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ABSTRACT:
An accurate solution of the wave equation at a fluid-solid interface requires a correct implementation of the boundary

condition. Boundary conditions at fluid-solid interface require continuity of the normal component of particle veloc-

ity and traction, whereas the tangential components vanish. A main challenge is to model interface waves, namely,

the Scholte and leaky Rayleigh waves. This study uses a nodal discontinuous Galerkin (dG) finite-element method

with the medium discretized using an unstructured uniform triangular meshes. The natural boundary conditions in

the dG method are implemented by (1) using an explicit upwind numerical flux and (2) by using an implicit penalty

flux and setting the modulus of rigidity of the acoustic medium to zero. The accuracy of these methods is evaluated

by comparing the numerical solutions with analytical ones, with source and receiver at and away from the interface.

The study shows that the solutions obtained from the explicit and implicit boundary conditions provide the correct

results. The stability of the dG scheme is determined by the numerical flux, which also implements the boundary

conditions by unifying the numerical solution at shared edges of the elements in an energy stable manner.
VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0001170
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I. INTRODUCTION

The accurate computation of wave fields in realistic

Earth models is an ongoing challenge in local and global

seismology. The problem becomes more challenging in the

presence of fluid-solid interfaces. Of particular interest are

applications in geophysics, i.e., marine seismic exploration

concerning the ocean bottom or global Earth seismology,

using earthquake-generated seismic waves as a probing

field, involving the core-mantle-boundary (CMB) and inner-

core-boundary (ICB). The physics of the fluid is modeled by

the acoustic wave equation by assuming that the density of

the fluid is independent of pressure, with non-zero bulk

modulus, but zero rigidity (l) or shear. The propagation in

the solid is governed by the elastic wave equation, which

assumes that the medium has finite bulk and rigidity moduli.

Alternatively, the acoustic wave equation is obtained by set-

ting l to zero in the elastic approximation.

In a fluid-solid setup, there exist two interface waves:

first, the “Scholte waves” that mainly travel into the liquid

(Cagniard, 1962), and second, the leaky-Rayleigh wave

(Ash and Paige, 1985). The latter wave decays with depth in

the solid while it behaves as a propagating mode in the fluid

(Ash and Paige, 1985) with characteristics similar to the

head waves. Surprisingly, the amplitude of the leaky-

Rayleigh mode in fluid increases as it propagates away from

the interface (Farnell, 1970).

The main physical aspects of the interface waves are dis-

cussed in Glorieux et al. (2002), Glorieux et al. (2001), and

Padilla et al. (1999). In what follows, “acoustic-elastic” and

“fluid-solid” are used interchangeably. In subsequent sections,

the bulk velocities of the longitudinal waves in fluid and solid

are represented by cf and cp, respectively, the shear-wave

velocity of the solid is represented by cs, and the phase velocity

of the leaky Rayleigh wave, free Rayleigh waves in the solid

and Scholte wave are denoted by cpR, cR, and cSc, respectively.

The findings of Glorieux et al. (2002), Glorieux et al. (2001),

and Padilla et al. (1999) are summarized as:

(1) In the case of cf < cs < cp, the stiff solid condition, the

leaky-Rayleigh wave propagates with a phase velocity

ðcpRÞ slightly lower than cS and leaks energy in the form

of the head wave.

(2) In the case of cs < cf < cp, the soft solid condition,

Padilla et al. (1999) state that the leaky Rayleigh mode

travels in the fluid without dissipation as it is described

by a real root. This non-physical observation is refuted

by Glorieux et al. (2001) with the argument that the root

corresponding to the leaky Rayleigh mode is incorrectly

identified.

(3) If the density of the fluid qf is close to zero, the leaky

Rayleigh wave becomes a free Rayleigh wave.a)Electronic mail: rajexplo@gmail.com
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(4) In the case of a large contrast in the acoustic impedance

of the solid and fluid, the phase velocity of the Scholte

wave cSc is close to cf.

(5) For the case of a soft solid cs < cf < cp, the phase

velocity of the Scholte wave is less than cf and the wave

becomes more localized.

(6) In the two-dimensional (2D) case, the Scholte wave

travels without attenuation whereas in three dimensions

the dissipation of energy is caused by geometrical

spreading.

Hence, for a stiff solid, it holds that cSc < cR < cf

< cpR < cs < cp. The domain of existence of the leaky

Rayleigh mode is described by the Rayleigh window defined

by the angle between the front of the Rayleigh wave and the

interface (Carcione and Helle, 2004).

A variety of numerical methods have been used to solve

the acousto-elastic system. The discretization is performed

on (a) first-order system of partial differential equations

(PDEs) in the stress-velocity formulation, or (b) in its

original form of displacement, described by a system of

second-order PDEs. A detailed discussion on the numerical

methods, adopted for simulation of interface waves in a

fluid-solid setup, is discussed in a recent study by Carcione

et al. (2018). The first to model the interface was Stephen

(1983). He used a second-order finite-difference method to

solve the elastic wave equation and treated the boundary

condition by approximating the interface with a transition

zone where the velocity increases gradually. Stephen also

treated the boundary condition by setting cs¼ 0 in the acous-

tic media but obtained erroneous results. A spectral finite

element method was used by Komatitsch et al. (2000) who

treated the boundary conditions explicitly. The study by

Komatitsch et al. (2000) does not show the propagation of

interface waves and lacks the comparison between numeri-

cal and analytical solutions. van Vossen et al. (2002) used

an explicit method based on finite differences, where only

five grid points per wavelength are required for an accurate

modeling. Zhang (2004) used an integral-based approach to

model the boundary conditions explicitly with a domain dis-

cretized by unstructured meshes. The studies presented by

van Vossen et al. (2002) and Zhang (2004) do not show the

propagation of interface waves (Scholte and leaky Rayleigh

waves) and also do not show the accuracy of the numerical

solutions by comparison to the analytical solution. Carbajal-

Romero et al. (2013) used a boundary element method to

simulate the body and Scholte waves, excluding the leaky

Rayleigh wave, and validated their results by comparing

against solutions obtained by using a discrete wave-number

method and a spectral-element method. Chaljub et al.
(2003) solve the system for a heterogenous fluid-solid

sphere but did not simulate the interface waves. Madec et al.
(2009) solved the system by using a high-order finite ele-

ment method and primarily simulated the body waves but

do not consider the interface waves. De Basabe and Sen

(2014) modeled the Scholte waves and compared the solu-

tions obtained with several algorithms such as finite

differences and spectral-element methods, which show lim-

ited accuracy. They concluded that the single-grid method

has spurious modes in the fluid subdomain, but they do not

show any results obtained by an explicit method.

Recently, Carcione et al. (2018) simulated the interface

waves using a direct-grid method, based on Chebyshev spa-

tial differentiation, by incorporating natural boundary condi-

tions using implicit and explicit approaches. In the implicit

method, the natural boundary condition is incorporated by

setting cs¼ 0 in the acoustic medium (fluid). The explicit

method is based on a domain decomposition technique

(Carcione, 2014). They concluded that the implicit method

gives erroneous numerical results by comparing the numeri-

cal and analytical solutions, whereas the explicit method

was found to work.

Unlike the methods discussed above, all of which

recover the numerical solution globally, we consider the dis-

continuous Galerkin (dG) method. In the dG method, the

global solution is obtained by unifying the solution at the

shared edges of the elements by using a weak operator,

known as a numerical flux (Hesthaven and Warburton,

2007). The boundary and interface conditions are incorpo-

rated in the scheme through this operator. The numerical

flux determines the stability of the numerical scheme and

thus ensures a correct implementation of the interface

boundary conditions. For a linear problem, the flux can be

computed explicitly by solving a Riemann problem on the

interior boundary of each element (Wilcox et al., 2010), dis-

cretizing the acousto-elastic domain, resulting in an upwind

flux. The computation of the upwind flux is expensive as it

involves the eigen-decomposition, which becomes more

cumbersome for anisotropic media and the extension is non-

trivial. To circumvent this problem, Ye et al. (2016) pro-

posed an implicit method to compute the numerical flux by

adding a penalty term to the central flux (jump in the value

of the field variables in the direction normal to the edge of

the element), which eventually stabilizes the numerical

scheme. In this study, we compute the numerical solutions

using both fluxes, upwind and penalized central fluxes, and

show that in both cases, the dG method captures the inter-

face waves accurately.

The paper is organized as follows. Section II outlines

the acousto-elastic system and Sec. III reviews the disper-

sion equation for interface waves. Section IV describes the

system of equations in matrix form. Section V formulates

the dG scheme for a coupled acoustic-elastic system, and

Sec. VI presents the results. In Sec. VII, we offer a few con-

cluding remarks.

II. SYSTEM OF EQUATIONS DESCRIBING
ACOUSTIC-ELASTIC WAVES

The 2D velocity-stress equations for elastic wave propa-

gation in the (x1, x3) plane can be expressed by the following:

(i) Euler-Newton equations
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_v1 ¼
1

q
@r11

@x1

þ @r13

@x3

� �
; (1)

_v3 ¼
1

q
@r13

@x1

þ @r33

@x3

� �
; (2)

where v1 and v3 are the particle velocities along the x
and z axis, r11, r33, and r13 are stress components,

and q is the density. A dot above a variable denotes

the time derivative.

(ii) Constitutive equations

_r11 ¼ kþ lð Þ @v1

@x1

þ @v3

@x3

� �
þ l

@v1

@x1

� @v2

@x3

� �
þ f11;

(3)

_r33 ¼ kþ lð Þ @v1

@x1

þ @v3

@x3

� �
� l

@v1

@x1

� @v3

@x3

� �
þ f33;

(4)

_r13 ¼ l
@v1

@x3

þ @v3

@x1

� �
þ f13; (5)

where k and l are the Lam�e constants, and f
¼ ½f11; f33; f13�T are moment-tensor components. In

this work, f is assumed to be the product of com-

pactly supported spatial functions (specifically Dirac

delta functions) and a Ricker wavelet in the time

domain. In 2D, k ¼ qðc2
p � 2c2

s Þ and l ¼ qc2
s .

III. THE DISPERSION EQUATION

The dispersion equation is obtained by implementing

the continuity of the normal components of the displacement

and stress at the interface. This is expressed as (Carcione

et al., 2018; Carcione and Helle, 2004; Glorieux et al.,
2002; Glorieux et al., 2001; Scholte, 1942)

SðqÞ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qÞð1� aqÞ

p
� ð2� qÞ2

�
qf

q

� �
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aq

1� bq

s
; (6)

where q ¼ v2=c2
S; a ¼ c2

S=c2
L, and b ¼ c2

S=c2
f with v being the

complex velocity of the interface waves.

The dispersion equation of the elastic Rayleigh wave is

obtained by taking qf ¼ 0 in Eq. (6). The Riemann surface of

S(q) has eight sheets, corresponding to different choices of the

signs of the complex roots
ffiffiffiffiffiffiffiffiffiffiffi
1� q
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aq
p

, and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bq
p

(Ansell, 1972). In the lossless case, the roots of the Scholte and

the leaky Rayleigh waves are real and complex, respectively.

These surface waves are a superposition of inhomogeneous

elastic waves and the attenuation vector makes an angle of 90�

with respect to the propagation vector. The Scholte wave

attenuates in the direction perpendicular to the interface, while

the leaky Rayleigh wave attenuates along the interface. The

Scholte waves travel without attenuation in 2D lossless media,

whereas in three-dimensional (3D) media, the energy of

Scholte waves decays due to geometrical spreading. The

energy of the leaky Rayleigh wave decays both in 2D and 3D

lossless media.

The leaky wave exists only for a stiff solid bottom since the

shear-wave velocity in the solid is smaller than the sound veloc-

ity in the fluid. The leaky Rayleigh wave becomes the Rayleigh

wave as the density of the liquid approaches zero. Therefore, for

a stiff bottom, the Rayleigh wave is not the Scholte wave if the

density of the liquid goes to zero (Carcione and Helle, 2004).

For soft bottoms, the shear-wave velocity in the solid is smaller

than the sound velocity in the fluid. Moreover, the Scholte wave

becomes the free Rayleigh wave if the density of the liquid tends

to zero (Rauch, 1980). The existence of the free Rayleigh wave

is unconditional, whereas the leaky Rayleigh wave exists only

for stiff bottoms. In this case, the leaky Rayleigh wave has a

velocity slightly lower than the body-wave shear velocity and

the Scholte wave velocity is lower than the velocity in the liquid

(Carcione et al., 2018; Carcione and Helle, 2004). The velocity

of the Scholte wave approaches the velocity of the liquid as the

stiffness of the solid increases.

IV. SYMMETRIC FORM OF THE SYSTEM OF
EQUATION IN MATRIX FORM

Equations (1)–(5) can be rewritten as a symmetric

hyperbolic system of PDEs using the Voigt notation

q
@v

@t
¼
X

i2f1;3g
AT

i

@r

@xi
; (7)

C�1 @r

@t
¼
X

i2f1;3g
Ai
@v

@xi
þ f ; (8)

where

C ¼
kþ 2l k 0

k kþ 2l 0

0 0 l

2
64

3
75;

C�1 ¼ 1

klþ 4l2

kþ 2l �k 0

�k kþ 2l 0

0 0
4l2 þ lk

l

2
6664

3
7775;

v ¼ ½v1; v3�T ; r ¼ ðr11; r33; r13Þ;

A1 ¼
1 0

0 0

0 1

2
64

3
75; A3 ¼

0 0

0 1

1 0

2
64

3
75; and

f ¼ ½f11; f33; f13�T

Note that C is symmetric and positive-definite. Matrices A1

and A2 are constant but q; C and C�1 may vary spatially.

Combining Eqs. (7) and (8) yields

Q
@q

@t
þr � Aqð Þ ¼ f ; (9)

where
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0
0

, q ¼ ½r11; r33; r13; v1; v3�T; and

A ¼ ½A12; A21�T with

A12 ¼
A1 03�3

02�2 AT
1

" #
and A21 ¼

A3 03�3

02�2 AT
3

" #
:

V. A DG FORMULATION FOR ACOUSTO-ELASTIC
WAVE PROPAGATION

We assume that the domain X is triangulated by a mesh

Xh that consists of elements Dk, which are images of a refer-

ence element D̂ under the local affine mapping,

xk ¼ Ukx̂; (10)

where xk ¼ fxk; ykg denote the physical coordinates on Dk

and x̂ ¼ fx̂; ŷg denote coordinates on the reference element.

We denote the determinant of the Jacobian of Uk as J.

Solutions over each element Dk are approximated from

a local approximation space VhðDkÞ, which is defined as a

composition of the mapping Uk and a reference approxima-

tion space VhðD̂Þ

VhðDkÞ ¼ Uk�VhðD̂Þ: (11)

The global approximation space VhðXhÞ is defined as

VhðXhÞ ¼ �
k

VhðDkÞ; (12)

where � represents the direct sum. We take VhðD̂Þ
¼ PNðD̂Þ, with PNðD̂Þ being the space of polynomials of

total degree N on the reference simplex. In two dimensions,

PN on a triangle is

PNðD̂Þ ¼ fx̂iŷj; 0 � iþ j � Ng: (13)

The L2 inner product and norm over Dk is defined as

g; hð Þ ¼
ð

Dk

g � h dx ¼
ð

D̂

g � hJ dx̂;

jjgjj2L2X ¼ ðg; gÞL2ðDkÞ;

where g and h are vector-valued real functions. Global L2-

products and squared norms are defined as the sum of local

L2-inner products and squared norms over each element.

The L2-inner product and norm over the boundary @Dk of an

element are similarly defined as

hu; viL2ð@DkÞ ¼
ð
@Dk

u � v dx ¼
X

f2@Dk

ð
f̂

u � vJf dx̂;

jjujj2L2ð@DkÞ ¼ hu; ui;

where Jf is the Jacobian of the mapping from a reference

face f̂ to a physical face f of an element.

Let f be a face of element Dk with neighboring element

Dk;þ and unit outward normal n. Let u be a piecewise

smooth function with discontinuities across element interfa-

ces. We define the interior value u� and exterior value uþ

on face f of Dk,

u� ¼ ujf\@Dk ;�; uþ ¼ ujf\@Dk;þ :

The jump and average of a scalar function u 2 VhðXhÞ over f
are then defined as

u½ �½ � ¼ uþ � u�; uf gf g ¼ uþ þ u�

2
;

respectively. Jumps and averages of vector-valued functions

u 2 Rm and matrix-valued functions ~S 2 Rm�n are defined

component-wise,

u½ �½ �ð Þi ¼ ui½ �½ �; 1 � i � m ~S½ �½ �ð Þij ¼ ~S½ �½ �:

The system of equations [Eq. (9)] is linear and the dG

scheme used here is in strong form, obtained after integrat-

ing the residual by parts twice (Hesthaven and Warburton,

2007). The strong form also imposes the differentiable and

continuity requirements on the solutions and thus justifies

the term “strong.” The requirements of continuity and dif-

ferentiability are readily achieved for a linear system.

The strong formulation of Eq. (9) on an element Dk isð
Dk

Q
@q

@t
� pdxþ

ð
Dk

r � Aqð Þ � pdx

þ
ð
@Dk

n � ðAqÞ� � A�q�
� �� �

� pdx ¼
ð

Dk

f � pdx

for all p 2 VhðXhÞ; (14)

where ðAqÞ� is the numerical flux. The choice of the flux

will determine the method of implementation of boundary

conditions, i.e., explicitly or implicitly.

A. Explicit scheme

To compute the upwind flux, we solve a Riemann prob-

lem at shared edges of each element, corresponding to an

elastic-elastic, acoustic-acoustic, acoustic-elastic, and

elastic-acoustic interfaces. The Riemann problem to solve

Eq. (14) is defined as

q0ðxÞ ¼
q� if n � x < 0

qþ if n � x > 0:

�
(15)

The solution of Eq. (15) is described separately for elastic-

elastic, acoustic-acoustic, and elastic-acoustic or acoustic

elastic-interfaces.

1. Elastic-elastic interfaces

Equation (9) is written as
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Q
@q

@t
þ @A12q

@x1

þ @A21q

@x3

¼ f : (16)

In the remainder of this section, n :¼ n� denotes the

outward interface unit normal vector and the flux in the nor-

mal direction is Anq with An ¼ n1A12 þ n3A21. To construct

an upwind flux requires the computations of the characteris-

tics of the hyperbolic system defined in Eq. (9). To compute

the characteristics, we consider the eigen-decomposition of

Q�1An as

Q�1A ¼ RKR�1 (17)

with K ¼ diagð�cp;�cs; 0; cs; cpÞ and the jth column of R is

an eigenvector of Q�1A. For each wave speed ci in our sys-

tem, the Rankine-Hugonite jump condition is expressed as

�ciQðqm � qpÞ þ Anðqm � qpÞ ¼ 0; (18)

where qm and qp are states in the negative and positive nor-

mal directions, travelling with speed ci, across the disconti-

nuity. Matrices Q and An are evaluated in the region where

mode ci travels, denoted by “–” and “þ.” The Riemann

problem has four unknown states ðqa; qb; qc; qdÞ as shown in

Fig. 1. A full set of Rakine-Hugonite jump conditions is

given as

c�p Q� q� � qað Þ þ A�n ðq� � qaÞ ¼ 0; (19)

c�s Q� qa � qb
� �

þ A�n ðqa � qbÞ ¼ 0; (20)

A�n qb � Aþn qc ¼ 0; (21)

�cþs Qþ qa � qb
� �

þ Aþn ðqc � qdÞ ¼ 0; (22)

�cþp Qþ qd � qþ
� �

þ Aþn ðqd � qþÞ ¼ 0: (23)

Using the definitions of the eigenvalues and eigenvectors of

ðQ�Þ�1A� and ðQþÞ�1Aþ, we obtain

q� � qa ¼ a1r�1 ;

qa � qb ¼ a2r�2 þ a3r�3 ;

qc � qd ¼ a7rþ7 þ a8rþ8 ;

qd � qþ ¼ a9rþ9 :

Thus, the upwind numerical flux ðAnqÞ� is defined as

(Hesthaven and Warburton, 2007).

n � Aqð Þ� � A�q�
� �

¼ a1c�p Q�r�1 þ a2c�s Q�r�2

þ a3c�s Q�r�3 : (24)

The expression of a1, a2, and a3 is derived in detail by

Wilcox et al. (2010). After substituting a1, a2, and a3 into

Eq. (24), we recover

n � Aqð Þ��A�q�
� �

¼
n � r½ �½ �þqþcþp v½ �½ �

qþcþp þq�c�p

�
k�Iþ2l�n	n

q�c�p n

" #

� 1

q�c�s þqþcþsð Þ

�
2l�sym n	 n�ðn� r½ �½ �Þ

� �� �
q�c�s n� n� r½ �½ �ð Þ

" #

� qþcþs
q�c�s þqþcþs

�
2l�sym n	 n�ðn� v½ �Þ

� �� �
q�c�s n�ðn� v½ �Þ

" #
:

(25)

2. Acoustic-acoustic interface

Acoustic-acoustic interfaces are characterized by

l� ¼ lþ ¼ 0 and q reduces to q̂ ¼ ½r11; r33; v1; v3�. By

using relation @r13=@t ¼ l½ð@v1=@x3Þ þ ð@v3=@x1Þ�, we can

solve the Riemann problem to compute q̂ and keep the num-

ber of variables the same as in the case of the elastic-elastic

interface. Rankine-Hugonite jump conditions for acoustic-

acoustic interface are given as

c�p Q� q� � qað Þ þ A�n q� � qað Þ ¼ 0; (26)

A�n qa � Aþn qb ¼ 0; (27)

�cþp Qþ qb � qþ
� �

þ Aþn qb � qþ
� �

¼ 0: (28)

Following the same approach as in the elastic-elastic case,

the flux for the acoustic-acoustic interface is

n � Aqð Þ� � A�q�
� �

¼
n � r½ �½ � þ qþcþp v½ �½ �

qþcþp þ q�c�p

k�I
q�c�p n

� 	
:

(29)
FIG. 1. (Color online) Rankine-Hugonite jump conditions in the Riemann’s

problem.
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3. Elastic-acoustic and acoustic-elastic interfaces

For the elastic-acoustic interface ðl� 6¼ 0 and lþ ¼ 0Þ,
the solutions to the Riemann problem satisfy the Rankine-

Hugonite jump conditions

c�p Q� q� � qað Þ þ A�n ðq� � qaÞ ¼ 0; (30)

c�s Q� qa � qb
� �

þ A�n ðqa � qbÞ ¼ 0; (31)

A�n qb � Aþn qc ¼ 0; (32)

�cþp Q̂
þ

q̂c � q̂þ
� �

þ Ân
þðq̂c � q̂þÞ ¼ 0; (33)

where q̂ ¼ ½r11; r33; v1; v3�T and Q̂ ¼ Qjl¼0. The resulting

numerical flux incorporates an upwind term from an incom-

ing cp characteristic and a boundary term from an incoming

cs characteristic (Wilcox et al., 2010). The boundary condi-

tion for an incoming cs characteristic is expressed as

(Wilcox et al., 2010)

s � v� � 2c�s s:rn ¼ s:vþ; (34)

where s is the tangential vector along the interface. Solving

Eqs. (30)–(33) as in the elastic-elastic case and imposing the

boundary condition [Eq. (34)] weakly, the numerical flux

for the elastic-acoustic interface becomes

n � Aqð Þ��A�q�
� �

¼
n � r½ �½ �þqþcþp v½ �½ �

qþcþp þq�c�p

�
k�Iþ2l�n	n

q�c�p n

" #

� 1

q�c�s

�
2l�sym n	 n�ðn� r½ �½ �Þ

� �� �
q�c�s n� n� r½ �½ �ð Þ

" #
:

(35)

Equation (35) may be interpreted as an elastic-elastic flux

(25) for lþ ¼ 0. Using the same logic, the flux for the

acoustic-elastic interface ðl� ¼ 0 and lþ 6¼ 0Þ is

n � Aqð Þ� � A�q�
� �

¼
n � r½ �½ � þ qþcþp v½ �½ �

qþcþp þ q�c�p

k�I
q�c�p n

� 	
:

(36)

The flux for the acoustic-elastic interface [Eq. (36)] is the

same as that of the acoustic-acoustic interface [Eq. (29)].

Thus, for the explicit scheme, the flux in Eqs. (25), (29),

(35), and (36) is appropriately chosen by evaluating the val-

ues of l� and lþ of the medium.

B. Implicit scheme

The implicit scheme requires l¼ 0 in the numerical

scheme. The dG scheme must be consistent locally as well

as globally. The solid-solid, fluid-fluid, and solid-fluid

boundary conditions are expressed as

vþ � v� ¼ 0 and n � rþ � n � r� ¼ 0 on CSS;

(37a)

n � v6� v̂7ð Þ ¼ 0 and n � r6� n � r̂7 ¼ 0

on CSF and CFS; (37b)

v̂þ � v̂� ¼ 0 and r̂þ � r̂� ¼ 0 on CFF: (37c)

To derive the implicit scheme, the matrix form of the acous-

tic wave equation is required and can be expressed as

Q̂
@q̂

@t
þr � Âq̂

� �
¼ f̂ ; (38)

where

0
0

and

q̂ ¼ ½r̂; v1; v2� with r̂ ¼ �kÊ

where Ê is the longitudinal strain.

The dG scheme in strong form for Eq. (38) isð
Dk

Q̂
@q̂

@t
� p̂dxþ

ð
Dk

r � Âq̂
� �

� p̂dx

þ
ð
@Dk

n � ðÂq̂Þ� � Â
�

q̂�
� �� �

� p̂dx

¼
ð

Dk

f̂ � p̂dx for all p̂ 2 VhðXhÞ: (39)

To derive an implicit scheme, we consider a Lax-Friedrich

flux (Hesthaven and Warburton, 2007), i.e.,

n � ðAq�Þ ¼ nx Aqf gf g þ ny Aqf gf g þ cmax

2
q½ �; (40)

where cmax is the maximum phase velocity of the modes pre-

sent in the system.

Substituting Eq. (40) in Eq. (14), the surface term is

recovered as

n � ðAqÞ� � A�q�
� �

¼ 1

2
Aq½ �½ � þ cmax

2
q½ �: (41)

In Eq. (41), the first term, ð1=2Þ½½Aq�� is responsible for the

interface boundary conditions in Eqs. (37a)–(37c), whereas

the second term ðcmax=2Þ½q� is a penalty term that stabilizes

the scheme. Implementation of the flux in Eq. (40) for

the acousto-elastic system with l¼ 0 will produce wrong

results as the numerical scheme in Eq. (14) with the flux in

Eq. (41) is consistent for purely elastic or acoustic systems,

but not for a coupled acoustic-elastic system (Wilcox et al.,
2010).

To accurately incorporate the interface conditions at

solid-solid, fluid-fluid, solid-fluid, and fluid-solid boundaries
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in Eqs. (14) and (39), we express the dG formulation for the

acoustic and elastic conditions as follows:ð
Dk

S

Q
@q

@t
� pdxþ

ð
Dk

S

r � Aqð Þ � pdx

þ 1

2

ð
@Dk

SS

Anq½ �½ �SS � pdxþ 1

2

ð
@Dk

SF

Anq½ �½ �SF � pdx

¼
ð

Dk

f � pdx for all p 2 VhðXhÞ; (42)

ð
Dk

F

Q̂
@q̂

@t
� p̂dxþ

ð
Dk

F

r � Âq̂
� �

� p̂dx

þ 1

2

ð
@Dk

FF

Ân q̂

 �
 �

FF � p̂dxþ 1

2

ð
@Dk

FS

Ân q̂

 �
 �

FS � p̂dx

¼
ð

Dk
F

f̂ � p̂ dx for all p̂ 2 VhðXhÞ; (43)

where

Anq½ �½ �SS ¼ Anqð Þþ � Anqð Þ�;

Anq½ �½ �SF ¼ TT Âq̂
� �þ � Anqð Þ�;

Ân q̂

 �
 �

FF ¼ Ânq̂
� �þ � Ânq̂

� ��
;

Ânq̂

 �
 �

FS ¼ T Anqð Þþ � Ânq̂
� ��

; (44)

with the map T : R5 ! R2 given by (Ye et al., 2016)

Tq ¼
n � r � n
n � vð Þn

" #
and TT q̂ ¼ nnr̂ð Þ

n � v̂ð Þn

" #
;

where

0

0

.

In Eqs. (42) and (43), the numerical fluxes are central fluxes

that may be unstable. To stabilize these formulations, a

penalization is used (Guo et al., 2019; Warburton, 2013; Ye

et al., 2016). In this study, we used a penalization method of

fluxes proposed by Ye et al. (2016). The penalized flux for

the solid-solid is

FE¼
1

2

ð
@Dk

SS

Anq½ �½ �SS �pdxþ1

2

ð
@Dk

SF

Anq½ �½ �SF �pdx

þa
2

ð
@Dk

SS

AT
n Anq½ �½ �

� �
�pdxþ

ð
@Dk

SF

AT
n Anq½ �½ �

� �
�pdx

" #
;

(45)

where a > 0.

Similarly, the penalized flux for the fluid-fluid and

fluid-solid case is

FA¼
1

2

ð
@Dk

FF

Ân q̂

 �
 �

FF �p̂dxþ1

2

ð
@Dk

FS

Ân q̂

 �
 �

FS �p̂dx

þa
2

ð
@Dk

FF

Ân
T

Ânq̂

 �
 �

�pdxþ
ð
@Dk

FS

Ân
T

Ânq̂

 �
 �

�pdx

" #
:

(46)

Substituting Eqs. (45) and (46) in Eqs. (42) and (43), we

recover the final form of the penalty flux based implicit scheme

ð
Dk

S

Q
@q

@t
�pdxþ1

2

ð
@Dk

SS

Anq½ �½ �SS �pdxþ1

2

ð
@Dk

SF

Anq½ �½ �SF �pdx

þa
2

ð
@Dk

SS

AT
n Anq½ �½ �

� �
�pdxþ

ð
@Dk

SF

AT
n Anq½ �½ �

� �
�pdx

" #

¼
ð

Dk

f �pdx for all p2VhðXhÞ; (47)ð
Dk

F

Q̂
@q̂

@t
� p̂dxþ1

2

ð
@Dk

FF

Ân q̂

 �
 �

FF � p̂dx

þ1

2

ð
@Dk

FS

Ân q̂

 �
 �

FS � p̂dx

þa
2

ð
@Dk

FF

Ân
T

Ânq̂

 �
 �

�pdxþ
ð
@Dk

FS

Ân
T

Ânq̂

 �
 �

�pdx

" #

¼
ð

Dk
F

f̂ � p̂ dx for all p̂ 2VhðXhÞ: (48)

The choice of a affects the energy stability of the scheme

shown in Eqs. (47) and (48) and damps under-resolved spu-

rious components in the numerical solutions. A detailed dis-

cussion on the choice of a is presented by Chan (2018) and

in Shukla et al. (2020). In the present study, we take a¼ 1,

but choosing að> 0Þ naively results in a restrictive time-step

(dt), which increases the runtime.

C. Time discretization

We employ the low-storage explicit Runge-Kutta

(LSERK) method (Cockburn and Shu, 2001). The LSERK

method is a single-step method but comprises five interme-

diate stages. LSERK is preferred over other methods as it

saves memory at the cost of computation time. A stable

TABLE I. Material properties.

Material k (GPa) l (GPa) q ðkg=m3Þ

Water 2.25 0 1000

Plexiglass 4.3315 2.2799 1180

Glass 25.253 28.157 2500

TABLE II. Velocities of body and surface waves.

Interface cf (m/s) cp (m/s) cs (m/s) cSc (m/s) cpR (m/s)

Water-plexiglass 1500 2745 1390 1058 1363

Water-glass 1500 5712 3356 1496 3091
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Courant–Friedrichs–Lewy condition, depending on the poly-

nomial degree N, is derived by Cockburn and Shu (2001)

and used here.

D. Forcing function

The forcing function f in Eq. (8) is the product of a

Dirac delta in space ðx0Þ and a Ricker wavelet in time,

f ¼ dðx� x0ÞhðtÞ; (49)

where h(t) is a wavelet, given by

hðtÞ ¼ exp �2f 2
p t� t0ð Þ2

h i
cos 2pfp t� t0ð Þ½ �;

with fp being the central peak frequency and t0 ¼ 3=ð4fpÞ. In

subsequent sections, fp is taken to be 500 kHz with a dilata-

tional moment force ðfxx ¼ fzz and fxy ¼ 0Þ.

FIG. 2. (Color online) Snapshots of the simulated interface waves for a water-plexiglass interface, using explicit boundary-conditions, which show the hori-

zontal and vertical particle velocities at 22 ls (a, b) and 33 ls (c, d). The source is located in the solid at 38.4 lm below the interface, and it is an explosion

ðf11 ¼ f33Þ, with a central frequency of 500 kHz.

FIG. 3. (Color online) Snapshots of the simulated interface waves for a water-glass interface, using explicit boundary-conditions, which show the horizontal

and vertical particle velocities at 10 ls (a, b) and 16 ls (c, d). The source is located in the solid at 38.4 lm below the interface, and it is an explosion

ðf11 ¼ f33Þ, with a central frequency of 500 kHz.
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VI. COMPUTATIONAL EXPERIMENTS

To perform the computational experiments, we consider

a medium including water-plexiglass and water-glass inter-

faces. The material properties are given in Table I. The

velocities of the body and surface or interface waves, com-

puted from the dispersion relation [Eq. (6)], are given in

Table II. The medium defined by the water-plexiglass com-

bination represents the soft-solid system, whereas the water-

glass interface is the stiff-solid condition. To determine the

existence and evolution of the interface waves in soft and

stiff solid conditions, we first solve the coupled acoustic-

elastic system using the explicit numerical scheme, defined

in Eq. (14) in Sec. V A.

Figure 2 shows snapshots of the particle velocities com-

puted for the water-plexiglass or soft-solid condition. The

size of the computational domain is ½20 cm� 9 cm]. The

minimum size of the edges of the equilateral triangles h,

used to mesh the domain, in the x1 and x3 directions, are

0:37 mm (denoted as h1) and 0:56 mm (denoted as h3),

respectively. The degree of the polynomial (N) is 2 and the

time step dt used for time integration is 0:217 ns. The total

number of elements, used for discretization, equals to

178 200 with 2 673 000 degrees of freedom. Figures 2(a) and

2(b) represent the snapshots of the horizontal ðv1Þ and

vertical ðv3Þ particle velocities at 22 ms. As discussed, the

presence of the Scholte wave is observed and marked in

Figs. 2(a) and 2(b). To visualize the evolution of the Scholte

wave, Figs. 2(c) and 2(d) represent the particle velocities

(v1, v2) at t ¼ 33 ls. The Scholte wave moves to a distance

of 
1:164 cm [Figs. 2(c) and 2(d)] at t ¼ 33 ls from

9:836 cm [Figs. 2(a) and 2(b)] measured at t ¼ 22 ls. Thus,

the velocity of the Scholte wave is equal to 1058:18 m=s.

This is in agreement with the velocity computed from the

dispersion relation, shown in Table II, with a relative error

of 0:017%.

Figure 3 represents the snapshots of the horizontal ðv1Þ
and vertical ðv3Þ particle velocities for the water-glass sys-

tem, i.e., a stiff solid medium. The discretization parameters

are the same as those used in Fig. 2 except dt, which is

0:104 ns. Figures 3(a) and 3(b) represent snapshot at t ¼ 10 ls.

The presence of a leaky Rayleigh mode is observed, also

marked by a white box, at x ¼ 10 cm. To see the evolution of

the leaky Rayleigh wave, the snapshots of horizontal and parti-

cle velocities computed at t ¼ 16 ls are shown in Figs. 3(c)

and 3(d). The leaky Rayleigh mode is present x ¼ 11:855 cm.

Thus, the velocity of the leaky Rayleigh mode computed is

3091:67 m=s, with a relative error of 0:022% as compared to

the velocity obtained from the dispersion relation.

FIG. 4. Explicit boundary-condition: Simulation of the reflection response using an upwind flux, where the solid line and circles correspond to the numerical

and analytical solutions, respectively. The figure shows the normalized particle-velocity components corresponding to water-plexiglass (a and b) and water-

glass (c and d). Source and receiver are located in the fluid at 0.0158831 m above the interface and are separated by 0.016 m. The source is an explosion

ðf11 ¼ f33Þ, with a central frequency of 500 kHz.
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Figures 4–8 show the comparison of the numerical solu-

tion against the analytical solution obtained by Berg et al.
(1994) using the method of Cagniard-de Hoop (de Hoop and

Van der Hijden, 1983). Figure 4 shows the simulation of the

reflection response using an upwind flux (explicit boundary

conditions) with a polynomial degree N¼ 2. Source and

receiver are located in the fluid at 0.0158831 m above the

interface and are separated by 0.016 m. The source is an

explosion with a central frequency of 500 kHz. The discreti-

zation parameters for the water-plexiglass and water-glass

models are the same as those used for results shown in Figs.

2 and 3, respectively. The solid line and circles correspond

to the numerical and analytical solutions, respectively.

Figures 4(a) and 4(b) show the x1 and x3 components of the

normalized particle velocities corresponding to the water-

plexiglass model, respectively. Figures 4(c) and 4(d) show

FIG. 5. Explicit boundary-condition: Simulation of interface-waves, where the solid line and dots correspond to the numerical solutions and analytical,

respectively. The figure shows the normalized particle-velocity components corresponding to water-plexiglass (a and b) and water-glass (c and d). Source

and receiver are both located in the solid at 38.4 lm below the interface, with a separation 0.1 m. The source is an explosion ðf11 ¼ f33Þ, with a central fre-

quency of 500 kHz.

FIG. 6. Implicit boundary condition: Simulation of the reflection response using the Lax-Friedrich (inconsistent) flux, where the solid line and circles corre-

spond to the numerical and analytical solutions, respectively. The figure represents the normalized particle-velocity components corresponding to water-

plexiglass (a) and water-glass (b). Source and receiver are located in the fluid at 0.0158831 m above the interface and are separated by 0.016 m. The source

is an explosion ðf11 ¼ f33Þ, with a central frequency of 500 kHz.
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FIG. 7. Implicit boundary-condition: Simulation of the reflection response using the penalized consistent central flux, where the solid line and circles corre-

spond to the numerical and analytical solutions, respectively. The figure shows the normalized particle-velocity components corresponding to water-

plexiglass (a and b) and water-glass (c and d). Source and receiver are located in the fluid at 0.0158831 m above the interface, and are separated by 0.016 m.

The source is an explosion, ðf11 ¼ f33Þ with a central frequency of 500 kHz.

FIG. 8. Implicit boundary-condition: Simulation of interface-waves using a penalized consistent central flux, where the solid line and dots correspond to the

numerical and analytical solutions, respectively. The figure shows the normalized particle-velocity components corresponding to water-plexiglass (a and b)

and water-glass (c and d). Source and receiver are both located in the solid at 38.4 lm below the interface, with a separation 0.1 m. The source is an explo-

sion ðf11 ¼ f33Þ, with a central frequency of 500 kHz.
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FIG. 9. Comparison of x� component of particle velocity computed at different polynomial degrees (N). Figures 9(a)–9(d) show the comparison of solution

for N¼ 1, 2, 3, and 4. The solid line and dots correspond to the numerical and analytical solutions, respectively. It should be noted that the numerical solu-

tion converges to analytical solutions as N increases.

FIG. 10. Comparison of z� component of particle velocity computed at different polynomial degrees (N). The solid line and dots correspond to the numeri-

cal and analytical solutions, respectively. Figures 10(a)–10(d) show the comparison of solution for N¼ 1, 2, 3, and 4. It is to be noted that the numerical

solution converges to the analytical solutions as N increases.
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the x1 and x3 components of the normalized particle-velocity

corresponding to the water-glass model, respectively. The

direct and reflection modes are marked in the figures. The

agreement between numerical and analytical solutions for

both models is very good.

Next, we verify the ability of the numerical scheme to

model interface waves. Source and receiver are both located

in the solid at 38.4 mm with an offset of 0.1 m. The discreti-

zation parameters are the same as used in Fig. 4. Figures

5(a) and 5(b) show a comparison of the x and z components

of the normalized particle velocities for the water-plexiglass

model (soft solid), respectively. The solutions show a very

good agreement. The dominance of the Scholte wave in

both components is clearly observed. A comparison of the

analytical and numerical solutions for the water-glass model

(stiff solid) is shown in Figs. 5(c) and 5(d). The agreement

between the solutions of v1 is very good, whereas the same

level of agreement is not observed for v3. A discussion about

improving the convergence between analytical and numeri-

cal solutions is included below. However, the presence of

FIG. 11. Comparison of the analytical and numerical solution of particle velocities, computed after refining the mesh size. Figures 11(a) and 11(b) represent

the solutions for coarse mesh, whereas Figs. 11(c) and 11(d) are at finer mesh. The solid line and circles correspond to the numerical and analytical solutions,

respectively. It is to be noted that interface wave modes are more accurately modeled with finer mesh computation.

FIG. 12. (Color online) Comparison of numerical solutions obtained from explicit and implicit dG methods and pseudo-spectral methods where (a) and (b)

represent the comparison x component of particle velocity ðv1Þ of glass for interface and reflection wave modes.

3148 J. Acoust. Soc. Am. 147 (5), May 2020 Shukla et al.

https://doi.org/10.1121/10.0001170

https://doi.org/10.1121/10.0001170


the leaky Rayleigh and Scholte waves is clearly observed,

along with the P and S waves, marked clearly in Figs. 5(c)

and 5(d).

Next, we show the ability of the implicit numerical

scheme with Lax-Freedrich flux [Eq. (41)] and setting the

l¼ 0. Figures 6(a) and 6(b) show a comparison between the

numerical and analytical solutions of the particle velocities

for the water-plexiglass and water-glass models, respec-

tively. It is clear that the reflection mode is not accurately

simulated by the scheme. This results from the fact that the

scheme is not consistent.

Now, we show results of the numerical scheme using

the implicit numerical scheme (based on the penalty fluxes)

expressed in Eqs. (47) and (48). Figures 7 and 8 show the

comparison of the analytical and numerical solutions for the

reflection and interface problems. The discretization param-

eters and source-receiver geometry are the same as those

used for the results shown in Figs. 4 and 5. Figures 7 and 8 show

a good agreement between the numerical and analytical sol-

utions for the body (P and S waves) and interface waves,

with the same accuracy observed in the explicit case.

Results from the implicit case also confirm that the implicit

implementation of boundary condition in numerical scheme

is accurate, provided a consistent flux is used.

The comparison of the numerical and analytical solu-

tions for the water-glass interface is fairly accurate for v3 as

shown in Fig. 5(d). To analyze this further, additional

numerical solutions of v1 and v3 are computed, first by refin-

ing the degree of the polynomial, N ðp� refinementÞ and

then by decreasing the mesh size ðh� refinementÞ. Figures 9

and 10 represent the refinement of the numerical solution of

v1 and v3 for N ¼ 1� 4 with a mesh size of 0.37 and

0.56 mm in the x1 and x3 directions, respectively. Figures

9(a)–9(d) represent v1 for N ¼ 1� 4 and show that the

agreement between the analytical and numerical solutions

improves with N. The L2� error between the analytical and

numerical solutions decreases from 0:00467 %ðN ¼ 1Þ to

0:0018 %ðN ¼ 4Þ. Figure 10 shows the comparison between

the numerical and analytical solutions of v3 for N ¼ 1� 4.

Figure 10 clearly indicates that the accuracy increases with

N as the L2� error decreases from 0:00587 % ðN ¼ 1Þ to

0:0038 % ðN ¼ 4Þ.

Next, we consider the h� refinement and show the

comparison between analytical and numerical solutions of

v1 and v3 for the water-glass interface. In Figs. 11(a) and

11(b), the numerical solutions of v1 and v3 are computed

with N¼ 3 and mesh sizes h1 ¼ 0:36 mm and

h3 ¼ 0:56 mm, respectively. The refinement of the solution

of v1 and v3 is further done with the mesh sizes h1 ¼
0:18 mm and h3 ¼ 0:28 mm, shown in Figs. 11(c) and 11(d),

respectively. Comparing Figs. 11(a) and 11(c) clearly shows

that the leaky-Rayleigh and Scholte waves are more accu-

rately modeled with finer mesh sizes. The amplitude of the

Scholte wave in the v3 component is more accurately cap-

tured with a finer mesh size [Fig. 11(d)] than those in Figs.

11(b) and Fig. 5(d), where the analytical solution overshoots

the numerical solutions. The mesh refinement results in the

decrease of the L2� error ðinvÞ from 0.0016 to

1.965� 10�4 with an order of 3.65 and confirms with the

convergence rate of the dG method, i.e., OðhNþ1Þ
(Hesthaven and Warburton, 2007).

Next, we validate the numerical solutions obtained

from explicit and implicit dG methods. Figures 12(a) and

12(b) show the v1 and v3 components of the particle velocity

for water-glass interface. The solutions are computed with a

polynomial of degree N¼ 3 and mesh size (0.18 and

0.14 mm) with 3:8� 106 degrees of freedom. Figures 12(a)

and 12(b) compare the v1 components, computed for the

interface and reflection case in a water-glass setup. The L2�
error between the implicit and explicit schemes are 0.037%

and 0.0266%, corresponding to the interface [Fig. 12(a)] and

reflection cases [Fig. 12(b)], respectively.

Finally, Fig. 13 shows a comparison between the ana-

lytic and numerical solutions obtained from a dG and a

pseudo-spectral methods (Carcione et al., 2018). The discre-

tization parameters used for the dG method are the same as

those used in Fig. 12. Figures 13(a) and 13(b) clearly sup-

port that the solutions obtained from all methods are in very

good agreement.

VII. CONCLUSIONS

We present analytical and numerical results of waves prop-

agating at the fluid-solid interface for two solids: plexiglass

FIG. 13. (Color online) Comparison of numerical solutions obtained from dG method and pseudo-spectral method (Carcione et al., 2018) against the analyt-

ical solution, where (a) and (b) represent the comparison of x component of particle velocity ðv1Þ of glass for reflection and interface wave modes.
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(soft) and glass (stiff). To perform the numerical simulations,

we use a dG method with upwind (explicit method) and penalty

fluxes (implicit method) to implement the correct boundary

conditions. We show that setting the rigidity in the fluid equal

to zero in the dG formulation yields the wrong results. The

numerical solution obtained from upwind and penalty flux

based methods are correct for the complete set of waves, i.e.,

including the Scholte and leaky-Rayleigh waves. The compari-

son of the numerical solutions and the analytical solutions

shows a very good agreement. This test is essential to verify the

correct simulation of wave propagation in the presence of fluid-

solid interfaces, corresponding to soft and stiff solid bottoms.
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