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We present a novel numerical approach for the comprehensive, flexible, and accurate sim-
ulation of poro-elastic wave propagation in 2D polar coordinates. An important application
of this method and its extensions will be the modeling of complex seismic wave phenom-
ena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved,
computational problem in exploration geophysics. In view of this, we consider a numerical
mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings
representing the fluid in the center and the surrounding porous medium. The spatial dis-
cretization is based on a Chebyshev expansion in the radial direction and a Fourier expan-
sion in the azimuthal direction and a Runge–Kutta integration scheme for the time
evolution. A domain decomposition method is used to match the fluid–solid boundary con-
ditions based on the method of characteristics. This multi-domain approach allows for sig-
nificant reductions of the number of grid points in the azimuthal direction for the inner
grid domain and thus for corresponding increases of the time step and enhancements of
computational efficiency. The viability and accuracy of the proposed method has been rig-
orously tested and verified through comparisons with analytical solutions as well as with
the results obtained with a corresponding, previously published, and independently bench-
marked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also
satisfies the reciprocity theorem, which indicates that the inherent singularity associated
with the origin of the polar coordinate system is adequately handled.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The comprehensive simulation of seismic wave propagation in realistic, highly heterogeneous borehole environments
represents a pertinent and as of yet largely unresolved problem in exploration geophysics [1–3]. To address this issue, we
have developed a method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates based on Biot’s
dynamic equations [4–7], which is an essential step towards constructing a full 3-D cylindrical algorithm for simulating
borehole seismic experiments, such as sonic logging and vertical seismic profiling. In addition to the simulation of borehole
seismic experiments sensu strictu, possible applications of this approach and its extensions can, for example, be found in the
planning and/or evaluation of laboratory-scale experiments, the development of borehole seismic tools, or the optimized de-
sign of borehole casings. The use of a poro-elastic approach is essential given that a key objective of borehole seismic exper-
iments is the estimation of the governing hydraulic characteristics of the surrounding geological formations [8–11]. The use
of 2D polar coordinates for the development of our solution is motivated (i) by the inherent complexity of the derivation of
. All rights reserved.
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the governing equations and the boundary conditions as well as their benchmarking and (ii) by the relative ease of the exten-
sion of a corresponding algorithm to 3D cylindrical coordinates [12,13].

Previous works have considered axisymmetric propagation in the vertical plane of the borehole [12,13], while the equiv-
alent poro-elastic problem in Cartesian coordinates has been solved by Sidler [14]. The problem of 2D elastic wave propa-
gation in polar coordinates based on the use of pseudo-spectral differential operators was first addressed by Kessler and
Kosloff [15], who used Chebyshev and Fourier spatial differential operators in the radial and azimuthal directions, respec-
tively. Here, we generalize this approach to the poro-elastic case, with an inner mesh representing the fluid filling of the
hypothetical borehole and one or more outer meshes to represent the surrounding porous medium.

The meshes of these domains are combined by decomposing the wavefields into incoming and outgoing wave modes at
the interface between the fluid and the porous solid and by modifying these modes on the basis of the fluid/poro-elastic
boundary conditions. The boundary conditions at fluid-poro-elastic interfaces can be of the open-pore, closed-pore, or
mixed-pore type, according to the theory developed by Deresiewicz and Skalak [16]. A Runge–Kutta integration scheme
is used to compute the time evolution of the wavefield.

In the following, we first derive the equations of motion for a Biot-type porous solid in polar coordinates, describe the
numerical solution of these equations via a pseudo-spectral approach and evaluate the characteristic vector for the decom-
position of the wavefield in the azimuthal direction at the interfaces. We compare the proposed seismograms obtained with
the numerical solution in 2D polar coordinates to corresponding analytical and numerical solutions in 2D Cartesian coordi-
nates [17,18]. Finally, we show synthetic seismograms of a hypothetical 2D borehole experiment with a quadrupole-type
source and varying boundary conditions at the borehole wall.
2. Equations of motion for a porous solid

Biot’s dynamic poro-elastic equations in vector notation are [4,6]
r � s ¼ ðq€uþ qf
€uf Þ � f; ð1Þ

� rp ¼ qf
€uþ
T qf

/
€uf þ

g
j

_uf � g; ð2Þ
where u and uf are the displacement vectors of the solid and fluid relative to the solid phase, respectively, defined as
uf ¼ /ðU� uÞ with U denoting the fluid displacement vector and / the porosity. The external sources acting on the porous
frame and pore fluid are denoted as f and g, respectively. The tensor s and the scalar p denote the total stress and the fluid
pressure, respectively. The bulk density is given as
q ¼ ð1� /Þqs þ /qf ð3Þ
with qs and qf denoting the corresponding densities of the grains and the pore fluid, respectively. The quantity g is the fluid
viscosity, j is the frame permeability, and T is known as the structure or tortuosity factor. A dot above a variable denotes its
differentiation with respect to time.

The stress–strain relations are [6]
s ¼ ½ðEm � 2lþMa2Þr � uþ aMr � uf �Iþ l½ruþru>�; ð4Þ
� p ¼ aMr � uþMr � uf ; ð5Þ
where I denotes the identity matrix and l is the shear modulus of the bulk material, which is considered to be equal to the
shear modulus of the dry matrix. Em is the dry rock fast P-wave modulus defined as
Em ¼ Km þ
4
3
l; ð6Þ
with Km denoting the bulk modulus of the dry material. The quantity M is defined as
M ¼ a� /
Ks
þ /

Kf

� ��1

; ð7Þ
where Ks and Kf are the bulk moduli of the solid grains and the pore fluid, respectively. The coefficient a is known as the
effective stress coefficient of the bulk material and is given by
a ¼ 1� Km

Ks
: ð8Þ
Let us define the solid and relative fluid particle velocity vectors as v ¼ _u and q ¼ _uf , respectively. The poro-elastic equations
(1) and (2) can then be expressed in 2D polar coordinates (Appendix A).
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srr;r þ
1
r
srh;h þ

srr � shh

r
¼ q _v r þ qf _qr � fr ; ð9Þ

srh;r þ
1
r
shh;h ¼ q _vh þ qf

_qh � fh; ð10Þ

� p;r ¼ qf _v r þ
T qf

/
_qr þ

g
j

qr � gr ; ð11Þ

� 1
r

p;h ¼ qf _vh þ
T qf

/
_qh þ

g
j

qh � gh; ð12Þ
where the subscripts r and h denote the radial and azimuthal coordinates, and ‘‘; r’’ and ‘‘; h’’ the corresponding derivatives. f
and g refer to the external sources ½N=m3�. We rewrite these equations in the particle-velocity/stress formulation as
_v r ¼ c11 srr;r þ
srh;h

r
þ srr � shh

r

� �
þ c12 p;r þ

g
j

qr

� �
þ sr ; ð13Þ

_vh ¼ c11
shh;h

r
þ srh;r

� �
þ c12

p;h
r
þ g

j
qh

� �
þ sh; ð14Þ

_qr ¼ �c12 srr;r þ
srh;h

r
þ srr � shh

r

� �
þ c22 p;r þ

g
j

qr

� �
þ tr; ð15Þ

_qh ¼ �c12
shh;h

r
þ srh;r

� �
þ c22

p;h
r
þ g

j
qh

� �
þ th; ð16Þ
where
c11 ¼
T

qT � /qf
; c12 ¼

/
qT � /qf

; c22 ¼
q
qf

 !
/

/qf � qT ; ð17Þ
and
sr ¼ c11fr � c12gr ; ð18Þ
sh ¼ c11fh � c12gh; ð19Þ
tr ¼ �c22gr � c12fr; ð20Þ
th ¼ �c22gh � c12fh: ð21Þ
Similarly, the stress–strain relations (4) and (5) can be expressed as
_srr ¼ ðEm � 2lþMa2Þr � v þ aMr � qþ 2lv r;r; ð22Þ

_shh ¼ ðEm � 2lþMa2Þr � v þ aMr � qþ 2l
r
ðvh;h þ v rÞ; ð23Þ

_srh ¼ l 1
r
ðv r;h � vhÞ þ vh;r

� �
; ð24Þ

_p ¼ �M½r � qþ aðr � vÞ�; ð25Þ
where
r � v ¼ 1
r
ðr � v rÞ;r þ

1
r

vh;h ð26Þ
and
r � q ¼ 1
r
ðr � qrÞ;r þ

1
r

qh;h: ð27Þ
The equations of motion for the acoustic domain in the center with a fluid of density qa and bulk modulus Ka are given by the
stress–strain relation
_pa ¼ Ka wr;r þ
1
r
ðwh;h þwrÞ

� �
; ð28Þ
and Euler’s equations
pa;r ¼ qa _wr;
1
r

pa;h ¼ qa _wh; ð29Þ
where pa and w denote the fluid pressure and particle velocities, respectively. Please note that in Eqs. (28) and (29) the sub-
script a and the symbol w for the particle velocity are used to distinguish the fluid of the acoustic domain from the fluid fill-
ing the pore space of the porous medium.
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3. Numerical solution

Pseudo-spectral methods are efficient and highly accurate techniques for the modeling of complex wave propagation
phenomena [6,14,15,19]. When there are physical boundary conditions to satisfy, the Fourier method is replaced by the
Chebyshev method, which is not periodic and allows for the incorporation of boundary conditions by using characteristic
variables. The presence of the slow diffusive compressional wave makes Biot’s differential equations stiff. To overcome this
problem, the corresponding equations are solved with the splitting scheme introduced by Carcione and Quiroga-Goode [17]
where the stiff part of the equations is solved analytically for each time step. The numerical solution of the regular part of the
differential equations is then obtained by using a 4th-order Runge–Kutta method for the time-stepping that uses four inter-
mediate steps to calculate each time step. In complex environments this temporally sparse evaluation of the stiff part might
lead to a reduction of numerical accuracy. A Chebyshev differential operator is used to compute the spatial derivatives along
the radial direction, and a Fourier differential operator to compute the spatial derivatives along the azimuthal direction.

3.1. Characteristic variables

In order to model the fluid/porous-solid system, we use multiple grid domains, one for the fluid and another for the por-
ous solid. The wavefield is decomposed into incoming and outgoing wave modes at the interface between the two media.
The inward propagating waves depend on the solution exterior to the sub-domains and therefore are computed from the
boundary conditions, while the behavior of the outward propagating waves is determined by the solution inside the sub-
domains. The decomposition of the wavefield is based on the method of characteristics [14].

Let us compute the characteristics vector for the porous medium and fluid, respectively. The regular part of the poro-elas-
tic equations (13)–(27), as characterized by g ¼ 0, can be recast as
H _v ¼ Av;r þ Bv;h; ð30Þ
where H;A, and B are matrices containing the material properties and
v ¼ ðv r; vh; qr; qh; srr; shh; srh;pÞ> ð31Þ
is the field vector. The relevant matrix to implement the boundary conditions at the boundaries perpendicular to the
r-direction is
A ¼

0 0 0 0 c11 0 0 c12

0 0 0 0 0 0 c11 0

0 0 0 0 �c12 0 0 c22

0 0 0 0 0 0 �c12 0

Em þ a2M 0 aM 0 0 0 0 0

Em þ a2M � 2l 0 aM 0 0 0 0 0

0 l 0 0 0 0 0 0

�aM 0 �M 0 0 0 0 0

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

: ð32Þ
The characteristic vector is given by
c ¼ Lv; ð33Þ
where L is the matrix whose rows are the left eigenvectors of matrix A (see Eq. (41) below). Vector c satisfies
_c ¼ Kc;r ; ð34Þ
where the diagonal matrix K is given by
K ¼ LAL�1
: ð35Þ
The eight eigenvalues, that is, the elements of K, are given by
0; 0; �V�; �
ffiffiffiffiffiffiffiffiffiffi
c11l

p
; ð36Þ
where
V� ¼
ffiffiffiffiffiffiffiffiffiffiffi
b� c

2

r
; ð37Þ
and
b ¼ EGc11 � 2Mac12 �Mc22; ð38Þ
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with
EG ¼ Em þ a2M ð39Þ
denoting the Gassmann P-wave modulus EG. The scalar c, not to be confused with the characteristic vector c, satisfies
b2 � c2 ¼ 4M Ma2 � EG
	 


c2
12 þ c11c22

	 

: ð40Þ
The non-zero eigenvalues are the velocities of the ingoing and outgoing waves. The third set of eigenvalues corresponds to
the fast and slow P-waves, as defined by the plus and minus signs inside the square root, respectively. Then follow the two
eigenvalues corresponding to the ingoing and outgoing S-waves. The matrix L is given by
L ¼

0 0 0 0 l15 1 0 l18

0 l22 0 1 0 0 0 0

l31 0 l33 0 l35 0 0 l38

�l31 0 �l33 0 l35 0 0 l38

l51 0 l53 0 �l35 0 0 l58

�l51 0 �l53 0 �l35 0 0 l58

0 l72 0 0 0 0 1
2 0

0 �l72 0 0 0 0 1
2 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; ð41Þ
where
l15 ¼
2eM

V2
þðc � bÞ

Ma2 � EG þ 2l
	 


; ð42Þ

l18 ¼
4eMal

V2
þðc � bÞ

; ð43Þ

l22 ¼
c12

c11
; ð44Þ

l31 ¼ �
V�
4ce

2Mac11c22 þ c12ðc þ EGc11 �Mc22Þ½ �; ð45Þ

l33 ¼ �
V�
4ce

EGc2
11 þ ðc � 2Mac12 þMc22Þc11 þ 2Mc2

12

� �
; ð46Þ

l35 ¼
M
2c

ac11 � c12ð Þ; ð47Þ

l38 ¼
c þ EGc11 þMc22

4c
; ð48Þ

l51 ¼ �
Vþ
4ce

c12ðc � EGc11 þMc22Þ � 2Mac11c22½ �; ð49Þ

l53 ¼ �
Vþ
4ce

�EGc2
11 þ ðc þ 2Mac12 �Mc22Þc11 � 2Mc2

12

� �
; ð50Þ

l58 ¼
c � EGc11 �Mc22

4c
; ð51Þ

l72 ¼ �
1
2

ffiffiffiffiffiffiffi
l
c11

r
; ð52Þ
with
e ¼ c2
12 þ c11c22: ð53Þ
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Hence, the characteristic vector (33) is given by
Fig. 1.
the sou
c ¼

c1

c2

c3

c4

c5

c6

c7

c8

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
¼

l15srr þ shh þ l18p

l22vh þ qh

l31v r þ l33qr þ l35srr þ l38p

�l31v r � l33qr þ l35srr þ l38p

l51v r þ l53qr � l35srr þ l58p

�l51v r � l53qr � l35srr þ l58p

l72vh þ srh=2
�l72vh þ srh=2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: ð54Þ
It can be shown that the first two rows are the zero-eigenvalue characteristics, the third and fourth rows correspond to the
slow P-waves, the fifth and sixth rows to the fast P-waves, and the seventh and eighth rows to the ingoing and outgoing
S-waves, respectively [20,21].

Let us now consider the same approach for the acoustic equations of motion in the fluid domain (28) and (29). It is easy to
show that the characteristics vector corresponding to the unknown vector ðwr;wh; paÞ

> and the matrix
A ¼
0 0 q�1

a

0 0 0
0 Ka 0

0
B@

1
CA ð55Þ
is
Geometrical setup of the experiments to test the viability and accuracy of the numerical solution (Figs. 2–4). Cross and circle denote the locations of
rce and receiver, respectively. The boundary between the two porous domains is located at a radial distance of 4 m.

Table 1
Poro-acoustic material properties of an unconsolidated sand [26].

Grain Bulk modulus, Ks 32 GPa
Density, qs 2690 kg/m3

Matrix Bulk modulus, Km 1.36 GPa
Porosity, / 0.38
Permeability, j 28.3 D ffi2.79 � 10�11 m2

Tortuosity, T 1.79
Fluid Density, qf 1000 kg/m3

Viscosity, g 0 Pa s
Bulk modulus, K 2.25 GPa
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Fig. 2. Comparison between the analytical solution (solid line) and the numerical solutions in 2D polar (dots) and 2D Cartesian coordinates (dashed line) for
(a) fluid pressure, (b) solid pressure, and (c) radial particle velocity. The material properties correspond to those of an unconsolidated sand saturated with a
non-viscous pore fluid (Table 1). The analytical solution is only available for the solid pressure [18].
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d ¼
d1

d2

d3

0
B@

1
CA ¼ 1

2

2wh

pa � If wr

pa þ If wr

0
B@

1
CA; ð56Þ
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where d1 is the characteristic in the azimuthal direction, while d2 and d3 are the inward and outward characteristics along
the radial direction, respectively, and If ¼

ffiffiffiffiffiffiffiffiffiffiffi
qaKa

p
is the fluid impedance [14].

The equations defining the boundary conditions at different physical and non-physical boundaries are given in Appendix B
and the wavefields at the grid points of such boundaries have to be modified according to these equations at each of the four
intermediate time steps of the Runge–Kutta scheme. The types of boundaries considered are (Appendix B):

(i) free-surface of a porous solid,
(ii) interface between a fluid and a porous solid,

(iii) interfaces between two porous solids,
(iv) rigid boundary conditions for a fluid,
(v) non-reflecting, that is, absorbing, boundaries in a fluid and/or in a porous solid .

The latter type of boundary conditions is used to reduce non-physical reflections from the edges of the computational
domain. Since these boundary conditions strictly remove only the wave components normal to the boundary, we use an
additional damping strip at the outermost edge of the computational domain to effectively remove any undesired boundary
reflections.

The use of multiple domains in polar coordinates is not only necessary to account for non-continuous field variables at
physical interfaces, such as, for example, a fluid/porous-solid boundary or an abrupt change in porosity in a porous medium,
but it is also advantageous in terms of computational cost. The angular grid spacing at the outer boundary of the computa-
tional domain is governed by the number of grid points needed to accurately simulate wave propagation through the con-
sidered model. Conversely, the angular grid spacing in the center of the domain becomes naturally much denser than
actually necessary from a numerical point of view. The use of a domain decomposition method allows us to reduce the num-
ber of angular grid points in the inner domain, which in turn allows us to use larger time steps. As a consequence, the num-
ber of grid points of the inner and outer domains vary and their nodes are radially shifted with regard to each other. We use
trigonometric interpolation to obtain the field variables at the locations of opposite grid nodes [22]. As the grid nodes are
equally spaced in the angular direction, we can use a discrete Fourier transform to perform this interpolation.
4. Simulations

4.1. Verification of the numerical solution

To test the viability and accuracy of the numerical approach described above, we compare the results to the analytical
solution for poro-acoustic media proposed by Carcione and Quiroga-Goode [17], Diaz and Ezziani [18], de la Puente et al.
[23] and to numerical wavefields obtained with a previously published pseudo-spectral method in 2D Cartesian coordi-
nates [14]. The model setup for this test consists of two concentric connected porous solids with identical material prop-
erties. The objective of this setup is to demonstrate that the wavefield is not distorted by the decomposition procedure at
the interface. Note that due to the inherent singularity at r ¼ 0, the center of the inner domain has a circular hole, which
for the purpose of these tests must be chosen small enough so that the waves are not affected by its presence. Fig. 1 shows
the setup of the mesh with a source acting on pore fluid pressure located at a radial distance of 24.51 m from the center
and a receiver deployed on the opposite side of the inner porous domain at a distance of 4.80 m. The boundary between
the porous domains is located at a radial distance of 4.00 m. The source mechanism corresponds to a fluid injection [24],
that is, to a fluid-pressure-type excitation, whose time history is that of a Ricker wavelet with a central frequency of
125 Hz. The material properties of the porous medium are those of an unconsolidated sand saturated with a non-viscous,
water-type liquid (Table 1).

Fig. 2 shows the pertinent components of the resulting analytical and numerical wavefields. We see that the seismograms
obtained with the proposed numerical solution are indeed in excellent agreement with those obtained for corresponding
analytical solutions as well as for the numerical solutions in 2D cartesian coordinates. The corresponding computations
for a sandstone saturated with a viscous pore fluid (Table 2) are shown in Fig. 3. Again, we observe that the solution obtained
Table 2
Poro-elastic material properties of a sandstone [27].

Grain bulk modulus, Ks 32 GPa
Density, qs 2480 kg/m3

Matrix Bulk modulus, Km 6.1 GPa
Porosity, / 0.25
Permeability, j 1 D ffi 9.8623 � 10�13 m2

Tortuosity, T 1.79
Fluid Density, qf 1000 kg/m3

Viscosity, g 0.001 Pa s
Bulk modulus, K 2.25 GPa
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Fig. 3. Comparison between the analytical solution (solid line) and the numerical solutions in 2D polar (dots) and 2D Cartesian coordinates (dashed line) for
(a) fluid pressure, (b) solid pressure, and (c) radial particle velocity. The material properties correspond to those of a sandstone saturated with a viscous pore
fluid (Table 2). The analytical solution is only available for the fluid and solid pressures [17].
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with the proposed numerical solution is in excellent agreement with the corresponding analytical and Cartesian numerical
solution. We used the analytical solution of Diaz and Ezziani [18] for the comparison in Fig. 2 and the implementation of
de la Puente et al. [23] for the analytical solution of Carcione and Quiroga-Goode [17] for the comparison in Fig. 3.
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Fig. 4. Reciprocity experiment for the same model configuration used in the first example (Figs. 1 and 2). The solid line corresponds the solution for original
configuration and is identical to that shown in Fig. 2; dots denote the corresponding reciprocal solution obtained by exchanging the source and receiver
positions.
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In Fig. 4 we show the results of a test with regard to the validity of the reciprocity principle. Due to the use of a fluid
injection source, which has a monopole radiation pattern, the directivity of the source can be neglected and only the
source and the receiver positions in the first experiment (Figs. 1 and 2) have to be exchanged. This test is important to
assure that the inherent singularity at the origin of the polar coordinate system is adequately handled numerically



Fig. 5. Geometrical setup for the borehole experiments. The quadrupole-type fluid injection source (x–x) and the receivers (O) are located on the rigid inner
boundary of the acoustic domain.

Fig. 6. Snapshot of the pressure field after a propagation time of 300 ls for the model containing no casing and open-pore boundary conditions (Figs. 5 and
7, Table 1).
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[25]. The reason is that potential variations related to this feature would be different for the two solutions due to differing
distances between the sources and the central singularity. The perfect conformity of the reciprocal solutions shows that
the hole associated with the singularity can indeed be chosen small enough to avoid any distorting effects on the resulting
seismograms.
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Fig. 7. Recordings of the fluid pressure in a borehole without casing (Fig. 5, Table 1). The solid line correspond to open-pore boundary conditions, while the
dashed line represents closed-pore conditions. The recordings are normalized with respect to the maximum amplitude.
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Fig. 8. Comparison of the fluid pressure recordings in a borehole in the presence and in the absence of a casing (Fig. 5, Tables 1 and 3). Both closed-pore as
well as open-pore boundary conditions for the cased borehole are shown. The permeability of the casing in this experiment is 130 D. The data are
normalized with respect to the maximum amplitude.
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4.2. Solutions for a quadrupole-type source

In the following simulations, we consider an acoustic inner domain surrounded by one or several porous solids in analogy
to a horizontal cross-section through a vertical fluid-filled borehole. The interface between the acoustic and the porous do-
main satisfies open-pore boundary conditions, where the surface flow impedance T is zero and closed-pore boundary con-
ditions, where the surface flow impedance is infinitely large.

We consider a source that corresponds to a fluid volume injection on two opposite sides of the inner rigid boundary.
Although the resulting radiation pattern strongly resembles a quadrupole source, this is neither a quadrupole source, as
the two poles of opposite polarizations are missing and cannot be modeled using quadrupole symmetry, nor is it a dipole
source as the two poles have the same polarity. Due to the 2D nature of the modeling domain, the sources are assumed
to extend infinitely along the borehole axis. Two receivers are aligned perpendicularly to the axis of fluid pressure excitation.
The overall model setup is shown in Fig. 5 and consists of three domains in order to adequately model a casing between the
fluid and the surrounding porous solid.
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Fig. 9. Recordings of the fluid pressure in the presence of a casing characterized by a permeability of 1900 D (Fig. 5, Tables 1 and 3). The solution for both
closed-pore and open-pore boundary conditions are shown. The closed-pore solution for a casing with permeability of 130 D (Fig. 8) is also shown and
coincides with the closed pore solution of the casing with 1900 D. The data is normalized with respect to the maximum amplitude.

Table 3
Poro-elastic material properties of a screened PVC casing [1,28].

Grain Bulk modulus, Ks 4.049 GPa
Shear modulus, ls 1.248 GPa
Density, qs 1400 kg/m3

Matrix Bulk modulus, Km 3.482 GPa
Shear modulus, lm 1.211 GPa
Porosity, / 0.04/0.10
Permeability, j 130 D/1900 D (1 D = 9.86233 � 10�13 m2)
Tortuosity, T 1.5

Fluid Density, qf 1000 kg/m3

Viscosity, g 0.001 Pa s
Bulk modulus, K 2.25 GPa
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In the first example, the fluid filling the borehole and the pores of the surrounding medium is water, the porous medium
is an unconsolidated sand (Table 1), and there is no casing between the fluid-filled borehole and the porous formation. The
radius of the borehole is 50 mm and the acoustic domain consists of 21 grid nodes in the radial direction and 41 grid nodes in
the azimuthal direction. In this case, the hole in the center of the domain represents a hypothetical borehole logging tool and
has a radius of 20 mm. The outer boundary of the tool is assumed to be rigid [12]. The first porous domain consists of 11 grid
points in the radial direction and 65 grid points in the azimuthal direction. The outer radius of the first of the two porous
domain is 56.2 mm, which corresponds to the outer radius of the casing. The second, outer porous domain has the same
material properties and is discretized using 85 grid points in the radial direction and 85 grid points in the azimuthal direc-
tion. The outer radius of this domain is 30 cm. The time history of the source is a Ricker wavelet with a central frequency of
10 kHz acting on the fluid pressure at the rigid inner boundary of the acoustic domain. Fig. 6 shows a snapshot of the pres-
sure field illustrating the complex source radiation pattern resulting from the interaction of the quadrupole-type source, the
rigid inner boundary, and the fluid-filled borehole, while Fig. 7 compares the numerical solutions for open- and closed-pore
boundary conditions. The closed pore case could for example represent the case of thin impermeable mud cake separating
the borehole fluid from the surrounding porous formation. Both solutions exhibit a special reverberatory character related to
the waveguide effects of the borehole wall and show small but consistent differences in terms of their amplitudes.

In the second example, we set the properties of the inner porous domain to those of PVC to emulate a typical casing used
to stabilize boreholes in the unconsolidated surficial sediments. The thickness of this PVC casing is 0.62 cm. The material
properties of PVC are largely adopted from Bakulin [1]. There are, however, differing opinions with regard to the hydraulic
properties of typical screened PVC casings. For example, Bakulin [1] uses a porosity of 4 % and a permeability of 130 D,
whereas Barrash [28] calculates the porosity of screened PVC tubing to be of the order of 10 % or less and estimates the per-
meability based on the analog of a fractured karstic medium to be �1900 D (Table 3). Fig. 8 compares the recordings in the
presence of a casing with screened PVC with a permeability of 130 D with the corresponding recordings in the absence of a
casing, whereas Fig. 9 shows the results for the same experiment assuming a permeability of 1900 D for the screened casing.
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The solutions for both open- and closed-pore boundary conditions are displayed. Note that the closed-pore responses do not
depend on the permeability. We see that the presence of a casing has a significant influence on the waveforms and ampli-
tudes of the recorded pressure fields, whereas the influence of the permeability of the casing as well as the open- or closed-
pore boundary conditions seem to be of subordinate importance. Despite their conceptual simplicity, these examples clearly
illustrate both the inherent complexity of seismic wave phenomena in borehole-type environments as well as the potential
of the proposed numerical technique for adequately simulating them.

5. Conclusions

We have presented a pseudo-spectral numerical solution of the poro-elastic equations in 2D polar coordinates.
Using a domain decomposition technique allows for splitting the numerical grid into several concentric sub-domains.
The interfaces between the various sub-domains are matched based on the method of characteristics to satisfy the phys-
ical boundary conditions. In view of the eventual goal of modeling seismic wave propagation in fluid-filled boreholes,
but without any loss of generality, the innermost sub-domain is based on the acoustic wave equation. The discretization
of the wavefield in the radial direction employs a Chebyshev differential operator, whereas periodic boundary conditions
based on a Fourier expansion is used along the azimuthal direction. The resulting numerical approach has been success-
fully tested with regard to pertinent analytical solutions as well as with regard to a corresponding numerical solution for
2D Cartesian coordinates. Using the reciprocity principle, we have also verified that the algorithm handles the singularity
at the origin of the polar coordinate system in an adequate manner. Several examples involving a central fluid-filled re-
gion, the presence or absence of a casing as well as open- and closed-pore boundary conditions demonstrate the poten-
tial of the numerical approach for the realistic modeling of complex seismic wave phenomena in
heterogeneous borehole-type environments. For this purpose, the solution will need to be extended to 3D cylindrical
coordinates by adding the axial dimension to the governing equations, which is expected to be relatively
straightforward.
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Appendix A. Differential operators in polar coordinates

The gradient of a scalar quantity f in polar coordinates ðr; hÞ is given by
rf ¼ f;r êr þ
1
r

f;h êh; ðA:1Þ
where êr and êh are unit vectors along the radial and azimuthal directions, respectively, and the subscript ‘‘; r’’ denotes dif-
ferentiation of the corresponding parameter with respect to the coordinate r. The gradient and divergence of a vector v are
given by
rv ¼
v r;r

1
r ðv r;h � vhÞ

vh;r
1
r ðvh;h þ v rÞ

 !
ðA:2Þ
and
r � v ¼ 1
r
@

@r
ðr � v rÞ þ

1
r
@vh

@h
: ðA:3Þ
Appendix B. Boundary conditions

B.1. Free-surface boundary conditions

The boundary conditions at the open-pore free surface of a porous medium are
srr ¼ srh ¼ 0; p ¼ 0: ðB:1Þ
Let the superscripts ‘‘(old)’’ and ‘‘(new)’’ denote values of variables before and after the application of the boundary condi-
tions at the inner boundary of the mesh. Retaining the inward characteristics yields
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cðoldÞ
1 ¼ sðnewÞ

hh ;

cðoldÞ
2 ¼ l22v ðnewÞ

h þ qðnewÞ
h ;

cðoldÞ
3 ¼ l31v ðnewÞ

r þ l33qðnewÞ
r ;

cðoldÞ
5 ¼ l51v ðnewÞ

r þ l53qðnewÞ
r ;

cðoldÞ
7 ¼ l72v ðnewÞ

h ;

ðB:2Þ
where cðoldÞ
J ; J ¼ 1; . . . ;7 are the old components of the characteristic vector c. Solving the system (B.2) gives the free-surface

boundary equations for the inner boundary
v ðnewÞ
r ¼ ðl33cðoldÞ

5 � l53cðoldÞ
3 Þ=ðl33l51 � l31l53Þ;

v ðnewÞ
h ¼ cðoldÞ

7 =l72;

qðnewÞ
r ¼ ðl51cðoldÞ

3 � l31cðoldÞ
5 Þ=ðl33l51 � l31l53Þ;

qðnewÞ
h ¼ cðoldÞ

2 � cðoldÞ
7 l22=l72;

sðnewÞ
rr ¼ 0;

sðnewÞ
hh ¼ cðoldÞ

1 ;

sðnewÞ
rh ¼ 0;

pðnewÞ ¼ 0:

ðB:3Þ
Correspondingly, the boundary equations for the outer boundary are
v ðnewÞ
r ¼ ðl53cðoldÞ

4 � l33cðoldÞ
6 Þ=ðl33l51 � l31l53Þ;

v ðnewÞ
h ¼ �cðoldÞ

8 =l72;

qðnewÞ
r ¼ ðl31cðoldÞ

6 � l51cðoldÞ
4 Þ=ðl33l51 � l31l53Þ;

qðnewÞ
h ¼ cðoldÞ

2 þ cðoldÞ
8 l22=l72;

sðnewÞ
rr ¼ 0;

sðnewÞ
hh ¼ cðoldÞ

1 ;

sðnewÞ
rh ¼ 0;

pðnewÞ ¼ 0:

ðB:4Þ
B.2. Fluid/porous-solid boundary conditions

Let us denote by pa and p the fluid pressure in the fluid and porous medium domains, respectively. The boundary condi-
tions at an interface between a porous medium and a fluid are
qr þ v r ¼ wr; pa � p ¼ Tqr; srr ¼ pa; srh ¼ 0; ðB:5Þ
where T is the dimensionless surface flow impedance. T ¼ 0 corresponds to the open-pore case, whereas T ¼ 1 corresponds
to the closed-pore case.

The updated fields for the porous medium are
Dv ðnewÞ
r ¼ cðoldÞ

5 ½�l33þ If l35þðIf þTÞl38�þ cðoldÞ
3 ½If l35þ l53�ðIf þTÞl58�þ2dðoldÞ

3 f�l38l53þ l33ðl58� l35Þþ l35½Tðl38þ l58Þ� l53�g;

v ðnewÞ
h ¼ cðoldÞ

7
l72

DqðnewÞ
r ¼ cðoldÞ

5 ½l31� If ðl35þ l38Þ�þ2dðoldÞ
3 ½ðl35þ l38Þl51þ l31ðl35� l58Þ�� cðoldÞ

3 ðIf l35þ l51� If l58Þ;

qðnewÞ
h ¼ cðoldÞ

2 � cðoldÞ
7 l22

l72

DsðnewÞ
rr ¼�If cðoldÞ

5 ðl31� l33þTl38Þþ If cðoldÞ
3 ðl51� l53þTl58Þþ2dðoldÞ

3 ½�l33l51þTl38l51þ l31ðl53�Tl58Þ�;

DsðnewÞ
hh ¼DcðoldÞ

1 þ cðoldÞ
5 fl18½ðIf þTÞl31� If ðl33þTl35Þ�þ If l15ðl31� l33þTl38Þg

þ2dðoldÞ
3 fl18½ðl33þTl35Þl51þ l31ðTl35� l53Þ�þ l15½ðl33�Tl38Þl51� l31l53þTl31l58�g

�cðoldÞ
3 fl18½If Tl35þðIf þTÞl51� If l53�þ If l15ðl51� l53þTl58Þg;

sðnewÞ
rh ¼0;

DpðnewÞ ¼ cðoldÞ
5 ½If ðl33þTl35Þ�ðIf þTÞl31�þcðoldÞ

3 ½If Tl35þðIf þTÞl51� If l53��2dðoldÞ
3 ½ðl33þTl35Þl51þ l31ðTl35� l53Þ�;

ðB:6Þ
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where
D ¼ T½If l35ðl38 þ l58Þ þ l38l51 � l31l58� þ If ðl35 þ l38Þðl51 � l53Þ � l33ðIf l35 � If l58 þ l51Þ þ l31ðIf l35 � If l58 þ l53Þ: ðB:7Þ
The updated fields for the fluid are
wðnewÞ
r ¼ v ðnewÞ

r þ qðnewÞ
r ;

wðnewÞ
h ¼ wðoldÞ

h ;

pðnewÞ
a ¼ sðnewÞ

rr :

ðB:8Þ
B.3. Boundary conditions between two porous media

Let us denote by (1) and (2) the inner and outer media, respectively. The boundary conditions between these two porous
media can be obtained by retaining the first two characteristics and the outward characteristics
[c1ð1Þ; c2ð1Þ; c4ð1Þ; c6ð1Þ; c8ð1Þ] of the inner medium and the two first characteristics and the inward characteristics of the
outer medium [c1ð2Þ; c2ð2Þ; c3ð2Þ; c5ð2Þ; c7ð2Þ] and applying the open-pore boundary conditions [16].
v rð1Þ ¼ v rð2Þ; vhð1Þ ¼ vhð2Þ; qrð1Þ ¼ qrð2Þ; srrð1Þ ¼ srrð2Þ; srhð1Þ ¼ srhð2Þ ðB:9Þ
The boundary equations are
v ðnewÞ
r ð1Þ ¼ v ðnewÞ

r ð2Þ

¼ ðcðoldÞ
5 ð2Þððl38ð1Þl53ð1Þ � l33ð1Þl58ð1ÞÞl35ð2Þ � l35ð1Þððl38ð1Þ þ l58ð1ÞÞl33ð2Þ þ ðl33ð1Þ þ l53ð1ÞÞl38ð2ÞÞÞÞ=D

þ ðcðoldÞ
3 ð2Þðl38ð1Þl53ð1Þl35ð2Þ � l33ð1Þl58ð1Þl35ð2Þ þ l35ð1Þl38ð1Þl53ð2Þ þ l35ð1Þl58ð1Þl53ð2Þ þ l35ð1Þðl33ð1Þ

þ l53ð1ÞÞl58ð2ÞÞÞ=Dþ ðcðoldÞ
6 ð1Þð�l35ð1Þl38ð2Þl53ð2Þ þ l38ð1Þl35ð2Þðl33ð2Þ þ l53ð2ÞÞ þ l35ð1Þl33ð2Þl58ð2Þ

þ l33ð1Þl35ð2Þðl38ð2Þ þ l58ð2ÞÞÞÞ=D� ðcðoldÞ
4 ð1Þðl35ð1Þl38ð2Þl53ð2Þ þ l58ð1Þl35ð2Þðl33ð2Þ þ l53ð2ÞÞ

� l35ð1Þl33ð2Þl58ð2Þ þ l53ð1Þl35ð2Þðl38ð2Þ þ l58ð2ÞÞÞÞ=D;

v ðnewÞ
h ð1Þ ¼ v ðnewÞ

h ð2Þ ¼ cðoldÞ
7 ð2Þ=ðl72ð1Þ þ l72ð2ÞÞ � cðoldÞ

8 ð1Þ=ðl72ð1Þ þ l72ð2ÞÞ;

qðnewÞ
r ð1Þ ¼ qðnewÞ

r ð2Þ

¼ �ððcðoldÞ
5 ð2Þðl38ð1Þl51ð1Þl35ð2Þ � l31ð1Þl58ð1Þl35ð2Þ � l35ð1Þððl38ð1Þ þ l58ð1ÞÞl31ð2Þ þ ðl31ð1Þ þ l51ð1ÞÞl38ð2ÞÞÞÞ=DÞ

� ðcðoldÞ
3 ð2Þðl38ð1Þl51ð1Þl35ð2Þ � l31ð1Þl58ð1Þl35ð2Þ þ l35ð1Þl38ð1Þl51ð2Þ þ l35ð1Þl58ð1Þl51ð2Þ þ l35ð1Þðl31ð1Þ

þ l51ð1ÞÞl58ð2ÞÞÞ=D� ðcðoldÞ
6 ð1Þð�l35ð1Þl38ð2Þl51ð2Þ þ l38ð1Þl35ð2Þðl31ð2Þ þ l51ð2ÞÞ þ l35ð1Þl31ð2Þl58ð2Þ

þ l31ð1Þl35ð2Þðl38ð2Þ þ l58ð2ÞÞÞÞ=D� ðcðoldÞ
4 ð1Þð�l35ð1Þl38ð2Þl51ð2Þ � l58ð1Þl35ð2Þðl31ð2Þ þ l51ð2ÞÞ

þ l35ð1Þl31ð2Þl58ð2Þ � l51ð1Þl35ð2Þðl38ð2Þ þ l58ð2ÞÞÞÞ=D;

qðnewÞ
h ð1Þ ¼ cðoldÞ

2 ð1Þ � ðcðoldÞ
7 ð2Þl22ð1ÞÞ=ðl72ð1Þ þ l72ð2ÞÞ þ ðcðoldÞ

8 ð1Þl22ð1ÞÞ=ðl72ð1Þ þ 72ð2ÞÞ;

sðnewÞ
rr ð1Þ ¼ sðnewÞ

rr ð2Þ

¼ ðcðoldÞ
5 ð2Þð�l38ð1Þl53ð1Þl31ð2Þ þ l33ð1Þl58ð1Þl31ð2Þ þ l38ð1Þl51ð1Þl33ð2Þ � l31ð1Þl58ð1Þl33ð2Þ

þ l33ð1Þl51ð1Þl38ð2Þ � l31ð1Þl53ð1Þl38ð2ÞÞÞ=Dþ ðcðoldÞ
3 ð2Þðl38ð1Þl53ð1Þl51ð2Þ � l33ð1Þl58ð1Þl51ð2Þ

� l38ð1Þl51ð1Þl53ð2Þ þ l31ð1Þl58ð1Þl53ð2Þ � l33ð1Þl51ð1Þl58ð2Þ þ l31ð1Þl53ð1Þl58ð2ÞÞÞ=D� ðcðoldÞ
6 ð1Þ

� ð�l38ð1Þl33ð2Þl51ð2Þ � l33ð1Þl38ð2Þl51ð2Þ þ l38ð1Þl31ð2Þl53ð2Þ þ l31ð1Þl38ð2Þl53ð2Þ þ l33ð1Þl31ð2Þl58ð2Þ

� l31ð1Þl33ð2Þl58ð2ÞÞÞ=D� ðcðoldÞ
4 ð1Þðl58ð1Þl33ð2Þl51ð2Þ þ l53ð1Þl38ð2Þl51ð2Þ � l58ð1Þl31ð2Þl53ð2Þ

� l51ð1Þl38ð2Þl53ð2Þ � l53ð1Þl31ð2Þl58ð2Þ þ l51ð1Þl33ð2Þl58ð2ÞÞÞ=D; ðB:10Þ
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sðnewÞ
hh ð1Þ ¼ cðoldÞ

1 ð1Þ þ 1
D

cðoldÞ
5 ð2Þðl18ð1Þð�l35ð1Þl53ð1Þl31ð2Þ þ l35ð1Þðl31ð1Þ þ l51ð1ÞÞl33ð2Þ � l31ð1Þl53ð1Þl35ð2Þ þ l33ð1Þ

� ð�l35ð1Þl31ð2Þ þ l51ð1Þl35ð2ÞÞÞ þ l15ð1Þðl38ð1Þl53ð1Þl31ð2Þ � l33ð1Þl58ð1Þl31ð2Þ � l38ð1Þl51ð1Þl33ð2Þ

þ l31ð1Þl58ð1Þl33ð2Þ � l33ð1Þl51ð1Þl38ð2Þ þ l31ð1Þl53ð1Þl38ð2ÞÞÞ þ ð1=DÞcðoldÞ
3 ð2Þðl18ð1Þðl33ð1Þl51ð1Þl35ð2Þ

� l31ð1Þl53ð1Þl35ð2Þ þ l33ð1Þl35ð1Þl51ð2Þ þ l35ð1Þl53ð1Þl51ð2Þ � l35ð1Þðl31ð1Þ þ l51ð1ÞÞl53ð2ÞÞ þ l15ð1Þ
� ð�l38ð1Þl53ð1Þl51ð2Þ þ l33ð1Þl58ð1Þl51ð2Þ þ l38ð1Þl51ð1Þl53ð2Þ � l31ð1Þl58ð1Þl53ð2Þ þ l33ð1Þl51ð1Þl58ð2Þ

� l31ð1Þl53ð1Þl58ð2ÞÞÞ � ð1=DÞcðoldÞ
6 ð1Þðl18ð1Þð�l35ð1Þl33ð2Þl51ð2Þ � l33ð1Þl35ð2Þðl31ð2Þ þ l51ð2ÞÞ

þ l35ð1Þl31ð2Þl53ð2Þ þ l31ð1Þl35ð2Þðl33ð2Þ þ l53ð2ÞÞÞ þ l15ð1Þðl38ð1Þl33ð2Þl51ð2Þ þ l33ð1Þl38ð2Þl51ð2Þ

� l38ð1Þl31ð2Þl53ð2Þ � l31ð1Þl38ð2Þl53ð2Þ � l33ð1Þl31ð2Þl58ð2Þ þ l31ð1Þl33ð2Þl58ð2ÞÞÞ � ð1=DÞcðoldÞ
4 ð1Þðl18ð1Þ

� ð�l35ð1Þl33ð2Þl51ð2Þ þ l53ð1Þl35ð2Þðl31ð2Þ þ l51ð2ÞÞ þ l35ð1Þl31ð2Þl53ð2Þ � l51ð1Þl35ð2Þðl33ð2Þ þ l53ð2ÞÞÞ þ l15ð1Þ
� ð�l58ð1Þl33ð2Þl51ð2Þ � l53ð1Þl38ð2Þl51ð2Þ þ l58ð1Þl31ð2Þl53ð2Þ þ l51ð1Þl38ð2Þl53ð2Þ þ l53ð1Þl31ð2Þl58ð2Þ
� l51ð1Þl33ð2Þl58ð2ÞÞÞ;

sðnewÞ
rh ð1Þ ¼ sðnewÞ

rh ð2Þ ¼ ð2cðoldÞ
7 ð2Þl72ð1ÞÞ=ðl72ð1Þ þ l72ð2ÞÞ þ ð2cðoldÞ

8 ð1Þl72ð2ÞÞ=ðl72ð1Þ þ l72ð2ÞÞ;

pðnewÞð1Þ ¼ pðnewÞð2Þ

¼ ðcðoldÞ
5 ð2Þðl35ð1Þl53ð1Þl31ð2Þ � l35ð1Þðl31ð1Þ þ l51ð1ÞÞl33ð2Þ þ l31ð1Þl53ð1Þl35ð2Þ þ l33ð1Þðl35ð1Þl31ð2Þ

� l51ð1Þl35ð2ÞÞÞÞ=D� ðcðoldÞ
3 ð2Þðl33ð1Þl51ð1Þl35ð2Þ � l31ð1Þl53ð1Þl35ð2Þ þ l33ð1Þl35ð1Þl51ð2Þ þ l35ð1Þl53ð1Þl51ð2Þ

� l35ð1Þðl31ð1Þ þ l51ð1ÞÞl53ð2ÞÞÞ=D� ðcðoldÞ
6 ð1Þðl35ð1Þl33ð2Þl51ð2Þ þ l33ð1Þl35ð2Þðl31ð2Þ þ l51ð2ÞÞ

� l35ð1Þl31ð2Þl53ð2Þ � l31ð1Þl35ð2Þðl33ð2Þ þ l53ð2ÞÞÞÞ=Dþ ðcðoldÞ
4 ð1Þð�l35ð1Þl33ð2Þl51ð2Þ þ l53ð1Þl35ð2Þðl31ð2Þ

þ l51ð2ÞÞ þ l35ð1Þl31ð2Þl53ð2Þ � l51ð1Þl35ð2Þðl33ð2Þ þ l53ð2ÞÞÞÞ=D;

qðnewÞ
h ð2Þ ¼ cðoldÞ

2 ð2Þ � ðcðoldÞ
7 ð2Þl22ð2ÞÞ=ðl72ð1Þ þ l72ð2ÞÞ þ ðcðoldÞ

8 ð1Þl22ð2ÞÞ=ðl72ð1Þ þ l72ð2ÞÞ;

sðnewÞ
hh ð2Þ ¼ cðoldÞ

1 ð2Þ þ ð1=DÞcðoldÞ
5 ð2Þð�l35ð1Þl53ð1Þl18ð2Þl31ð2Þ þ l31ð1Þl58ð1Þl15ð2Þl33ð2Þ þ l31ð1Þl35ð1Þl18ð2Þl33ð2Þ

þ l35ð1Þl51ð1Þl18ð2Þl33ð2Þ þ l38ð1Þl15ð2Þðl53ð1Þl31ð2Þ � l51ð1Þl33ð2ÞÞ � l31ð1Þl53ð1Þl18ð2Þl35ð2Þ
þ l31ð1Þl53ð1Þl15ð2Þl38ð2Þ � l33ð1Þðl58ð1Þl15ð2Þl31ð2Þ þ l35ð1Þl18ð2Þl31ð2Þ � l51ð1Þl18ð2Þl35ð2Þ

þ l51ð1Þl15ð2Þl38ð2ÞÞÞ � ð1=DÞcðoldÞ
3 ð2Þððl38ð1Þl15ð2Þ � l35ð1Þl18ð2ÞÞðl53ð1Þl51ð2Þ � l51ð1Þl53ð2ÞÞ � l33ð1Þ

� ðl51ð1Þl18ð2Þl35ð2Þ þ l58ð1Þl15ð2Þl51ð2Þ þ l35ð1Þl18ð2Þl51ð2Þ þ l51ð1Þl15ð2Þl58ð2ÞÞ þ l31ð1Þðl53ð1Þl18ð2Þl35ð2Þ

þ l58ð1Þl15ð2Þl53ð2Þ þ l35ð1Þl18ð2Þl53ð2Þ þ l53ð1Þl15ð2Þl58ð2ÞÞÞ � ð1=DÞcðoldÞ
6 ð1Þððl38ð1Þl15ð2Þ � l35ð1Þl18ð2ÞÞ

� ðl33ð2Þl51ð2Þ � l31ð2Þl53ð2ÞÞ � l33ð1Þð�l15ð2Þl38ð2Þl51ð2Þ þ l18ð2Þl35ð2Þðl31ð2Þ þ l51ð2ÞÞ þ l15ð2Þl31ð2Þl58ð2ÞÞ

þ l31ð1Þð�l15ð2Þl38ð2Þl53ð2Þ þ l18ð2Þl35ð2Þðl33ð2Þ þ l53ð2ÞÞ þ l15ð2Þl33ð2Þl58ð2ÞÞÞ � ð1=DÞcðoldÞ
4 ð1Þð�ðl58ð1Þl15ð2Þ

þ l35ð1Þl18ð2ÞÞðl33ð2Þl51ð2Þ � l31ð2Þl53ð2ÞÞ þ l53ð1Þð�l15ð2Þl38ð2Þl51ð2Þ þ l18ð2Þl35ð2Þðl31ð2Þ þ l51ð2ÞÞ
þ l15ð2Þl31ð2Þl58ð2ÞÞ � l51ð1Þð�l15ð2Þl38ð2Þl53ð2Þ þ l18ð2Þl35ð2Þðl33ð2Þ þ l53ð2ÞÞ þ l15ð2Þl33ð2Þl58ð2ÞÞÞ;
with
D ¼ ðl31ð1Þl58ð1Þl33ð2Þl35ð2Þ þ l31ð1Þl53ð1Þl35ð2Þl38ð2Þ � l35ð1Þl58ð1Þl33ð2Þl51ð2Þ � l35ð1Þl53ð1Þl38ð2Þl51ð2Þ
þ l35ð1Þl58ð1Þl31ð2Þl53ð2Þ þ l31ð1Þl58ð1Þl35ð2Þl53ð2Þ þ l31ð1Þl35ð1Þl38ð2Þl53ð2Þ þ l35ð1Þl51ð1Þl38ð2Þl53ð2Þ þ l38ð1Þ
� ð�l35ð1Þl33ð2Þl51ð2Þ þ l53ð1Þl35ð2Þðl31ð2Þ þ l51ð2ÞÞ þ l35ð1Þl31ð2Þl53ð2Þ � l51ð1Þl35ð2Þðl33ð2Þ þ l53ð2ÞÞÞ
þ ðl35ð1Þl53ð1Þl31ð2Þ � l35ð1Þðl31ð1Þ þ l51ð1ÞÞl33ð2Þ þ l31ð1Þl53ð1Þl35ð2ÞÞl58ð2Þ � l33ð1Þðl58ð1Þl35ð2Þðl31ð2Þ þ l51ð2ÞÞ
þ l51ð1Þl35ð2Þðl38ð2Þ þ l58ð2ÞÞ þ l35ð1Þðl38ð2Þl51ð2Þ � l31ð2Þl58ð2ÞÞÞÞ:
B.4. Rigid boundary conditions for a fluid

Rigid boundary conditions at the center of the fluid-filled domain are obtained by retaining the inward characteristics and
wr ¼ 0;wnew

h ¼ wold
h and are implemented as
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wðnewÞ
h ¼ wðoldÞ

h ;

wðnewÞ
r ¼ 0;

pðnewÞ
a ¼ 2dðoldÞ

2 :

ðB:11Þ
At the outer fluid boundary it would be
wðnewÞ
h ¼ wðoldÞ

h ;

wðnewÞ
r ¼ 0;

pðnewÞ
a ¼ 2dðoldÞ

3 :

ðB:12Þ
B.5. Non-reflecting boundary conditions

The non-reflecting boundary conditions for the outer boundary of a porous medium can be obtained by retaining the first
two characteristics and the outward characteristics and set the inward characteristics c3; c5, and c7 to zero. This leads to the
following boundary conditions for the outer boundary
2v ðnewÞ
r ¼ v ðoldÞ

r þ fðl38l53 � l33l58ÞpðoldÞ þ ½l35ðl33 þ l53Þ�sðoldÞ
rr g=ðl33l51 � l31l53Þ;

2v ðnewÞ
h ¼ v ðoldÞ

h � sðoldÞ
rh =ð2l72Þ;

2qðnewÞ
r ¼ qðoldÞ

r þ fðl38l51 � l31l58ÞpðoldÞ þ ½l35ðl31 þ l51Þ�sðoldÞ
rr g=ð�l33l51 þ l31l53Þ;

qðnewÞ
h ¼ qðoldÞ

h þ ðl22=2Þv ðoldÞ
h þ ðl22=4l72ÞsðoldÞ

rh ;

2sðnewÞ
rr ¼ sðoldÞ

rr þ ½ðl38l53 � l33l58ÞqðoldÞ
r þ ðl38l51 � l31l58Þv ðoldÞ

r �=ðl35ðl38 þ l58ÞÞ;
2sðnewÞ

hh ¼ l18pðoldÞ þ l15sðoldÞ
rr þ 2sðoldÞ

hh þ f½l18l35ðl33 þ l53Þ þ l15ð�l38l53 þ l33l58Þ�qðoldÞ
r

þ½l18l35ðl31 þ l51Þ þ l15ð�l38l51 þ l31l58Þ�v ðoldÞ
r g=ðl35ðl38 þ l58ÞÞ

2sðnewÞ
rh ¼ �2l72v ðoldÞ

h þ sðoldÞ
rh ;

2pðnewÞ ¼ pðoldÞ � ½ðl33 þ l53ÞqðoldÞ
r þ ðl31 þ l51Þv ðoldÞ

r �=ðl38 þ l58Þ:

ðB:13Þ
The inner boundary conditions are
2v ðnewÞ
r ¼ v ðoldÞ

r þ ½pðoldÞðl38l53 � l33l58Þ þ sðoldÞ
rr l35ðl33 þ l53Þ�=ðl31l53 � l33l51Þ;

2v ðnewÞ
h ¼ v ðoldÞ

h þ sðoldÞ
rh =ð2l72Þ;

2qðnewÞ
r ¼ qðoldÞ

r þ ½pðoldÞðl38l51 � l31l58Þ þ sðoldÞ
rr l35ðl31 þ l51Þ�=ðl33l51 � l31l53Þ;

qðnewÞ
h ¼ qðoldÞ

h þ v ðoldÞ
h ðl22=2Þ � sðoldÞ

rh l22=ð4l72Þ;
2sðnewÞ

rr ¼ sðoldÞ
rr þ ½qðoldÞ

r ðl33l58 � l38l53Þ þ v ðoldÞ
r ðl31l58 � l38l51Þ�=½l35ðl38 þ l58Þ�;

2sðnewÞ
hh ¼ pðoldÞl18 þ sðoldÞ

rr l15 þ 2sðoldÞ
hh þ fqðoldÞ

r ½l15ðl38l53 � l33l58Þ � l18l35ðl33 þ l53Þ�
þv ðoldÞ

r ½l15ðl38l51 � l31l58Þ � l18l35ðl31 þ l51Þ�g=ð2l35ðl38 þ l58ÞÞ;
2sðnewÞ

rh ¼ 2l72v ðoldÞ
h þ sðoldÞ

rh ;

2pðnewÞ ¼ pðoldÞ þ ½qðoldÞ
r ðl33 þ l53Þ þ v ðoldÞ

r ðl31 þ l51Þ�=ðl38 þ l58Þ:

ðB:14Þ
On the other hand, the non-reflecting boundary conditions of the outer boundary of the fluid are
wðnewÞ
h ¼ wðoldÞ

h ;

wðnewÞ
r ¼ dðoldÞ

3 =If ;

pðnewÞ
a ¼ dðoldÞ

3 ;

ðB:15Þ
while those of the inner boundary are
wðnewÞ
h ¼ wðoldÞ

h ;

wðnewÞ
r ¼ �dðoldÞ

2 =If ;

pðnewÞ
a ¼ dðoldÞ

2 :

ðB:16Þ
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