velocity vector: upwards for reflected waves and

downwards for transmitted waves.

(3) Apply the radiation condition, meaning that the attenuation

vector must point upwards for reflected waves and downwards

for transmitted waves, thus implying that the amplitudes of the
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waves cannot grow exponentially with increasing distance from the

interface.

Ruud (2006) concludes that the energy-velocity vector criterion

should be used for pre-critical angles and the radiation condition

should be used for post-critical angles, where, in principle, the lo-

cation of the critical angle is that of the elastic case. He discards the

continuity criterion and claims that the coefficients obtained with

his approach tend to the elastic coefficients, in particular, the phase

angle when the attenuation tends to zero, even if there are disconti-

nuities. In a recent study, Krebes & Daley (2007) compare SH-wave

reflection coefficients of anelastic media with the elastic equivalent,

localize the incidence angles where non-physical jumps or discon-

tinuities occur and explore three different approaches for choosing

the sign of the vertical slowness, which they also apply to the P-SV
case.

The objective of this study is to extend and complement previous

work on this problem by providing an effective way to evaluate the

reflection coefficients in attenuating anisotropic media. The method

consists in the use of full-wave numerical modelling to verify the

results and comprehensive rules that allow us to determine the signs

of the complex-valued square roots in agreement with the numerical

simulations.

We begin with a brief review of the theory for calculating the

plane-wave reflection coefficients in attenuating anisotropic media,

followed by an overview of the algorithm for the numerical simula-

tion. The modelling algorithm is based on a domain-decomposition

technique − one grid for the upper solid and another grid for the

lower solid − and the Fourier and Chebyshev differential operators.

The anelastic and anisotropic stress–strain relation is based on the

Zener model. Special attention is given to modelling the boundary

conditions. For this purpose, we further develop the technique for

wave propagation in transversely isotropic media. We then present

the frequency-slowness approach that allows us to compute the re-

flection coefficients from the computed seismograms. In the last

section, we explore and attempt to resolve the ambiguities present

in the analytical solution on the basis of the physically correct solu-

tion obtained by numerical modelling.

2 R E F L E C T I O N C O E F F I C I E N T S

Without loss of generality, we consider the 2-D P-SV -wave case

where the relevant elastic constants in the (x, z)-propagation plane

are c11, c33, c13 and c55. These constants correspond to the unrelaxed,

high-frequency limit. We define c11 ≡ ρv2
P and c55 ≡ ρv2

S , where ρ

is the density and v P and v S are the P- and S-wave velocities.

Following Tsvankin (2005), we quantify the degree anisotropy as

ε = c11 − c33

2c33

(1)

and the anisotropy parameter δ�

δ� = 1

2c2
33

[
2(c13 + c44)2 − (c33 − c44)(c11 + c33 − 2c44)

]
. (2)

Whereas ε is related to the fractional difference between the hori-

zontal and vertical P-wave velocity, δ� is responsible for the angular

dependence of the P-wave velocity in the vicinity of the vertical di-

rection, with the P-wave velocity increasing away from the vertical

if δ� is positive and decreasing if δ� is negative (Tsvankin 2005).

The isotropic limit implies c11 = c33 and c13 = c11 −2c55 and ε =
δ� = 0. For the transversely isotropic case, c44 is equal to c55.

Given c11, c33, c55 and δ�, we obtain

c13 =
√

2c2
33δ

� + (c33 − c44)(c11 + c33 + 2c44)

2
− c44. (3)

Therefore, varying δ� means changing c13. In the case of cubic

symmetry (c11 = c33), δ� is the only parameter quantifying the

anisotropy. We consider ε = 0 in this work.

Reflection and transmission of a wave on a planar interface be-

tween two anelastic transversely isotropic media can be estimated

using the plane-wave approximation, which has been investigated by

several authors, among others Zoeppritz (1919) and Aki & Richards

(1980) for isotropic elastic solids, Daley & Hron (1977) and

Graebner (1992) for elastic transversely isotropic solids and

Carcione (1997) for anelastic transversely isotropic solids. A general

plane-wave solution for the particle velocity field is

v = iωU exp[iω(t − sx x − sz z)], (4)

where t is the time, i = √−1 the imaginary unit, ω the angular

frequency, s x and s z are the horizontal and vertical components of

the complex slowness vector, respectively, and

U = U0

(
β

ξ

)
, (5)

where U 0 is a constant amplitude.

The polarization components can be calculated as (Carcione

2007)

β =
√

p55 sx
2 + p33 sz

2 − ρ

p11 sx
2 + p33 sz

2 + p55

(
sx

2 + sz
2
) − 2ρ

(6)

and

ξ = ±
√

p11 sx
2 + p55 sz

2 − ρ

p11 sx
2 + p33 sz

2 + p55

(
sx

2 + sz
2
) − 2ρ

, (7)

where, following the standard sign convention, the ‘+’ sign corre-

sponds to the qP-wave and the ‘−’ sign corresponds to the qS-wave;

moreover, pIJ are components of the stiffness tensor and ρ is the

mass density (see Appendix A).

According to Snell’s law, the horizontal slowness is the same for

all the waves and can be computed for the incident wave as

sx = sin θ

vc(θ )
, (8)

where θ is the propagation angle measured with respect to the z-axis

and vc is the complex velocity, solution of the Kelvin–Christoffel

equation (Carcione 2007). The vertical slowness can be obtained

from the dispersion relation

sz = ± 1√
2

√
K1 ±

√
K1

2 − 4K2 K3, (9)

where

K1 = ρ

(
1

p55

+ 1

p33

)
+ 1

p55

[
p13

p33

(p13 + 2p55) − p11

]
s2

x ,

K2 = 1

p33

(
p11 s2

x − ρ
)
, K3 = s2

x − ρ

p55

.
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Following the standard sign convention (Carcione 2007), the signs

in s z correspond to

(+, −) downward propagating qP-wave,

(+, +) downward propagating qS-wave,

(−, −) upward propagating qP-wave,

(−, +) upward propagating qS-wave.

For a qP-wave incident from above, the particle velocities above

and below the interface are given by

v1 = vPI + vPR + vSR ,

v2 = vPT + vST , (10)

where the subscripts 1 and 2 refer to the upper and lower media and

the subscripts I , R and T denote incident, reflected and transmitted

plane waves defined as

vPI = iω

(
βP1

ξP1

)
exp[iω(t − sx x − sz P1

z)],

vPR = iωRP P

(
βP1

−ξP1

)
exp[iω(t − sx x + sz P1

z)],

vSR = iωRP S

(
βS1

−ξS1

)
exp[iω(t − sx x + szS1

z)],

vPT = iωTP P

(
βP2

ξP2

)
exp[iω(t − sx x − sz P2

z)],

vST = iωTP S

(
βS2

ξS2

)
exp[iω(t − sx x − szS2

z)]. (11)

The amplitude of the incident wave U 0 is set to unity so that the

amplitudes of the reflected and transmitted waves (RPP, RPS , T PP

and T PS) directly correspond to the complex-valued reflection and

transmission coefficients.

The boundary conditions on a welded solid-solid interface require

continuity of the horizontal and vertical particle velocities v x and

v z , as well as the components of the stress tensor σ xz and σ zz. The

boundary conditions then lead to the following matrix equation for

the reflection and transmission coefficients⎛
⎜⎜⎜⎝

βP1
βS1

−βP2
−βS2

ξP1
ξS1

ξP2
ξS2

Z P1
ZS1

−Z P2
−ZS2

WP1
WS1

WP2
WS2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

RP P

RP S

TP P

TP S

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−βP1

ξP1

−Z P1

WP1

⎞
⎟⎟⎟⎠ , (12)

where

W = p55(ξsx + βsz) and Z = βp13sx + ξp33sz . (13)

In the elastic case, the stiffnesses pIJ correspond to the elastic con-

stants cIJ and have real values. In the viscoelastic case, however, the

stiffnesses are complex-valued. It has to be noted that in the anelastic

case a critical (and post-critical) angle does not exist (Cooper 1967;

Krebes 1983; Carcione 2007) as it refers to the situation where the

transmitted wave travels parallel to the interface, which usually does

not occur if at least one of the media is anelastic. Therefore, we refer

here to the equivalent elastic critical (EEC) angle. The stiffnesses

for a transversely isotropic medium are

p11 = c11 − Ē + K̄M1 + c55 M2, (14)

p33 = c33 − Ē + K̄M1 + c55 M2, (15)

p13 = c13 − Ē + K̄M1 + c55(2 − M2), (16)

and

p55 = c55 M2, (17)

with

Ē = 1

2
(c11 + c33), K̄ = Ē − c55, (18)

and the complex moduli

Mν =
√

Q(ν)2 + 1 − 1 + i Q(ν)√
Q(ν)2 + 1 + 1 + i Q(ν)

, (19)

where ν = 1 refers to dilatational deformations and ν = 2 to shear

deformations and Q(ν) denotes the corresponding quality factors.

3 N U M E R I C A L M O D E L L I N G

3.1 Governing equations

We consider the stress–strain relation corresponding to the case of

two welded transversely isotropic media with the symmetry axis of

both media perpendicular to the solid-solid interface. The qP–qSV
equations of motion for each medium are given by (1) equations of

motion; (2) the stress–strain relations and (3) the memory-variable

equations (Carcione 2007), which we outline in the following.

(1) Equations of motion:

∂xσxx + ∂zσxz = ρ∂tvx , (20)

∂xσxz + ∂zσzz = ρ∂tvz . (21)

(2) Stress–strain relations:

∂tσxx = c11∂xvx + c13∂zvz + K̄e1 + 2c55e2 + S, (22)

∂tσzz = c13∂xvx + c33∂zvz + K̄e1 − 2c55e2 + S, (23)

∂tσxz = c55(∂zvx + ∂xvz + e3), (24)

where S is the source term corresponding to an isotropic perturba-

tion, such as an explosion, in the upper medium, e1, e2 and e3 are

memory variables and

K̄ = Ē − c55, Ē = 1

2
(c11 + c33). (25)

(3) Memory-variable equations:

∂t e1 = 1

τ
(1)
σ

[(
τ (1)
σ

τ
(1)
ε

− 1

)
(∂xvx + ∂zvz) − e1

]
, (26)

∂t e2 = 1

2τ
(2)
σ

[(
τ (2)
σ

τ
(2)
ε

− 1

)
(∂xvx − ∂zvz) − 2e2

]
, (27)

∂t e3 = 1

τ
(2)
σ

[(
τ (2)
σ

τ
(2)
ε

− 1

)
(∂zvx + ∂xvz) − e3

]
, (28)

where τ (ν)
σ and τ (ν)

ε are relaxation times. The frequency-domain

stress–strain relations are obtained from the preceding equations

by applying the Fourier transform (see Appendix A). The stress–

strain relations satisfy the condition that the mean stress de-

pends only on the dilatational relaxation function in any coordi-

nate system, implying that the trace of the stress tensor should
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be invariant under coordinate transformations. Moreover, the de-

viatoric stresses solely depend on the shear relaxation function

(Carcione 2007).

3.2 Boundary conditions and modelling algorithm

The boundary conditions at a solid-solid interface require the con-

tinuity of the particle velocities v x and v z and normal stress com-

ponents σ xz and σ zz. Two grids model the subdomains above and

below the interface. The solution on each grid is obtained by us-

ing a Runge–Kutta method for the time stepping and the Fourier

and Chebyshev differential operators to compute the spatial deriva-

tives in the horizontal and vertical directions, respectively (Carcione

2007). To combine the two grids, the wavefield is decomposed into

incoming and outgoing wave modes at the interface. The inward

propagating waves depend on the solution outside the subdomains

and therefore are computed from the boundary conditions, whereas

the behaviour of the outward propagating waves is determined by the

solution inside the subdomain (e.g. Sidler & Carcione 2007). The

approach, is adapted here for the anelastic transversely isotropic

solid-solid case (axis of symmetry perpendicular to the interface)

and involves the equations given in Appendix B for updating the

field variables at the gridpoints defining the interface.

3.3 The frequency-slowness method

To compute the numerical reflection coefficient as a function of the

incidence angle, we use the technique developed by Kindelan et al.
(1989) for elastic media and extended by Carcione & Helle (2004) to

the case of a viscoelastic seafloor overlain by an acoustic water layer.

The method consists on the following steps, where the frequency is

denoted by f = ω/(2π ):

(1) Generate synthetic seismograms of the pressure field σ xx +
σ zz, placing a line of receivers at each gridpoint above the interface.

These records contain the incident and reflected fields.

(2) At the same location, compute the synthetic seismogram

without interface, by setting the properties of the lower medium to

those of the upper medium. These seismograms contain the incident

field only.

(3) Take the difference between the wavefields calculated in steps

(1) and (2) to isolate the reflected wavefield.

(4) Perform an (f , s x )-transform of the incident field to obtain

σ I ( f , s x ).

(5) Perform an (f , s x )-transform of the reflected field to obtain

σ R( f , s x ).

(6) The ratio |σ R( f , s x )|/|σ I ( f , s x )| corresponds to the absolute

value of the reflection coefficient, while its phase angle is given

by arctan[σR( f, sx )/σI ( f, sx )]. Transform s x to incidence angle θ

using sin θ = vP1
sx , where v P1

is the P-wave velocity of the upper

medium.

As we locate the receivers close to the interface, we do not need

to correct for the amplitude difference between the incident and the

reflected waves.

4 S O LV I N G T H E A M B I G U I T I E S I N T H E

E VA L UAT I O N O F T H E R E F L E C T I O N

C O E F F I C I E N T

If anelasticity is involved, the analytic expressions for the plane-

wave reflection and transmission coefficients contain a number of
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Figure 1. Set of possible solutions for the absolute value (a) and phase

angle (b) of the reflection coefficient corresponding to the fluid–solid model

given in Table 1 (solid lines). The numerical solution is represented by open

circles.

square roots of complex numbers due to the vertical slownesses (see

eq. 9). The square root is the inverse of the square of a function of the

form
√

λ2 = λ. For instance, if λ = −αi , where α is real,
√

(−αi)2

can also be written as
√

(−1)2(αi)2 so that α i as well as − α i are

valid solutions.

Therefore, the analytical evaluation of reflection coefficients does

not result in a unique solution but, due to the nested structure of the

complex square root expressions, gives rise to many mathematically

correct, but physically unreasonable solutions. Fig. 1, shows the set

of all possible solutions for the fluid–solid example given in Table 1.

Even if some of these solutions can be discarded based on physical

considerations, the remaining subset is still vast. Only one of these

solutions corresponds to the physical one. One way of identifying

the physical solution is to use numerical modelling. This solution is

represented by open circles.

The inherently high computational cost of obtaining numerical

solutions does, however, make this approach rather unattractive for

many practical applications. One would, therefore, rather find ways

to identify the correct signs in the corresponding analytical expres-

sions. The standard sign convention in eqs (7) and (9) is generally

valid for incident angles smaller than the EEC angle but may fail

for larger angles. This is illustrated in Fig. 2, which compares the

analytical solution based on the standard sign convention with the
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98 R. Sidler, J. M. Carcione and K. Holliger

Table 1. Material properties for the examples.

Fluid-solid case

Layer v P (m s−1) v S (m s−1) ρ (kg m−3) Q1 Q2 δ�

1 1500 0.1 1040 10 000 10 000 0

2 4323 1449 2760 40 100 0.1

Solid-solid case

Layer v P (m s−1) v S (m s−1) ρ (kg m−3) Q1 Q2 δ�

1 2500 1000 2100 25 15 0

2 5000 3000 2200 40 20 0.1
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Figure 2. Analytical (dashed and solid lines) and numerical (symbols) so-

lutions for the absolute value of the reflection coefficient for the fluid–solid

case given in Table 1. The symbols denote numerical results for different

frequencies. The dashed line represents the solution corresponding to the

standard sign convention, whereas the solid line corresponds to the solution

constrained by enforcing continuity of the vertical slowness by following

the Riemann surface of the square root.

corresponding numerical solution. We see that the two solutions

agree well for incidence angles smaller than 53◦, whereas for larger

angles, the analytical solution is characterized by a seemingly non-

physical discontinuity.

In complex analysis, elementary real functions, such as expo-

nentials, square roots, logarithms and trigonometric functions, are

expanded into the complex domain and conditions are specified so

that the complex functions maintain certain properties of their real-

valued counterparts. A particularly common and desirable property

of many functions used to describe physical phenomena is their dif-

ferentiability (Ablowitz & Fokas 2003). To obtain differentiability

on an open subset in the complex domain, the so-called Riemann

sheets are defined, for which the function is differentiable (Riemann

1857). Such a function is called an analytic function and it can

be shown that it is ‘infinitely differentiable’. Compared with other

complex functions, the complex square root has a relatively simple

Riemann surface, which is, however, inherently 4-D in nature and

therefore needs two 3-D plots to be visualized (Fig. 3).

Given that the slowness vectors and polarizations of the incident,

reflected and transmitted waves are expected to change continu-

ously as a function of the incidence angle, it is reasonable to impose

differentiability. This can be achieved by following the Riemann

surface when evaluating the corresponding square roots, which as-

sures continuity. In this context, it is important to note that a lin-

ear equation system, such as eq. (12), yields continuous results if

composed of continuous functions. This in turn ensures that non-

Figure 3. Riemann surface for a complex function of the form
√

λ. The

4-D surface is displayed in two 3-D plots, for the real (a) and imaginary (b)

parts of the solution. The plots show the path corresponding to square root

expressions of the vertical P-wave slowness for the fluid-solid case given in

Table 1. The red line denotes the path corresponding to the standard sign

convention, whereas the green line denotes the path corresponding to the

continuous solution following the Riemann surface. The slowness values

are normalized for display purposes.

physical discontinuities, such as those obtained by using the standard

sign convention, can be avoided. Closer inspections shows that the

abrupt step in Fig. 2 arises if the square root at an incident angle

larger than about 53◦ is evaluated in the third quadrant of the com-

plex plane, where the standard sign convention indicates the use of

the positive sign. Fig. 3 illustrates that this interrupts the continuity

of the vertical slowness, as its path does not follow the correspond-

ing Riemann surface. Conversely, we see that the path of the vertical

slowness resulting in an analytical solution that is in agreement with

the numerical solution, does indeed follow the Riemann surface in

a continuous manner.

An additional problem may arise in the calculation of the ver-

tical slowness of the transmitted P-wave, if the attenuation of the

incident wave is higher than that of the transmitted wave. In such

cases, the attenuation vector may point upwards in the vicinity of

the EEC angle (Cooper 1967; Richards 1984; Ruud 2006) and the

path of the square root expression to calculate the vertical slow-

ness follows the Riemann surface anti-clockwise, implying that in

the second quadrant the positive solution has to be chosen. This is

at odds with the radiation condition, which postulates the choice

of the negative solution for the vertical slowness. For post-critical
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Figure 4. Absolute value (a) and phase angle (b) of the reflection coefficient

for the isotropic solid-solid case given in Table 1 (δ� = 0). The solution

corresponding to the standard sign convention (dashed line) exhibits two

problems: abrupt steps in the reflection coefficient due to discontinuous

root expressions and a wrong phase due to a ‘pathological’ behaviour of

the attenuation vector. The solid line corresponds to the correct analytical

solution and the symbols to numerical solutions for different frequencies

ranging between 34 and 36 Hz.

angles of incidence, apart from the immediate vicinity of the EEC

angle, the radiation condition is certainly a physically reasonable

constraint, which, however, is not honoured by simply ensuring that

the path of the vertical slowness follows the Riemann surface. This

in turn leads to important phase discrepancies as well as differences

in the absolute value of the reflection coefficient compared with the

corresponding numerical solution (Figs 4a and b).

Fig. 5 schematically illustrates the difference between a prob-

lematic case and an unproblematic case for the calculation of the

vertical slowness of the transmitted P-wave regarding the behaviour

of the argument of the square root. The difference resides in the lo-

cation of the intersection between the argument and the real axis.

If this intersection is located on the negative real axis, we have an

unproblematic case. Conversely, if this intersection is located in the

positive real axis, we have a problematic case and simply following

the Riemann surface leads to substantial errors at large incidence

angles. A possible way to address and alleviate this problem is to

choose the negative solution for the vertical slowness in the second

Re

Im

III

III IV
0°

elastic equivalent
critical angle

90°

incidence angle

incidence angle

Figure 5. Complex-valued argument of the square root to calculate the ver-

tical slowness of the transmitted P-wave. It is shown how to distinguish a

problematic case (dashed line) from an unproblematic (solid line) case by

following the Riemann surface to obtain physically meaningful results. In

the unproblematic case, where the Riemann surface has to be followed, the

argument intersects the negative real axis. Conversely, in the problematic

case, the intersection occurs along the positive real axis. In this case, contin-

uous solutions follow the positive Riemann sheet after the EEC angle (see

Fig. 3). On this Riemann sheet, the imaginary part is positive, thus corre-

sponding to a reversed attenuation vector, which is, however, not likely to

be the case outside the immediate vicinity of the EEC angle. Here, the Rie-

mann surface should not be followed and the negative solution in the second

quadrant should be chosen.

quadrant of the complex plane irrespective of the path of the square

root expressions in the Riemann surface. This approach is admit-

tedly pragmatic and heuristic, but also highly effective for practical

purposes and rather general in nature. As illustrated in Fig. 4, it

generates a solution that is consistent with the numerical one.

The isotropic solid-solid model corresponding to Fig. 4 (Table 1)

is taken from Krebes & Daley (2007). This example is of particular

interest as it suffers from both problems discussed in this paper. The

absolute value of the reflection coefficient and its phase exhibit con-

siderable discontinuities at an incident angle of approximately 63◦,

which can be avoided by evaluating the root expressions following

the Riemann surface. Doing so, does, however, still result in a phase

angle that is entirely inconsistent with that inferred by numerical

modelling at angles larger than the EEC angle of about 30◦. This is

due to the fact that the attenuation is higher in the incident medium,

and therefore the argument of the square root corresponding to the

transmitted P-wave intersects the positive real axis, which makes

this case one of the exceptions discussed before.

Fig. 6 shows the path of the square root expressions of the vertical

slowness of the transmitted S-wave corresponding to the isotropic

solid-solid case. This slowness suffers from discontinuities when

the standard sign convention is used and the Riemann-surface cri-

terion is not followed. The discontinuity is also visible at an in-

cidence angle of approximately 63◦ in the corresponding absolute

value of the reflection coefficient, and it is even more pronounced

in the phase angle (Fig. 4). Fig. 7, addressing the problematic case,

shows the path of the square root expression of the vertical slow-

ness of the transmitted P-wave. The red line corresponds to the

path following the Riemann surface, whereas the green line shows

the choice of the negative solution in the second quadrant. The lat-

ter solution corresponds to the heuristic approach proposed above

and leads to a result that is not entirely correct in the vicinity of

the EEC angle, but it is otherwise consistent with the numerical

solution.
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Figure 6. Real (a) and imaginary (b) parts of the square root involved in the

vertical S-wave slowness of the lower half-space for the isotropic solid-solid

case given in Table 1 (δ� = 0). The green line corresponds to the continuous

solution obtained by following the Riemann surface and the red line to the

solution resulting from the standard sign convention. Note the abrupt step

in the path corresponding to the standard convention, which is also present

in the reflection coefficient and phase angle shown in Fig. 4. The slowness

values are normalized for display purposes.

The last example has the same parameters as the first solid-

solid case, albeit with anisotropy added (Table 1). It is interesting

and important to note that this rather minor amount of anisotropy

leads to additional and rather dramatic complications with regard

to the previously considered isotropic case (Fig. 4). The result ob-

tained by using the standard sign convention again yields seemingly

non-physical effects beyond the EEC angle, whereas following the

Riemann-surface criterion and choosing the negative solution for the

vertical slowness of the transmitted P-wave, as indicated in Fig. 5,

leads to reasonable changes compared with the isotropic case and an

analytical solution that is consistent with its numerical counterpart

(Fig. 8).

It is important to note that this approach is essentially an alterna-

tive formulation of the recipe proposed by Krebes & Daley (2007),

which is based on the enforcement of continuity of the vertical slow-

ness in the pre-critical range and honouring the radiation condition

in the post-critical range. While the two ways of arriving at this solu-

tion are evidently equivalent, and the formulation by Krebes & Daley

(2007) favours physical intuition, we believe that our approach will

prove to be quite suitable from an algorithmic point of view.

Figure 7. Real (a) and imaginary (b) parts of the square root involved in the

vertical P-wave slowness of the lower half-space for the isotropic solid-solid

case given in Table 1. The red line corresponds to a continuous sign choice,

which is problematic in this case (see also Figs 4 and 5) and leads to a wrong

phase angle beyond the EEC angle. A simple but effective solution is to

choose the negative sign for the square root expression of vertical P-wave

slowness of the lower solid in the second quadrant (green line). The slowness

values are normalized for display purposes.

5 C O N C L U S I O N S

We have used an accurate numerical technique, based on a

frequency-slowness approach, to evaluate plane-wave reflection co-

efficients in anelastic anisotropic layered media to systematically

explore the inherent ambiguities associated with the corresponding

analytical solutions. Our results indicate that the continuity criterion

based on continuous paths along the Riemann surfaces of the square

root expressions associated with the complex slownesses provides

a convenient solution to resolve the ambiguities in the calculation

of the reflection coefficients. However, there exist some cases for

which a continuous path does not exist on the corresponding Rie-

mann surface. These cases can be identified by the intersection of

the argument of the square root with the positive real axis. Our re-

sults demonstrate that in these problematic, but well defined, cases

an appropriate change of direction on the Riemann surface provides

physically correct solutions for all practical applications beyond the

vicinity of the EEC angle. The approach developed here is essen-

tially equivalent to enforcing continuity of the vertical slowness in

the pre-critical range and honouring the radiation condition in the

post-critical range.
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Figure 8. Absolute value (a) and phase angle (b) of the reflection coefficient

for the anisotropic solid-solid case given in Table 1. The solid line corre-

sponds to the physically correct solution whereas the dashed line is the solu-

tion obtained when choosing the standard sign convention for all the square

roots. The symbols denote numerical solutions for frequencies ranging

between 34 and 36 Hz. Note that even though the amount of anisotropy

present is rather weak, the solution using the standard sign convention

(dashed line) shows large differences compared with the corresponding

isotropic solution shown in Fig. 4.
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A P P E N D I X A : F R E Q U E N C Y- D O M A I N

S T R E S S – S T R A I N R E L AT I O N

Transforming the memory-variable eqs (26)–(28) to the (frequency)

ω-domain (e.g. ∂ t e1 → iωe1) and substituting the memory variables

into eqs (22)–(24), we obtain the stress–strain relation:

iω

⎛
⎜⎝

σxx

σzz

σxz

⎞
⎟⎠ =

⎛
⎜⎝

p11 p13 0

p13 p33 0

0 0 p55

⎞
⎟⎠

⎛
⎜⎝

∂xvx

∂zvz

∂zvx + ∂xvx

⎞
⎟⎠ , (A1)
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where

p11 = c11 − Ē + K̄M1 + c55 M2,

p33 = c33 − Ē + K̄M1 + c55 M2,

p13 = c13 − Ē + K̄M1 + c55(2 − M2),

p55 = c55 M2
(A2)

are the complex stiffnesses, and

Mν = τ (ν)
σ

τ
(ν)
ε

(
1 + iωτ (ν)

ε

1 + iωτ
(ν)
σ

)
, ν = 1, 2 (A3)

are the Zener complex moduli (Zener 1948; Carcione 2007). Note

that for ω → ∞ we have pIJ → cIJ .

The relaxation times can be expressed as

τ (ν)
ε = τ0

Qν

(√
Q2

ν + 1 + 1

)
and τ (ν)

σ = τ0

Qν

(√
Q2

ν + 1 − 1

)
,

(A4)

where τ 0 is a relaxation time such that 1/τ 0 is the centre frequency

of the relaxation peak and Q ν are the minimum quality factors.

A P P E N D I X B : B O U N DA RY E Q UAT I O N S

The upper solid is denoted by the subscript 1 and the lower solid

by the subscript 2. The symbol P indicates the compressional wave

in the fluid or the qP-wave in solid, and S denotes the qS-wave in

this medium. The boundary equations at the solid–solid interface

for the transversely isotropic case (the interface perpendicular to

the symmetry axis) are generalizations of the equations given in

Tessmer et al. (1992) for the isotropic case:

v(new)
x (1) = [ZS(1) + ZS(2)]−1

[
ZS(2)v(old)

x (2) + ZS(1)v(old)
x (1)

+ σ (old)
xz (1) − σ (old)

xz (2)
]
,

v(new)
z (1) = [Z P (1) + Z P (2)]−1

[
Z P (2)v(old)

z (2) + Z P (1)v(old)
z (1)

+ σ (old)
zz (1) − σ (old)

zz (2)
]
,

σ (new)
xx (1) = σ (old)

xx (1) +
[
c13(1)/c33(1)][σ (new)

zz (1) − σ (old)
zz (1)

]
,

σ (new)
xz (1) = ZS(1)ZS(2)

ZS(1) + ZS(2)

[
v(old)

x (1) − v(old)
x (2) + σ (old)

xz (1)

ZS(1)

+ σ (old)
xz (2)

ZS(2)

]
,

σ (new)
zz (1) = Z P (1)Z P (2)

Z P (1) + Z P (2)

[
v(old)

z (1) − v(old)
z (2) + σ (old)

zz (1)

Z P (1)

+ σ (old)
zz (2)

Z P (2)

]
,

e(new)
1 (1) = e(old)

1 (1) + [φ1(1)/c33(1)]
[
σ (new)

zz (1) − σ (old)
zz (1)

]
e(new)

2 (1) = e(old)
2 (1) − [φ2(1)/c33(1)]

[
σ (new)

zz (1) − σ (old)
zz (1)

]
,

e(new)
3 (1) = e(old)

3 (1) + [φ2(1)/c55(1)]
[
σ (new)

xz (1) − σ (old)
xz (1)

]
,

v(new)
x (2) = v(new)

x (1),

v(new)
z (2) = v(new)

z (1),

σ (new)
xx (2) = σ (old)

xx (2) + [c13(2)/c33(2)]
[
σ (new)

zz (2) − σ (old)
zz (2)

]
,

σ (new)
xz (2) = σ (new)

xz (1),

σ (new)
zz (2) = σ (new)

zz (1),

e(new)
1 (2) = e(old)

1 (2) + [φ1(2)/c33(2)]
[
σ (new)

zz (2) − σ (old)
zz (2)

]
,

e(new)
2 (2) = e(old)

2 (2) − [φ2(2)/c33(2)]
[
σ (new)

zz (2) − σ (old)
zz (2)

]
,

e(new)
3 (2) = e(old)

3 (2) + [φ2(2)/c55(2)]
[
σ (new)

xz (2) − σ (old)
xz (2)

]
,

(B1)

where φν = 1/τ (ν)
ε − 1/τ (ν)

σ , Z P = √
ρc33 and ZS = √

ρc55.

The lower boundary of subdomain 2 (lower medium) satisfies the

non-reflecting conditions

v(new)
x = 1

2

(
v(old)

x + σ (old)
xz /ZS

)
,

v(new)
z = 1

2

(
v(old)

z + σ (old)
zz /Z P

)
,

σ (new)
xx = σ (old)

xx − (c13/2c33)
(
σ (old)

zz − Z Pv(old)
z

)
,

σ (new)
zz = 1

2

(
σ (old)

zz + Z Pv(old)
z

)
,

σ (new)
xz = 1

2

(
σ (old)

xz + ZSv
(old)
x

)
,

e(new)
1 = e(old)

1 − [φ1/(2c33)]
(
σ (old)

zz − Z Pv(old)
z

)
,

e(new)
2 = e(old)

2 + [φ2/(2c33)]
(
σ (old)

zz − Z Pv(old)
z

)
,

e(new)
3 = e(old)

3 − [φ2/(2c55)]
(
σ (old)

xz − ZSv
(old)
x

)
,

(B2)

where the index 2 has been omitted for brevity. The upper bound-

ary of the upper medium also satisfies non-reflecting conditions.

To obtain the equations for this boundary, the method requires the

following substitutions: z → −z, which implies v z → −vz, σ xz →
−σ xz and e3 → −e3.

In addition to the non-reflecting conditions, absorbing strips are

used to further attenuate the wavefield at non-physical boundaries

(Carcione et al. 2002).
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