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A finely layered media behaves as an anisotropic medium when the dominat wavelengths are much lar-
ger than the layer thickness. If the constituent are anelastic, a generalization of Backus averaging predicts
that the medium is effectively a transversely isotropic viscoelastic (TIV) medium. To test and validate the
theory, we present a novel procedure to determine the complex and frequency-dependent stiffness com-
ponents of a TIV medium. The methodology consists in performing numerical compressibility and shear
harmonic tests on a representative sample of the material. These tests are described by a collection of
non-coercive elliptic boundary-value problems formulated in the space-frequency domain, which are
solved using a Galerkin finite-element procedure. Results on the existence and uniqueness of the contin-
uous and discrete problems as well as optimal error estimates for the Galerkin finite-element method are
derived. Numerical examples illustrates the implementation of the numerical oscillatory tests to deter-
mine the set of complex and frequency-dependent effective TIV coefficients and the associated phase
velocities and quality factors for a periodic sequence of epoxy and glass thin layers. The results are com-
pared to the analytical phase velocities and quality factors predicted by the Backus/Carcione theory.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Many geological systems can be modeled as effective trans-
versely isotropic and viscoelastic (TIV) media. Fine layering is a
typical example which refers to the case when the dominant wave-
length of the traveling waves are much larger than the average
thicknesses of the single layers. When this occurs, the medium is
effectively anisotropic with a TI symmetry. Backus [1] obtained
the average elastic constants in the case when the single layers
are transversely isotropic and elastic (lossless), with the symmetry
axis perpendicular to the layering plane. Moreover, he assumed
stationarity, i.e., in a given length of composite medium much
smaller than the wavelength, the proportion of each material is
constant (periodicity is not required). The equations were further
generalized by Schoenberg and Muir [2] for anisotropic single con-
stituents. Backus averaging was verified numerically by Carcione
et al. [3], and generalized to the anelastic case by Carcione [4], in
what constitutes the Backus/Carcione (BC) theory to describe
anisotropic attenuation [5].
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To test and validate the BC theory, this paper presents a novel
approach to determine the complex coefficients defining a TIV
medium. In particular, we consider the TIV equivalent medium to
a finely layered material. The methodology consists in applying
time-harmonic oscillatory tests to a numerical rock sample at a fi-
nite number of frequencies. Each test is defined using the visco-
elastic wave equation of motion stated in the space-frequency
domain, with appropriate boundary conditions, and solved with a
finite-element method (FEM). These tests can be regarded as an
upscaling method to obtain the effect of the fine layering scale
on the macroscale. A similar approach was presented in [6] for iso-
tropic fluid-saturated poroelastic media and it is generalized here
for anisotropic media.

There exists an extensive literature on effective medium theo-
ries for media having two length scales in space, one small related
to the microstructure and the other large and related to the short-
est wavelength of the response to a given excitation. In [7], this
problem is analyzed for the case of wave propagation in periodic
composites using the Bloch expansion and homogenization
techniques formulated in the space–time domain, obtaining an
effective dispersive medium. The analysis yields and homogenized
wave equation with and anisotropic effective bulk modulus that
coincides in the limit with the Bloch expansion. These results are
related to those presented in this paper in the sense that, by
properly selecting a representative element of volume we have
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determined effective frequency dependent coefficients defining a
TIV (dispersive) medium equivalent to the original finely layered
material.

These upscaling techniques have also been successfully applied
in problems related to flow in highly heterogeneous porous media.
The case of steady flow in porous media with many spatial scales
was studied in [8] using a multiscale finite element method; the
relation between the multiscale method and the homogenized
solution of the problem is also analyzed. The basic idea of multi-
scale finite element methods is to incorporate the small scale infor-
mation into finite element basis functions and couple them
through a global formulation of the problem. Flow in naturally
fracture reservoirs also feature multiple scales, and upscaling is
necessary for numerical simulations at the field scale. This prob-
lems is analyzed in [9] using an homogenized Stokes–Brinkman
equation with an effective permeability tensor obtained solving a
cell problem on a representative element of volume. This approach
is based on two-scale asymptotics expansion as described in [10].

The organization of the paper is as follows. Section 2 presents
the finely-layered model and describes the Backus averaging tech-
nique [1]. In Section 3 we define the local boundary-value problem
to determine the complex and frequency dependent coefficients
defining the transversely isotropic medium. Section 4 presents a
variational formulation of the boundary-value problem as well as
the existence and uniqueness of the corresponding solutions. In
Section 5, the FEM to solve the boundary value problems are for-
mulated and optimal error estimates are derived. Section 6 pre-
sents numerical experiments applying the proposed methodology
to compute the phase velocities and quality factors to a periodic se-
quence of epoxy and glass layers. The very good agreement be-
tween the numerical and analytical effective TIV coefficients and
the corresponding phase velocities and quality factors provides a
novel tool to validate the BC theory for the anelastic case.
2. The stress–strain relations

Let us consider wave propagation in a TIV medium. Let the Fou-
rier transform in the time variable be defined as usual by

f̂ ðxÞ ¼
Z 1

�1
e�ixtf ðtÞdt; ð2:1Þ

where x denotes the angular frequency. Let x = (x1,x2,x3) and
u(x) = (u1,u2,u3) denote the time Fourier transform of the displace-
ment vector of the viscoelastic medium. Here and in what follows
we omit the �̂ symbol in the time-Fourier transformed variables to
simplify the notation. Let rij and �ij(u) denote the time Fourier
transform of the stress and strain tensors of the viscoelastic mate-
rial. The frequency-domain stress–strain relations of a general
anisotropic medium, including attenuation, are:

rjkðuÞ ¼ pjklmðxÞ�lmðuÞ; �lmðuÞ ¼
1
2

oul

oxm
þ oum

oul

� �
; ð2:2Þ

where the coefficients pjklm(x) are complex and frequency depen-
dent [5].

When the medium is composed of a sequence of isotropic linear
viscoelastic horizontal layers Xn, n = 1, . . . ,N the stress–strain rela-
tions on each Xn are:

rjkðuÞ ¼ kndjkr � uþ 2ln�jkðuÞ; ð2:3Þ

where djk is the Kroenecker delta and kn(x) and ln(x) are the com-
plex Lamé coefficients for the n-layer.

Let q = q(x) be the mass density. The equation of motion is

�x2quðx;xÞ � r � rðuðx;xÞÞ ¼ 0; ð2:4Þ
where r is given by (2.2) for a general medium and by (2.3) in the
isotropic and viscoelastic case represented by the thin layers.

Let us consider x1 and x3 as the horizontal and vertical coordi-
nates, respectively. As shown by Backus for the lossless case [1]
and later generalized by Carcione for the anelastic case [4], the
medium behaves as a homogeneous TIV medium with vertical
x3-axis of symmetry at long wavelengths. Denoting by sij the stress
tensor of the equivalent TIV medium, the corresponding stress–
strain relations, stated in the space-frequency domain, are [4]:

s11ðuÞ ¼ p11�11ðuÞ þ p12�22ðuÞ þ p13�33ðuÞ; ð2:5Þ
s22ðuÞ ¼ p12�11ðuÞ þ p11�22ðuÞ þ p13�33ðuÞ; ð2:6Þ
s33ðuÞ ¼ p13�11ðuÞ þ p13�22ðuÞ þ p33�33ðuÞ; ð2:7Þ
s23ðuÞ ¼ 2p55�23ðuÞ; ð2:8Þ
s13ðuÞ ¼ 2p55�13ðuÞ; ð2:9Þ
s12ðuÞ ¼ 2p66�12ðuÞ; ð2:10Þ

with

p11 ¼ E� k2E�1
D E

þ E�1
D E�1

E�1k
D E2

; ð2:11aÞ

p12 ¼ 2klE�1
D E

þ E�1
D E�1

E�1k
D E2

; ð2:11bÞ

p13 ¼ E�1
D E�1

E�1k
D E

; ð2:11cÞ

p33 ¼ E�1
D E�1

; ð2:11dÞ

p55 ¼ l�1� ��1
; ð2:11eÞ

p66 ¼ hli; ð2:11fÞ

where k and l represent kn and ln, E = k + 2l, and h�idenotes the
thickness weighted average. The pIJ are the complex and fre-
quency-dependent Voigt stiffnesses to be determined with the har-
monic experiments. The conversion between the Voigt stiffnesses
and the stiffnesses of the 4th-rank tensors is

pIJ ¼ pijkl;

I ¼ idij þ ð1� dijÞð9� i� jÞ;
J ¼ kdkl þ ð1� dklÞð9� k� lÞ:

ð2:12Þ

The phase velocities and quality factors for the quasi-compressional
(qP), vertically-polarized quasi-shear (qSV) and horizontally-polar-
ized shear (SH) waves can be computed using the complex veloci-
ties, that are given in terms of the coefficients in (2.11a) by the
relations [11,5]:

vqP ¼ 2qð Þ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11l21 þ p33l2

3 þ p55 þ A
q

;

vqSV ¼ 2qð Þ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11l2

1 þ p33l23 þ p55 � A
q

;

vSH ¼ q�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p66l2

1 þ p55l2
3

q
;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p11 � p55ð Þl21 þ p55 � p33ð Þl2
3

h i2
þ 4 p 13ð Þ þ p55

� �
l1l3

h i2
r

;

ð2:13Þ

where l1 = sinh and l3 = cosh are the directions cosines, h is the
propagation angle between the wavenumber vector and the x3-
symmetry axis. The corresponding phase velocity and quality fac-
tors for homogeneous waves are given by [5]:

vp;f ¼ Re
1
vf

� �	 
�1

; ð2:14Þ

Q f ¼
Re v2

f

� �
Im v2

f

� � ; f ¼ qP;qSV; SH: ð2:15Þ

These equations hold for any TIV medium, in particular for the
equivalent medium described by the BC theory. To test and validate
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this theory, we will present in the next section a novel numerical
procedure to determine the coefficients in (2.11a) and the corre-
sponding phase velocities and quality factors. We will show that
for this purpose it is sufficient to perform a collection of oscillatory
tests on representative 2D samples of the viscoelastic material.

3. Determination of the stiffneses

We show how that stiffnesses p11, p33, p13 and p55 can be deter-
mined by taking a 2D representative square sample X = (0,L)2 of
the TIV material in the (x1,x3)-plane.

Set C = oX = CL [ CB [CR [ CT, where

CL ¼ x1; x3ð Þ 2 C : x1 ¼ 0f g; CR ¼ x1; x3ð Þ 2 C : x1 ¼ Lf g;
CB ¼ x1; x3ð Þ 2 C : x3 ¼ 0f g; CT ¼ x1; x3ð Þ 2 C : x3 ¼ Lf g:

Denote by m the unit outer normal on C and let v be a unit tangent
on C so that {m,v} is an orthonormal system on C.

To obtain the complex stiffness p33(x), let us consider the solu-
tion of the equation:

�x2qu x1; x3;xð Þ � r � r u x1; x3;xð Þð Þ ¼ 0; ð3:1Þ

with boundary conditions:

rðuÞm � m ¼ �DP; x1; x3ð Þ 2 CT ; ð3:2Þ
rðuÞm � v ¼ 0; x1; x3ð Þ 2 CL [ CR [ CT ; ð3:3Þ
u � m ¼ 0; x1; x3ð Þ 2 CL [ CR; ð3:4Þ
u ¼ 0; x1; x3ð Þ 2 CB: ð3:5Þ

For this set of boundary conditions the solid is not allowed to move
on the bottom boundary CB, a uniform compression is applied on
the boundary CT (i.e., a uniform compression parallel to the symme-
try axis) and no tangential external forces are applied on the bound-
aries CL [ CR [ CT. Consequently, �11 = �22 = 0 and this experiment
will yield the value of p33(x) in (2.7) as follows.

Denoting by V the original volume of the sample, its (complex)
oscillatory volume change, DV(x), allows us to define the effective
P-wave complex stiffness p33(x), by using the relation:

DVðxÞ
V

¼ � DP
p33ðxÞ

; ð3:6Þ

valid for a viscoelastic homogeneous medium in the quasi-static
case, i.e., for wavelengths much larger than the size of the sample.
After solving (3.1) with the boundary conditions (3.2)–(3.5), the
vertical displacements u3(x1,L,x) on CT allow us to obtain an aver-
age vertical displacement uT

3ðxÞ suffered by the boundary CT. Then,
for each frequency x, the volume change produced by this com-
pressibility test can be approximated by DVðxÞ � LuT

3ðxÞ, which en-
able us to compute p33(x) by using the relation (3.6).

To determine the complex coefficient p11(x), we solve (3.1)
with the following boundary conditions:

rðuÞm � m ¼ �DP; x1; x3ð Þ 2 CR; ð3:7Þ
rðuÞm � v ¼ 0; x1; x3ð Þ 2 CR [ CB [ CT ; ð3:8Þ
u � m ¼ 0; x1; x3ð Þ 2 CB [ CT ; ð3:9Þ
u ¼ 0; x1; x3ð Þ 2 CL: ð3:10Þ

In this oscillatory test, the solid is not allowed to move on the left
boundary CL, a uniform compression is applied on the boundary
CR (i.e., a uniform compression perpendicular to the symmetry axis)
and no tangential external forces are applied on the boundaries
CB [ CR [ CT. Consequently, �22 = �33 = 0 and this experiment will
yield the value of p11(x) in (2.5) by measuring the volume change
of the sample as explained above for p33(x).

To obtain p13(x) we solve (3.1) with the boundary conditions:

rðuÞm � m ¼ �DP; x1; x3ð Þ 2 CT [ CR; ð3:11Þ
rðuÞm � v ¼ 0; x1; x3ð Þ 2 C; ð3:12Þ
u � m ¼ 0; x1; x3ð Þ 2 CL [ CB: ð3:13Þ

Thus, in this experiment �22 = 0, and from (2.5) and (2.7) we get:

s11 ¼ p11�11 þ p13�33;

s33 ¼ p13�11 þ p33�33;
ð3:14Þ

where �11 and �33 are the strain components at the right lateral side
and top side of the sample, respectively. Then from (3.14) and the
fact that s11 = s33 = � DP (c.f. (3.11)) we obtain p13(x) as

p13ðxÞ ¼
p11�11 � p33�33

�11 � �33
: ð3:15Þ

In order to compute p55(x), we perform an oscillatory shear test by
solving (3.1) with the boundary conditions:

� rðuÞm ¼ g; x1; x3ð Þ 2 CT [ CL [ CR; ð3:16Þ
u ¼ 0; x1; x3ð Þ 2 CB; ð3:17Þ

where

g ¼
0;Dpð Þ; x1; x3ð Þ 2 CL;

0;�Dpð Þ; x1; x3ð Þ 2 CR;

�Dp;0ð Þ; x1; x3ð Þ 2 CT :

8><
>:

Since in this experiment there is no volume change, �11 = �33 = 0,
this experiment yields p55(x) measuring the change in shape of
the sample using the relation:

tan½bðxÞ� ¼ Dp
p55ðxÞ

; ð3:18Þ

where b(x) is the departure angle between the original positions of
the lateral boundaries and those after applying the shear stresses
(see for example [12]). Eq. (3.18) holds in the quasi-static
approximation. The horizontal displacements u1 (x1,L,x) at the
top boundary CT can then be used to obtain an average horizontal
displacement uT

1ðxÞ at the boundary CT. Then, tan½bðxÞ� � uT
1ðxÞ=L

and p55(x) can be calculated from Eq. (3.18).
Finally, we should obtain p66(x). Since this stiffness is associ-

ated with shear waves traveling in the (x1,x2)-plane, we consider
an homogeneous horizontal slab in the x2-direction and an homo-
geneous sample X2 = (0,L)2 in the (x1,x2) plane, with boundary
C2 ¼ CL

2 [ CB
2 [ CR

2 [ CT
2, where

CL
2 ¼ x1; x2ð Þ 2 C : x1 ¼ 0f g; CR

2 ¼ x1; x2ð Þ 2 C : x1 ¼ Lf g;
CB

2 ¼ x1; x2ð Þ 2 C : x2 ¼ 0f g; CT
2 ¼ x1; x2ð Þ 2 C : x2 ¼ Lf g:

Thus, we solve the equation:

�x2qu x1; x2;xð Þ � r � r u x1; x2;xð Þð Þ ¼ 0; X2; ð3:19Þ

with the boundary conditions:

� rðuÞm ¼ g2; x1; x2ð Þ 2 CT
2 [ CL

2 [ CR
2; ð3:20Þ

u ¼ 0; x1; x2ð Þ 2 CB
2; ð3:21Þ

where

g2 ¼
0;Dpð Þ; x1; x2ð Þ 2 CL

2;

0;�Dpð Þ; x1; x2ð Þ 2 CR
2;

�Dp;0ð Þ; x1; x2ð Þ 2 CT
2:

8><
>:
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This problem is formally identical to that described for p55(x), with
no volume change, where the only non-zero strain is �12(u(x1,x2)).
We obtain p66(x) by using (2.10).

Remark. Since the formulated boundary-value problems have
boundary data in L2(X), the corresponding weak solutions belong
to the space [H3/2(X)]2 [13]. This maximal regularity will be used
later to derive our error estimates.
4. The variational formulations

In order to state a variational formulation for the boundary-va-
lue problems defined in the previous section we need to introduce
some notation. For X � Rd with boundary oX, let (�, �)X and h�, �ioX de-
note the complex L2(X) and L2(oX) inner products for scalar, vector,
or matrix valued functions. Also, for s 2 R, k�ks,X will denote the
usual norm for the Sobolev space Hs(X) [14]. In addition, if X = X
or X = C, the subscript X may be omitted such that (�, �) = (�, �)X or
h�, �i = h�, �iC. Also, let us introduce the following closed subspaces
of [H1(X)]2 and [H1(X2)]2:

W11ðXÞ ¼ v 2 H1ðXÞ
h i2

: v � m ¼ 0 on CB [CT ; v ¼ 0 on CL
 �

;

W33ðXÞ ¼ v 2 H1ðXÞ
h i2

: v � m ¼ 0 on CL [CR; v ¼ 0 on CB
 �

;

W13ðXÞ ¼ v 2 H1ðXÞ
h i2

: v � m ¼ 0 on CL [ CB
 �

;

W55ðXÞ ¼ v 2 H1ðXÞ
h i2

: v ¼ 0 on CB
 �

;

W66ðX2Þ ¼ v 2 H1ðX2Þ
h i2

: v ¼ 0 on CB
2

 �
:

Set:

Kðu;vÞ ¼ �x2ðu;vÞ þ
X

l;m¼1;3

rlmðuÞ; elmðvÞð Þ;

8u;v 2 H1ðXÞ
h i2

: ð4:1Þ

Note that the term
P

l;m¼1;3ðrlmðuÞ; elmðvÞÞ in (4.1) can be written in
the form:X
l;m¼1;3

rlmðuÞ; elmðvÞð Þ ¼ MðxÞ~�ðuÞ; ~�ðvÞð Þ

¼ MRðxÞ~�ðuÞ; ~�ðvÞð Þ þ i MIðxÞ~�ðuÞ; ~�ðvÞð Þ;
ð4:2Þ

where M(x) = MR(x) + iMI(x) is a complex matrix and

~�ðuÞ ¼
e11ðuÞ
e33ðuÞ
e13ðuÞ

0
B@

1
CA:

Furthermore, we assume that the real part MR(x) is positive definite
since in the elastic limit it is associated with the strain energy den-
sity. On the other hand, the imaginary part MI(x) is assumed to be
positive definite because of the restriction imposed on our system
by the first and second laws of thermodynamics. See for example
[15] and the appendix in [16] for the proof of the validity of these
assumptions.

In the case that the medium is composed of viscoelastic isotro-
pic horizontal layers, the matrix M(x) has the form:
MðxÞ ¼
kðxÞ þ 2lðxÞ kðxÞ 0

kðxÞ kðxÞ þ 2lðxÞ 0
0 0 4lðxÞ

0
B@

1
CA: ð4:3Þ

Next, multiply Eq. (3.1) by v 2 W33ðXÞ, use integration by parts and
apply the boundary conditions (3.2), (3.3) to obtain the following
variational formulation associated with the coefficient p33(x): find
uð33Þ 2 W33ðXÞ such that:

K uð33Þ;v
� �

¼ � DP; v � mh iCT ; 8v 2 W33ðXÞ: ð4:4Þ

Proceeding in a similar fashion, variational formulations to deter-
mine p11(x), p55(x) and p66(x) can be stated as follows: find
uð11Þ 2 W11ðXÞ;uð55Þ 2 W55ðXÞ and uð66Þ 2 W66ðX2Þ satisfying:

K uð11Þ;v
� �

¼ �hDP; v � miCR ; 8v 2 W11ðXÞ; ð4:5Þ
K uð55Þ;v
� �

¼ �hg; viCL[CR[CT ; 8v 2 W55ðXÞ; ð4:6Þ

and

K uð66Þ;v
� �

¼ � g; vh iCL
2[C

R
2[C

T
2
; 8v 2 W66ðX2Þ: ð4:7Þ

To analyze the uniqueness of the solution u(33) of (4.4), set DP = 0
and choose v = u(33) in (4.4) to obtain:

�x2 quð33Þ;uð33Þ� �
þ MR~� uð33Þ� �

;~� uð33Þ� �� �
þ MI~� uð33Þ� �

;~� uð33Þ� �� �
¼ 0: ð4:8Þ

Taking the imaginary part in (4.8) and using that MI is positive def-
inite we conclude that:

~�ðuð33ÞÞ ¼ 0; in L2ðXÞ: ð4:9Þ

Next, recall Korn’s second inequality [17]:X
l;m¼1;3

k�lmðvÞk2
0 þ kvk

2
0 P C1kvk2

1; 8 v 2 H1ðXÞ
h i2

; ð4:10Þ

and that for any v 2 [H1(X)]2 vanishing on a subset of positive mea-
sure of C, using (4.10) it can be shown that [18]:

jjjv jjj ¼
X

l;m¼1;3

�lmðvÞk k2
0

 !1=2

; ð4:11Þ

defines a norm for v equivalent to the H1-norm. Thus, for some po-
sitive constants C2, C3:

C2kvk1 6 jjjv jjj 6 C3kvk1; 8v 2 W33ðXÞ: ð4:12Þ

Consequently, (4.9) and (4.12) imply that:

kuð33Þk1 ¼ 0; ð4:13Þ

and we have uniqueness for the solution of (4.4).
To show existence, note that if L*(A) and L*(A) denote the min-

imum and maximum eigenvalues of the positive definite matrix
A, using (4.12) we conclude that K(v,v), satisfies the Garding
inequality:

ReðKðv; vÞÞP C4ðxÞ vk k2
1 � C5ðxÞ vk k2

0; 8 v 2 W33ðXÞ; ð4:14Þ

where

C4ðxÞ ¼ C2
L�ðMRÞðxÞ

2
; C5ðxÞ ¼ x2q�;

and q* denotes the maximum value of q(x1,x3) in X. Since unique-
ness holds for the solution of the adjoint problem to (4.4), existence
follows from (4.14) applying the Fredholm alternative [19].

Existence and uniqueness for the solution of (4.5), (4.6) and
(4.7) follows with the same argument than that given for (4.4).
Thus we have the validity of the following theorem.
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Theorem 1. Assume that the matrices MR(x) and MI(x) are positive
definite. Then existence and uniqueness holds for problems 4.4, 4.5,
4.6, 4.7.

In order to obtain a weak formulation to determine the coeffi-
cient p13(x), multiply (3.1) by v 2 W13ðXÞ, use integration by parts
and apply the boundary conditions (3.11), (3.12) to get the follow-
ing variational problem: find uð13Þ 2 W13ðXÞ such that:

K uð13Þ;v
� �

¼ � DP;v � mh iCT[CR ; 8v 2 W13ðXÞ: ð4:15Þ

To analyze the uniqueness of the solution of (4.15), set DP = 0 and
choose v = u(13) in (4.15) to obtain the equation:

�x2 quð13Þ;uð13Þ� �
þ MR~� uð13Þ� �

;~� uð13Þ� �� �
þ i MI~� uð13Þ� �

;~� uð13Þ� �� �
¼0:

ð4:16Þ

Taking the imaginary part in (4.16) and using that MI is positive def-
inite we conclude that:

�11 uð13Þ� �
¼ 0; in L2ðXÞ; ð4:17Þ

�33 uð13Þ� �
¼ 0; in L2ðXÞ; ð4:18Þ

�13 uð13Þ� �
¼ 0; in L2ðXÞ: ð4:19Þ

In particular:

�11 uð13Þ� �
¼ ouð13Þ

1 x1; x3ð Þ
ox1

¼ 0; �33 uð13Þ� �
¼ ouð13Þ

3 x1; x3ð Þ
ox3

¼ 0; a:e: in X;

so that:

uð13Þ
1 x1; x3ð Þ ¼ f ðx3Þ; uð13Þ

3 x1; x3ð Þ ¼ gðx1Þ a:e: in X: ð4:20Þ

Thus from (4.19) and (4.20) have:

2�13ðuð13ÞÞ ¼ of ðx3Þ
ox3

þ ogðx1Þ
ox1

¼ 0; a:e: in X; ð4:21Þ

which in turn implies:

of ðx3Þ
ox3

¼ � ogðx1Þ
ox1

¼ C ¼ constant a:e: in X: ð4:22Þ

Hence:

gðx1Þ ¼ �Cx1 þ A; f ðx3Þ ¼ Cx3 þ B; a:e: in X: ð4:23Þ

Next, by the Sobolev embedding theorem [14]:

H3=2ðXÞ ! C0ðXÞ; ð4:24Þ

so that uð13Þ
1 ;uð13Þ

3 are uniformly continuous functions on X. Conse-
quently (4.20) holds for all (x1,x3) 2X as uniformly continuous
functions, and uð13Þ

1 ;uð13Þ
3 have unique extensions to C. Hence:

uð13Þ
1 ðx1; x3Þ ¼ f ðx3Þ; uð13Þ

3 ðx1; x3Þ ¼ gðx1Þ 8 ðx1; x3Þ in X:

ð4:25Þ

On the other hand, the boundary condition (3.13) tells us that the
normal components of the traces of u(13) vanish on CB [ CL, so that:

uð13Þ
1 ð0; x3Þ ¼ 0; uð13Þ

3 ðx1;0Þ ¼ 0: ð4:26Þ

Thus (4.25) and (4.26) imply that:

uð13Þ
1 x1; x3ð Þ ¼ uð13Þ

3 x1; x3ð Þ ¼ 0: ð4:27Þ

and we have uniqueness.
For existence, note that using (4.10) we get the Garding

inequality:

ReðKðv ;vÞÞP C6ðxÞ
L�ðMRÞ

2
vk k2

1 � C7ðxÞ vk k2
0; 8 v 2 W13ðXÞ;

ð4:28Þ
where

C6ðxÞ ¼ C1
L�ðMRÞ

2
C7ðxÞ ¼ x2q� þ L�ðMRÞ

2
:

Since uniqueness holds for the dual problem of (3.1) with the
boundary conditions (3.11)–(3.13), the Fredholm alternative yields
uniqueness. The result is summarized in the following theorem :

Theorem 2. Assume that the matrices MR(x) and MI(x) are
positive definite. Then there exists a unique solution of problems
(4.15).
Remark. The existence and uniqueness results in Theorems 1 and
2 are valid for general TIV media, since the proofs use the positive
definiteness of the matrices MR and MI, a property valid for this
type of materials.
5. The finite element procedure

Let T hðXÞ and T hðX2Þ be non-overlapping partitions of X and
X2, respectively, into rectangles Xj and X2,j of diameter bounded
by h such that X ¼ [J

j¼1Xj, X2 ¼ [J
j¼1Xj;2. Let us introduce the fol-

lowing finite element spaces:

Wh
11ðXÞ ¼ v : v jXj

2 P1;1� P1;1;v � m¼ 0 on CB [CT ;v ¼ 0 on CL
n o
\ C0ðXÞ
h i2

;

Wh
33ðXÞ ¼ v : v jXj

2 P1;1 � P1;1;v � m¼ 0 on CL [CR;v ¼ 0 on CB
n o
\ C0ðXÞ
h i2

;

Wh
13ðXÞ ¼ v : vjXj

2 P1;1 � P1;1; v � m ¼ 0 on CL [ CB
n o
\ C0ðXÞ
h i2

;

Wh
55ðXÞ ¼ v : vjXj

2 P1;1 � P1;1; v ¼ 0 on CB
n o

\ C0ðXÞ
h i2

;

Wh
66ðX2Þ ¼ v : v jXj;2

2 P1;1 � P1;1;v ¼ 0 on CB
2

n o
\ C0ðX2Þ
h i2

;

where P1,1 denotes the polynomials of degree not greater than 1 on
each variable. Let:

Ph;33 : HsðXÞ \W33ðXÞ½ �2 !Wh
33ðXÞ; 1 < s 6 2; ð5:1Þ

be the interpolant operator associated with the spaceWh
33ðXÞ. More

specifically, the degrees of freedom associated with Ph,33u are the
vertices of the rectangles Xj and if b is a common node of the adja-
cent rectangles Xj and Xk then (Ph,33 u)j(b) = (Ph,33u)k(b), where
(Ph,33u)j denotes the restriction of the interpolant Ph,33u of u to Xj.

The interpolants Ph,11, Ph,13, Ph,55 and Ph,66 are defined in a
similar fashion.

It is well known that for all u 2 ½HsðXÞ�2 \W33ðXÞ;1 < s 6 2, the
interpolant Ph,33 satisfies the approximating properties:

u�Ph;33u
�� ��

0 þ h u�Ph;33u
�� ��

1 6 Chs uk ks; ð5:2Þ

and (5.2) holds as well for the other interpolants.
The FEM procedures to compute the approximate solution of

(4.4), (4.5), (4.6) and (4.7) are defined as follows: find
uðh;33Þ 2 Wh

33ðXÞ, uðh;11Þ 2 Wh
11ðXÞ, uðh;13Þ 2 Wh

13ðXÞ, uðh;55Þ 2 Wh
55ðXÞ

and uðh;66Þ 2 Wh
66ðX2Þ such that:
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K uðh;33Þ; v
� �

¼ � DP; v � mh iCT ; v 2 Wh
33ðXÞ; ð5:3Þ

K uðh;11Þ; v
� �

¼ � DP; v � mh iCR ; v 2 Wh
11ðXÞ; ð5:4Þ

K uðh;13Þ; v
� �

¼ � DP; v � mh iCT[CR ; v 2 Wh
13ðXÞ; ð5:5Þ

K uðh;55Þ; v
� �

¼ � g; vh iCL[CR[CT ; v 2 Wh
55ðXÞ; ð5:6Þ

and

K uðh;66Þ; v
� �

¼ � g; vh iCL
2[C

R
2[C

T
2
; v 2 Wh

66ðX2Þ: ð5:7Þ

Uniqueness for the FEM procedures (5.3)–(5.7) can be shown with
the same argument than for the continuous case. Existence follows
from finite dimensionality.

Let us analyze the error associated with the procedure (5.3). Set:

eðh;33Þ ¼ uð33Þ � uðh;33Þ;

and note that from (4.4) and (5.3) we get:

K eðh;33Þ;v
� �

¼ 0; v 2 Wh
33ðXÞ: ð5:8Þ

Choose v = e(h,33) + Ph,33u(33) � u(33) in (5.8), take the imaginary part
in the resulting equation and use the positive definiteness of MI,
(4.12), the H1-continuity of K(u,v), the fact that u(33) 2 [H3/2(X)]2

and the approximating properties (5.2) to get:

C2L� MIð Þ
2

eðh;33Þ�� ��2

1 6
L� MIð Þ

2

X
l;m¼1;3

�lm eðh;33Þ� ��� ��2

0

6 Im K eðh;33Þ; eðh;33Þ� �� �
6 K eðh;33Þ; uð33Þ �Ph;33uð33Þ� ��� ��
6 x2q� eðh;33Þ�� ��

0 uð33Þ �Ph;33uð33Þ�� ��
0

þ C8ðxÞ eðh;33Þ�� ��
1 uð33Þ �Ph;33uð33Þ�� ��

1

6 x2q� eðh;33Þ�� ��
1h3=2 þ C8ðxÞ eðh;33Þ�� ��

1h1=2
h i

uð33Þ�� ��
3=2;

ð5:9Þ

where

C8ðxÞ ¼ 2 max L�ðMRðxÞÞ; L� MIðxÞð Þð Þ:

Hence:

eðh;33Þ�� ��
1 6 h1=2C9ðxÞ uð33Þ�� ��

3=2; ð5:10Þ

with

C9ðxÞ ¼ max x2q�;C8ðxÞ
� �� �

C2L�ðMIÞðxÞ=2ð Þ�1
:

To estimate ke(h,33)k0 we employ a duality argument. Let w be the
solution of the dual problem:

�x2qw x1; x3;xð Þ � r � r� w x1; x3;xð Þð Þ ¼ eðh;33Þ; X; ð5:11Þ
r�ðwÞm � m ¼ 0; x1; x3ð Þ 2 CT ; ð5:12Þ
r�ðwÞm � v ¼ 0; x1; x3ð Þ 2 CL [ CR [ CT ; ð5:13Þ
w � m ¼ 0; x1; x3ð Þ 2 CL [ CR; ð5:14Þ
w ¼ 0; x1; x3ð Þ 2 CB; ð5:15Þ

where r*(w) is defined as in (2.2) but using the complex conjugates
of the coefficients. By elliptic regularity, we have the estimate:

kwk2 6 C10ðxÞ eðh;33Þ�� ��
0: ð5:16Þ

Testing (5.11) against v 2 W33ðXÞ we see that:

Kðv;wÞ ¼ v ; eðh;33Þ� �
; v 2 W33ðXÞ: ð5:17Þ

Choose v = e(h,33) in (5.17) and use (5.8) to get:

eðh;33Þ�� ��2

0 ¼ Kðeðh;33Þ;wÞ ¼ K eðh;33Þ;w�Ph;33w
� �

: ð5:18Þ

Thus from (5.18) and (5.2) we obtain the estimate:
eðh;33Þ�� ��2

0 6 x2q� eðh;33Þ�� ��
0 w�Ph;33w
�� ��

0

þ C8ðxÞ eðh;33Þ�� ��
1 w�Ph;33w
�� ��

1

6 x2q�h2 eðh;33Þ�� ��
0 þ C8ðxÞh eðh;33Þ�� ��

1

� �
wk k2

6 h2C10ðxÞx2q� eðh;33Þ�� ��2

0

þ C8ðxÞC10ðxÞh eðh;33Þ�� ��
0 eðh;33Þ�� ��

1:

Hence, for h small:

eðh;33Þ�� ��
0 6 C11ðxÞh eðh;33Þ�� ��

1; ð5:19Þ

and using the H1-estimate (5.10) in (5.19), we conclude that:

eðh;33Þ�� ��
0 6 C12ðxÞh3=2 uð33Þ�� ��

3=2: ð5:20Þ

The results are summarized in the following theorem.

Theorem 3. Let u(33) and u(h,33) be the solutions of (4.4) and (5.3) ,
respectively. Then for sufficiently small h > 0 the following error
estimate hols:

uð33Þ � uðh;33Þ�� ��
0 þ h uð33Þ � uðh;33Þ�� ��

1

6 C13ðxÞh3=2 uð33Þ�� ��
3=2: ð5:21Þ
Remark. An identical argument shows the validity of the error
estimate given in Theorem 3 for the solution of the problems
(5.4), (5.6) and (5.7).
Remark. The estimate in (5.21) is optimal given the maximal reg-
ularity of the solution of the continuous problem.

Let us proceed to analyze the error associated with the
calculation of the coefficient p13 in the procedure (5.5). Since the
imaginary part of the bilinear form K(u,v) is not H1-coercive in
W13ðXÞ but satisfies instead a Garding inequality as in (4.28), the
error analysis for the procedure (5.5) needs an argument similar to
that given by Schatz [20]. Thus, since u(13) 2 [H3/2(X)]2, we first
estimate ke(h,13)k1 in terms of ke(h,13)k0 and ku(13)k3/2 and then we
combine duality with a boot-strapping argument to get the desired
estimates in terms of ku(13)k3/2.

First, setting:

eðh;13Þ ¼ uð13Þ � uðh;13Þ;

from (4.15) and (5.5), we get:

K eðh;13Þ; v
� �

¼ 0; v 2 Wh
13ðXÞ: ð5:22Þ

Choose v = e(h,13) + Ph,13u(13) � u(13) in (5.22), take the imaginary
part in the resulting equation, use the positive definiteness of MI,
Korn’s second inequality (4.10) and the approximating properties
of the operator Ph,13 to get:

L� MIð Þ
2

C1 eðh;13Þ�� ��2

1 � eðh;13Þ�� ��2

0

� �
6

L� MIð Þ
2

X
l;m¼1;3

�lm eðh;13Þ� ��� ��2

0 6 Im K eðh;13Þ; eðh;13Þ� �� �
6 K eðh;13Þ;uð13Þ �Ph;13uð13Þ� ��� ��
6 x2q� eðh;13Þ�� ��

0 uð13Þ �Ph;13uð13Þ�� ��
0

þ C8ðxÞ eðh;13Þ�� ��
1 uð13Þ �Ph;13uð13Þ�� ��

1

6 x2q� eðh;13Þ�� ��
1h3=2 þ C8ðxÞ eðh;13Þ�� ��

1h1=2
h i

uð13Þ�� ��
3=2; ð5:23Þ

so that:

eðh;13Þ�� ��
1 6 C�1

1 eðh;13Þ�� ��
0 þ C14ðxÞh1=2 uð13Þ�� ��

3=2; ð5:24Þ
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with

C14ðxÞ ¼ max x2q�;C8ðxÞ
� �� �

C1L�ðMIÞðxÞ=2ð Þ�1

To estimate ke(h,13)k0 in (5.24), we solve the following dual problem.
Let w be the solution of

�x2qw x1; x3;xð Þ � r � r� w x1; x3;xð Þð Þ ¼ e h;13ð Þ; X; ð5:25Þ
r�ðwÞm � m ¼ 0; x1; x3ð Þ 2 CT [ CR; ð5:26Þ
r�ðwÞm � v ¼ 0; x1; x3ð Þ 2 C; ð5:27Þ
w � m ¼ 0; x1; x3ð Þ 2 CL [ CB; ð5:28Þ

which has the regularity estimate:

kwk2 6 C15ðxÞ eðh;13Þ�� ��
0: ð5:29Þ

Testing (5.25) against v 2 W13ðXÞ we have that:

Kðv ;wÞ ¼ v ; eðh;13Þ� �
; v 2 W13ðXÞ: ð5:30Þ

Choose v = e(h,13) in (5.30) and use (5.22) to get:

eðh;13Þ�� ��2

0 ¼ K eðh;13Þ;w
� �

¼ K eðh;13Þ;w�Ph;13w
� �

; ð5:31Þ

so that repeating the argument given to derive the estimate (5.19)
for ke(h,33)k0 we see that for h small:

eðh;13Þ�� ��
0 6 C16ðxÞh eðh;13Þ�� ��

1: ð5:32Þ

Thus, use (5.32) in (5.24) to see that for h small:

eðh;13Þ�� ��
1 6 C17ðxÞh1=2 uð13Þ�� ��

3=2: ð5:33Þ

Finally use (5.33) in (5.32) to obtain the L2-estimate:

eðh;13Þ�� ��
0 6 C18ðxÞh3=2 u13

�� ��
3=2: ð5:34Þ

Then we have the validity of the following theorem:

Theorem 4. Let u(13) and u(h,13) be the solutions of (4.15) and (5.5) ,
respectively. Then for sufficiently small h > 0 the following error
estimate hols:

uð13Þ � uðh;13Þ�� ��
0 þ h uð13Þ � uðh;13Þ�� ��

1

6 C19ðxÞh3=2 uð13Þ�� ��
3=2: ð5:35Þ
6. Numerical Examples

Let us consider that each layer is isotropic and anelastic with
complex Lamé constants given by

kðxÞ ¼ q c2
P �

4
3

c2
S

� �
M1ðxÞ �

2
3
qc2

S M2ðxÞ and lðxÞ

¼ qc2
S M2ðxÞ; ð6:1Þ

where M1 and M2 are the dilatational and shear complex moduli,
respectively, and cP and cS are the elastic high-frequency limit com-
pressional- and shear-wave velocities. (In [4] the relaxed moduli
correspond to the elastic limit.) The dilatational modulus is

KðxÞ ¼ kðxÞ þ 2
3
lðxÞ ¼ q c2

P �
4
3

c2
S

� �
M1ðxÞ; ð6:2Þ
Table 1
Material properties.

Medium k (GPa) l (GPa) q (kg/m3)

Epoxy 3.94 1.61 1120
Glass 26.2 25.7 2510
and the P-wave modulus is given by

EðxÞ ¼ KðxÞ þ 4
3
lðxÞ: ð6:3Þ

We assume constant quality factors over the frequency range of
interest (until about 100 Hz), which can be modeled by a continu-
ous distribution of relaxation mechanisms based on the standard
linear solid [21,22]. The dimensionless dilatational and shear com-
plex moduli for a specific frequency can be expressed as

MjðxÞ ¼ 1þ 2
pQ 0;j

ln
1þ ixs2

1þ ixs1

� ��1

; j ¼ 1;2; ð6:4Þ

where s1 and s2 are time constants, with s2 < s1, and Q0,j defines the
value of the quality factor which remains nearly constant over the
selected frequency range.

The example considers an epoxy-glass periodic layered med-
ium. The properties of the isotropic viscoelastic materials are given
in Table 1, i.e., the low-frequency Lamé constants, wave velocities,
densities and quality factors [23]. Let the time constants in Eq. (6.4)
be s1 = 0.16 s and s2 = 0.3 ms, so that the quality factor of each sin-
gle isotropic layer is nearly constant from about 10 to 100 Hz.

In the long-wavelength limit, the wave characteristics of the
layered medium are defined by the averaging relations (2.11a),
the phase velocities (2.14) and the quality factors (2.15). In order
to validate the BC theory we perform the numerical compressibil-
ity and shear oscillatory tests described in the previous sections.
A crucial parameter for the validation is the ratio between the
P-wave dominant pulse wavelength and the spatial period of the
layering, which depends on the contrast between the constituents.

An optimal ratio can be found for which the equivalence be-
tween a finely layered medium and a homogeneous transversely
isotropic medium is valid. We have performed preliminar tests,
at a dominant frequency of 30 Hz and at a propagation angle of
h = 60�, in order to find the optimal value of the spatial period to
have a percentage error of about 1%. There are two type of tests,
namely, (i) The size of the sample is L =50 cm and we vary the
number of layers, and therefore the thickness of the layers; and
(ii) The number of layers is 100 and we vary the size of the sample,
so that this size depends on the thickness of the layers. We refer to
these two tests as ‘‘constant size’’ and ‘‘variable size’’, respectively.

Fig. 1 shows the results of the tests, where the errors corre-
sponding to the ‘‘variable size’’ approach are much lower than
those corresponding to the ‘‘constant size’’ approach. This reflects
the fact that in the latter case the number of layers is lower than
in the former test, showing that a large number of layers is re-
quired to obtain reliable results. Therefore, considering valid only
the ‘‘variable size’’ test, the optimal ratio is about 2000, which cor-
responds to a spatial period of about 7 cm. Notice that the error in
1/Q for this test is very small so that the corresponding curve al-
most can not be seen in the graphic. The 1/Q error value is about
0.5% a ratio of 2000. For the same ratio, the error in the qP-phase
velocity is approximately 0.9%. The analysis performed for the
qSV and SH waves yields a similar conclusion.

We validate the BC theory in the following simulations. The
stratified medium is a square sample of side length L = 50 cm com-
posed of 100 alternating plane layers of epoxy and glass of equal
thickness. The spatial period of the layering is then 1 cm, i.e., less
cP (m/s) cS (m/s) Q01 Q02

2530 1200 30 10
5560 3200 500 100



Fig. 1. Preliminar tests to determine the optimal ratio between the P-wave
dominant pulse wavelength and the spatial period of the layering. The frequency is
30 Hz and the propagation angle is h = 60�. In the constant-size case we used a
square sample of side length L = 50 cm, varying the number of layers. In the
variable-size case, the number of layers is 100.
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Fig. 2. Numerical (circles) and analytical (solid lines) qP, qSV and qSH phase
velocities as function of frequency. The propagation angle is h = 60�.
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Fig. 3. Numerical (circles) and analytical (solid lines) qP, qSV and qSH inverse
quality factors as function of frequency. The propagation angle is h = 60�.
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Fig. 4. Numerical (circles) and analytical (solid lines) qP, qSV and qSH phase
velocities at 30 Hz as function of the propagation angle.
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Fig. 5. Numerical (circles) and analytical (solid lines) qP, qSV and qSH inverse
quality factors at 30 Hz as function of the propagation angle.
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that the value computed in the preliminar tests. The simulation
uses a uniform partition T hðXÞ into 100 � 100 elements.

Figs. 2 and 3 show the phase velocities and quality factors as a
function of frequency, with a propagation (phase) angle of h = 60�.
Figs. 4 and 5 show the same quantities as a function of h at a fre-
quency of 30 Hz. The curves show the values obtained with the
oscillatory tests (symbols), compared to the BC theory (solid line).

In particular, in Figs. 4 and 5 can be seen that attenuation
anisotropy due to fine layering is more pronounced for qSV and
qSH waves than for qP waves. We observe an excellent agreement
between the theoretical and numerical results, which validates the
BC theory being tested. Similar results were obtained for other
finely layered anelastic materials [24].
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7. Conclusion

The Backus/Carcione theory yields the frequency-dependent
effective stiffnesses and wave properties of finely-layered anelastic
media at long wavelengths. In order to test the theory, we intro-
duced a novel numerical procedure based on oscillatory experi-
ments, which allows us to obtain the phase velocities and quality
factors of homogeneous body waves as a function of frequency
and propagation angle. The experiments are defined as bound-
ary-value problems in the space-frequency domain, representing
harmonic compressibility and shear tests which are performed
by using a finite-element method. To illustrate the methodology,
we applied the tests to a periodic sequence of thin epoxy and glass
layers. The agreement between the numerical and theoretical re-
sults is excellent. The theory and numerical solver proposed in this
work can also be applied and/or generalized to complex geological
situations (lower symmetries, stochastic heterogeneities, fractures,
etc.) and used in the processing and interpretation of real seismic
data for characterization purposes.
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