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A B S T R A C T

We present an efficient and accurate modeling approach for wave propagation in anelastic media, based on a
fractional spatial differential operator. The problem is solved with the Fourier pseudo-spectral method in the spa-
tial domain and the REM (rapid expansion method) in the time domain, which, unlike the finite-difference and
pseudo-spectral methods, offers spectral accuracy. To show the accuracy of the scheme, an analytical solution in
a homogeneous anelastic medium is computed and compared with the numerical solution. We present an exam-
ple of wave propagation at a reservoir scale and show the efficiency of the algorithm against the conventional
finite-difference scheme. The new method, being spectral in the time and space simultaneously, offers a highly
accurate and efficient solution for wave propagation in attenuating media.

1. Introduction

Seismic modeling is essential for various seismic processing steps,
which spans from seismic imaging to reservoir characterization. In
the entire range of applications, seismic modeling must follow two
important criteria, accurate physics and numerical accuracy. It has
been very common to solve the second-order scalar wave equation us-
ing a finite-difference approximation in the time and spatial domains
for seismic imaging (Dablain, 1986; Etgen and Dellinger, 1989; Kelly
et al., 1976; Alford et al., 1974) and inversion problem (Pratt and
Worthington, 1990). In these studies, the authors did not consider to in-
corporate the attenuative nature of the medium, which accounts for the
anelastic effect present in the subsurface.

Carcione et al., (Carcione et al., 1988a, 1988b) have modeled the at-
tenuation effect on wave propagation by using memory variables. The
wave propagation results in an augmented system of partial differen-
tial equations defining the evolution of these variables. On the other
hand, Stekl and Pratt (Štekl and Pratt, 1998), have solved the acoustic
wave equation in the frequency domain incorporating the effects of at-
tenuation, but this approach results into a computationally intensive

process as it is required to solve a Helmholtz equation for each fre-
quency.

In another approach Carcione et al., (Carcione et al., 2002), used the
theory of Kjartansson (Kjartansson, 1979) to solve the scalar acoustic
wave equation with the constraint of constant-Q at all frequencies. The
effect of Q is incorporated in the form of a fractional power of the
time derivative of the stress variable (σ). Fractional time-derivative of
stress variable σ at time t depends on all previous value of σ. This is the
memory property of fractional derivative, describing the attenuation.
Carcione et al. (2002) have solved the integral form of the fractional
time-derivative (Caputo, 1969) by using the Grünwald-Letinkov and a
central-difference approximations with first and second order accuracy,
respectively. The consistency, stability and convergence of the scheme is
discussed by Mainardi (Mainardi, 2010). The approach adopted by Car-
cione et al. (Carcione et al., 2002) is accurate in producing the desired
effect but it is computationally intensive and constrained by the order
of the accuracy.

To avoid the memory requirements of the fractional time oper-
ators, Carcione (Carcione, 2010), introduced the fractional Fourier
pseudo-spectral method to compute Laplacian derivatives of non-integer
order. This approach implies anelastic attenuation and velocity disper-
sion when implemented in wave equations. Following this methodology,
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Carcione and co-workers simulated constant-Q wave propagation in a
series of papers (Zhu and Carcione, 2013; Carcione et al., 2016). In
these works, authors use second-order finite-difference scheme in time
to solve the time derivatives. Here, we solve the time evolution with the
spectral rapid expansion method (REM) (Pestana and Stoffa, 2010), so
that the solution is fully spectral, in the time and space domains, thus
improving the accuracy and the computer efficiency.

2. Constant-Q medium

The constant-Q model (Kjartansson, 1979) is based on a creep func-
tion of the form t2γ, where t is time and γ≪1. Kjartansson model is
completely described by two parameters, namely the phase velocity at
a reference frequency and Q. Thus, it is much simpler than any con-
stant-Q model, such as, for instance, the Kelvin-Voigt and Zener mod-
els (Carcione et al., 1988a, 1988b, 1988c) and mainly used in its fre-
quency domain form. The relaxation function ψ(t) for constants-Q model
is given by (Kjartansson, 1979)

(1)

where M0 is a reference bulk modulus, Γ is the Euler Gamma function,
t0 is a reference time, γ is a non-dimensional parameter and H(t) is the
Heaviside function.

To derive the wave equation and its analytical solution in lossy me-
dia it is essential to have the complex modulus M(ω) for relaxation func-
tion given in equation (1). M(ω) is expressed as (Carcione, 2014, p. 72)

(2)

where ℱ represent the Fourier transform and ∂t the time derivative.
The modulus, M(ω) is given by (Kjartansson, 1979)

(3)

where ω0 = 1/t0 is reference frequency, , and the reference
modulus M0 is expressed as

(4)

where ρ and c are the mass density and phase velocity, respectively (Car-
cione, 2014, p. 100) .

In lossy media, the stress variable (σ) is related to the time history of
the strain (ε) via a convolution operator,

(5)
where the symbol “∗” denotes time convolution. The frequency-domain
representation of equation (5) is

(6)
Combining equations (5) and (6) and Newton's second law of mo-

tion, Carcione (Carcione, 2014, p. 101) derived the wave equation in a
lossy medium as

(7)

where and β = 2 − 2γ.
Equation (7) has a fractional power in the time derivative term,

which imposes a problem while computing the numerical solution be-
cause it requires to store the solution at all the previous time steps
to compute the solution at the current time step (Podlubny, 1998;

Carcione et al., 2002; Caputo et al., 2011). To circumvent this compu-
tational issue, Carcione (Carcione, 2010), proposed an anelastic wave
equation for constant-Q, equivalent to equation (7), but with spatial
fractional derivatives. The acoustic wave equation for uniform-density
medium is given by (Carcione, 2010),

(8)

where f(x,z,t) is the forcing function and β (1 ≤ β ≤ 2) defines the extent
of attenuation in the medium.

The equivalence between equation (7) and equation (8) can be easily
proven by performing the dispersion analysis of a plane wave (Carcione,
2010). The constant Q − model shown by equation (8) provides the
liberty of choosing the Q value in a direct way, unlike the models pre-
sented by Carcione et al., (Carcione et al., 1988a, 1988b, 1988c), where
Q values are computed by relaxation times of the material.

3. Numerical scheme

3.1. Computation of fractional laplacian

To compute spatial derivatives with a fractional power in equation
(8), a generalized form of pseudo-spectral method is used ( Carcione
2007, 2010) and expressed as

(9)

where are forward (inverse) Fourier operator and
is wavenumber vector.

In the present study, we have used direct-grid pseudo-spectral
method to compute the spatial derivatives, which is a reasonable choice
as equation (8) is scalar in nature. Unlike any finite-difference scheme,
the pseudo-spectral method provides the optimal spatial accuracy for a
given grid size, which substantially reduces the numerical errors such
as grid dispersion. In addition to the pseudo-spectral method, spec-
tral finite element method (SPECFEM) can also be used. The SPECFEM
will provide better accuracy for complex geometries, but it comes with
an aided computational complexity. Finally, the finite volume method
(FVM) is also successfully used to compute the spatial-derivative with
integer power (LeVeque, 2002), but extension of this method to com-
pute the spatial operator with fractional power is not trivial. The FVM,
being a low order method, is also constrained by its accuracy.

The implementation of direct-grid method for the heterogeneous
form of equation (8) will produce the Nyquist error due to FFT oper-
ators being global in nature. To circumvent the Nyquist error in nu-
merical solution, staggered-grid pseudo-spectral method (Ozdenvar and
McMechan, 1996) is used to compute the spatial derivatives. In stag-
gered-grid pseudo-spectral method, the spatial derivatives are computed
at half-grid points using the even-based Fourier transform.

3.2. Computation of time derivative

The spatial derivative in equation (8) is computed by using the pseu-
dospectral method, which provides very high accuracy and reduces nu-
merical artifacts, resulting due to grid dispersion (Kosloff and Baysal,
1982; Fornberg, 1987). The high order accuracy of the pseudo-spectral
method causes the total accuracy of the numerical scheme (in the time
and the space domain) to be dependent on the accuracy of the time inte-
gration scheme. To achieve the high accuracy of the numerical scheme
in the space and time domain simultaneously, it is essential to increase
the accuracy of the time integration scheme.

It is not obvious to achieve the high order accuracy in computation
of the time derivative and thus, the accuracy is confined to 2nd order
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(using the finite-difference scheme), while modeling the acoustic
(Alford et al., 1974; Dablain, 1986; Zhang et al., 2011) and the vis-
coacoustic (Carcione et al., 2010) wave propagation. In these studies,
second-order finite-difference approximations were used for time oper-
ator, but a high-accuracy and high-order approximations, such as 4th

order finite-difference scheme and pseudo-spectral schemes, are used
for spatial operators. These approximation of time derivative opera-
tor can introduce the numerical error, resulting into the distortion of
the shape of the wavelet and grid dispersion, especially, while using
the 4th order finite-difference spatial operator. To avoid these numer-
ical errors, a small time step (Δt) must be taken, which in turn re-
duces the efficiency of the numerical scheme. Thus, combination of
pseudo-spectral method (for the spatial derivative) and low-order fi-
nite-difference method (for the time derivatives) becomes slow while
performing large-scale and high-frequency seismic modeling. Further,
various improvements through the finite-difference scheme were pro-
posed to alleviate the accuracy of time-derivative operator (Etgen and
Dellinger, 1989; Soubaras and Zhang, 2008; Zhang and Zhang, 2009)
but these schemes are based on the trade-off between efficiency and ac-
curacy.

Kosloff et al., (Kosloff et al., 1989) proposed the rapid expansion
method (REM) to compute the time integration more accurately and ef-
ficiently. Based on the work of Tal-Ezer et al., (Tal-Ezer et al., 1987),
wherein a Chebyshev approximation for time marching is used (Kosloff
et al., 1989), incorporated Chebyshev approximation of cosine operator
(appears in the solution of wave equation) in REM. To achieve the com-
putational efficiency from one-step REM (Kosloff et al., 1989), Pestana
and Stoffa (Pestana and Stoffa, 2010) exploited the recursive property of
Chebyshev polynomials and proved the efficiency and accuracy of seis-
mic modeling.

Following the work of Pestana and Stoffa (Pestana and Stoffa, 2010),
we will derive the REM for equation (8). Fourier transform of equation
(8) can be written as

(10)

where .
Using the correspondence principle (Carcione, 2014, p. 145-146) ,

the solution of equation (10) can be written as (Pestana and Stoffa,
2010; Zhan et al., 2012)

(11)
where .

In order to derive an efficient numerical scheme, it is required that
ϕ2 can be written as summations of multiplication of functions of

and wave vector k [h(k)]. Thus ϕ2 is expressed as

(12)

Equation (12) ensures that and
is satisfied by equation (10). Thus, our ultimate objective is to expedite
the computation of cosine term in equation (8).

The cosine function in equation (11) can be expressed as (Kosloff et
al., 1989)

(13)

where C2k are expansion coefficients with C0 = 1, C2k = 2 for k > 0
. J2k represents the Bessel's function of order 2k and L2k(z) are modi-
fied Chebyshev polynomials. R is the parameters defining the criteria for
truncating the summation in equation (13). In addition to this, R also

conditions the L2k in such a way that arguments of L2k falls in [ − 1,1]
, which is a strict requirement for computation of Chebyshev polynomi-
als. R is equal to the maximum eigenvalue of operator ϕ and given as

(14)

where cmax is maximum velocity and Δx and Δz are spatial grid size. R
evaluated from equation (14) is complex thus, an absolute value of R is
to be considered during numerical implementation.

The sum in equation (13) converges exponentially for M > ΔtR
(Tal-Ezer, 1986), also presented in Appendix B. Though, we are free to
choose any value of Δt but selection of Δt will decide the number of
terms required to converge the summation in equation (13). Since co-
sine is an even function so equation (13) contains only even polynomi-
als and thus, recursive property of Chebyshev polynomials can be used
to compute the L2k(z) efficiently. The L2k(z) can be written as

(15)

Solution of equation (15) can be computed recursively with base
conditions of L0(z) = 1 and L2(z) = 1 + 2z2. The sequence of Cheby-
shev polynomials need to be computed at each time step of wave prop-
agation.

4. Results

We consider and , representing the medium
at an unrelaxed frequency. The unrelaxed frequency is defined by the
frequency at which phase velocity achieves the maximum value. Alter-
natively, this can be also described by the fact that unrelaxed frequency
corresponds to the maximum value of relaxation function (Carcione,
2014, pp. 90-91). Fig. 1 shows the phase velocity and attenuation versus
frequency computed for equation (8). The dispersion is significant, with
a velocity of 1.92km/s at 15Hz. Expressions for the phase velocity and
the attenuation are given in Appendix C. In subsequent simulations the
reference frequency is considered, to produce the desired
effect of attenuation on wave propagation.

Fig. 2 shows two snapshots at 500ms, computed for Q = 5 (Fig. 2a)
and Q = 200 (Fig. 2b). The simulation is based on a 200 × 200 mesh,
with square grid of size 10m. The velocity of the medium,
is assumed. Equation (8) is solved, using the pseudo-spectral method to
compute the spatial derivative, whereas the time stepping is performed
using REM. A 2D point source (with a cylindrical spreading), multiplica-
tion of the Dirac function in space and the Ricker wavelet with a domi-
nant frequency of 15Hz in time, is used as the forcing function [f(x,z,t)
]. As postulated, the wavefront of the lossy case (Fig. 2a) travels slower
than the waverfront of the quasi-elastic case (close to 2km/s), shown in
Fig. 2b.

Fig. 3 represents the numerical simulation of equation (8), demon-
strating the effect of spatially varying Q on wave propagation. Simula-
tion parameters (except Q) are same as those used in while generating
Fig. 2. Fig. 3 clearly reflects the effect of Q on velocity and amplitude
of the wave field. Wavefronts for travel slower than
those in the quasi-elastic (almost no attenuation) case (Q = 200).

To prove the accuracy of the presented numerical scheme, we com-
puted and compared the analytical and numerical solutions of equation
(8). An analytical solution of equation (8) is derived by adopting the ap-
proach of Caputo et al., (Caputo et al., 2011) and shown in Appendix
A. To compute the analytical and numerical solution, we use following
forcing function,

(16)
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Fig. 1. (a) Phase velocity and (b) attenuation factor corresponding to Q = 30.

where tp is period of wave and ts = 1.4tp represents delay in source. To
compute the analytical solution, a frequency domain representation of
equation (16) is required, which is expressed as

(17)

Fig. 4 represents a comparison between the analytical and the nu-
merical solutions of equation (8) for Q = 5. The analytical and numeri-
cal solutions are computed at an offset of 60m for a source with domi-
nant frequency of 15Hz and velocity c = 1527m/s. Fig. 4 clearly shows
a good agreement between the numerical and analytical solution with
an L2 -norm error of 0.4%.

Fig. 5 represents the snapshot of wave field, computed by solving
equation (8) in an attenuative heterogeneous medium, comprising two
layers of different velocity. Fig. 5a and b represent the snapshot of
wavefield at 700ms for Q = 5 and Q = 40, respectively. The simula-
tion is based on 400 × 400 mesh with grid size of 10m. The time re

Fig. 2. Snapshots computed at 500ms using rapid expansion method for (a) Q = 5 (b)
Q = 200.

sponse of forcing function is a Ricker wavelet with the dominant fre-
quency of 18Hz. The velocity (c) of top and bottom layer is 1.5km/s
and 2.0km/s respectively. The phenomena of the velocity varying with
Q is very clear; in more attenuating medium (Q = 5, Fig. 5a) the tra-
versed distance of wavefield is less in comparison to the less attenuat-
ing medium (Q = 40, Fig. 5b). In order to show the efficiency of REM
over second-order finite-difference scheme, we compared the number
of the Laplacian calculation required in finite difference and REM. In
finite difference schemes, the time step for stable explicit-integration
is computed using the Courant-Friedrichs-Lewy (CFL) condition. The
CFL condition is the necessary condition, ensuring both the convergence
and stability of numerical solution. Additionaly, with the CFL the nu

4



UN
CO

RR
EC

TE
D

PR
OO

F

K. Shukla et al. Computers and Geosciences xxx (2019) xxx-xxx

Fig. 3. A comprehensive view, showing the effect of the spatially varying
on the wave propagation, computed at 500ms. It is to be noted

that Q = 200 represents a quasi-elastic medium.

Fig. 4. A comparison between the analytical (solid line) and numerical (dots) solutions
computed at Q = 5. The stress field (σ) is computed at an offset of 60m.

merical speed is always less than the physical speed of the wave.
The CFL condition is given as

(18)

where Δt is time step, Δx is grid size in space and cmax in maximum ve-
locity.

For the finite-difference scheme, the number of the Laplacian is com-
puted by dividing the maximum time of propagation (tmax) with time
step (Δt), whereas the number of the Laplacian calculation for REM
is > tmaxR/2. For the case shown in Fig. 5, the number of the Lapla-
cian calculation for the second-order finite-difference (α = 0.2) and
the REM is 349 and 311, respectively. As the propagation time and
the domain size are very small, the difference in the number of the

Fig. 5. Snapshots computed at 700ms for variable velocity and constant density medium
separated by an interface (equation using rapid expansion method for (a) Q = 5 (b)
Q = 40.

Laplacian computation is not substantial though for the long simulation,
the difference is very evident and shown in the subsequent section of
the paper.

Numerical solution of equation (8) is computed for a large synthetic
reservoir model, containing a gas chimney. The P-wave velocity (Fig.
6a) and Q model (Fig. 6b) is adopted from Zhu et al., (Zhu et al.,
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Fig. 6. Large scale synthetic reservoir model with (a) P-wave velocity and (b) Q model.

2014). In this model, the gas chimney is differentiated from the sur-
rounding by a low value of velocity (Fig. 6a) and Q(≈15) (Fig. 6b).
The velocity and Q models comprise 398 and 161 grid points in the x-
and the z-direction, respectively. The grid spacing in both the direction
is . In the model, P-wave velocity varies from 1500m/s
(cmin) to 4500m/s (cmax), which guarantees a max frequency of propaga-
tion (cmin/2Δx) to be bounded below by the 30Hz. A Ricker point source
of 18Hz central frequency is used as a forcing function. Fig. 7a repre-
sents the snapshot of stress-field (σ) at 1.5 s with the Q model (Fig. 6b)
incorporated in the computation. To show the effect of Q on the wave
propagation, the numerical solution of equation (8) is also computed for
a lossless medium. A lossless condition is achieved by considering β = 1
in equation (8). Fig. 7b represents the snapshot of the wave field at 1.5 s
for the lossless medium. A comparison between Fig. 7a and b reflects
the fact that the dispersion due to the rheology of the model is incorpo-
rated accurately.

Fig. 8a and b represent the shot gathers in a lossy (corresponding
to simulation shown in Fig. 7a) and lossless (corresponding to simula-
tion shown in Fig. 7b) medium, respectively. To show the effect of Q on
shot gathers, a comparison between amplitude spectra of Fig. 8a and b

Fig. 7. Wave field simulation for a reservoir model (a) Snapshot of the wave field at 1.5 s
with Q − and (b) wave field snapshot computed at 1.5 s with out Q − (lossless medium).

is shown Fig. 8c. Fig. 8c clearly shows the effect of attenuation on the
amplitudes. As expected, the effect of attenuation is more evident at
high frequencies, which is reflected by the steeper rate of decay in am-
plitude in lossy case than in lossless case. The dominant frequency is ≈
14.5Hz for both the cases. Fig. 8d contains a comparison between traces
extracted at 250m offset from the source. The effect of attenuation is
clearly reflected in the amplitude and phase shifts (a shift in time) be-
tween the traces.

A comparison between the number of the Laplacian calculation re-
quired for REM and the finite-difference scheme, is shown in Table 1.
Table 1 proves the fact that for all cases of α and frequency, the REM is
more efficient than the second-order finite-difference scheme.

A representative spectrogram (time-frequency) analysis of shot gath-
ers, computed in the lossy (Fig. 9a) and the lossless media (Fig. 9b),
is shown in Fig. 9. The spectrogram essentially calculate the short-time
Fourier transform of the trace resulting into the amplitude at time-local-
ized frequency. The basic reason behind these computation is to repre-
sent the distribution of the amplitude and phase (represented in term of
time on y − axis) at a fixed time and for an entire frequency range (x −
axis).

Fig. 9a and b represent the time-frequency analysis for a trace for
an offset of in the lossy and the lossless media, respectively. It
is worth to note that in a lossy media (Fig. 9a) the onset of dominant
power of the signal is delayed in comparison to that in lossless
medium (Fig. 9b), which starts at . Thus, this time difference also
confirms with the phase difference in attenuative media, as reported by
(Carcione, 2010). Fig. 9a also shows that in lossy media, the variation of
the amplitude with the frequency and time is more notable than in the
lossless media (Fig. 9b).

5. Discussion

The implementation of the REM to compute the time derivative op-
erator in equation (8), provides freedom in choosing the size of time
step Δt (as shown in Figs. 2–9) with an increased accuracy in the numer-
ical solution. The efficiency along with accuracy achieved from the REM
will be very useful in various seismic imaging algorithms. In particular,
the reverse time migration (RTM) algorithm which requires two-way so-
lutions of the wave equation.

In another in-line study Sun et al., (Sun et al., 2015), computed the
numerical solution for viscoacoustic equation, described by the frac-
tional space derivatives with constant − Q, using a low rank approxi-
mation method (Fomel et al., 2013). The method of the low rank ap-
proximation does not impose any constraint on the size of Δt. Sun et
al., (Sun et al., 2015) use the constitutive equations of Zhu and Harris
(Zhu and Harris, 2014), which are based on the approximation of freez-
ing-unfreezing theory of heterogeneous medium (Stein, 1999). They ap-
proximated the wave equation in the constant − Q medium using four
Laplacians and two of them with the fractional order. Numerical solu-
tion of such equations will require four 2D FFT operations at each time
step. However, in present study we just require two (one forward and
one inverse) 2D-FFT operation at each time step. Thus a comparison be-
tween the efficiency of numerical scheme presented in this paper with
the study carried out by Sun et al., (Sun et al., 2015) will not be appro-
priate.

To show the efficiency of the algorithm, we have analyzed the
numerical scheme using the approach of basic algorithmic-complexity
(Cormen et al., 2009). To compute the spatial operator in 3D, we re-
quire six runs of the FFT algorithm (three forward and three inverse).
The computational complexity of one run of the FFT algorithm is

, with n being the total number of nodes, used to discretized
the domain in x, y and z directions. Thus the time complexity (2D
or 3D), for computation of spatial derivatives is . Any al-
gorithm with the complexity of suggests that the run time

6
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Fig. 8. Shot gathers extracted from simulations shown in Fig. 7a and b. Shot gather in a (a) lossy medium (b) lossless medium and (c) a comparison between normalized amplitude spectra
of (a) and (b), and (d) pressure seismograms at 250m from the source location extracted for lossy and loss-less medium. The wave equation involves a fractional power of the Laplacian
for the lossy case.

Table 1
Number of Laplace calculations using second-order finite-difference (FDL) and REM
(REML), with maximum time of propagation, tmax = 1.5 s.

α Freq. (Hz) Δx(m) Δt(s) FDL REML

0.4 15.0 25.0 0.00217391 690 613
0.2 15.0 25.0 0.00434783 1380 613
0.4 45.0 15.0 0.00130435 1150 1022
0.2 45.0 15.0 0.00260870 2300 1022

grows slowly as n increases in comparison to algorithms with expo-
nential and quadratic complexity. The time complexity for computing
the time derivative is dominated by evaluation of the modified Cheby-
shev polynomials in equation (13). Since, we have used the recursive
approach to compute the modified Chebyshev polynomials, the time
complexity for the computation of the time derivative would be .
Thus, at each time step, the total computational complexity would be

. Fig. 10 shows a comparison between the theoreti-
cal run time, described by and actual run time, com-
puted for a 2D case. The run times are plotted against number of grid
points in one direction. The run times are computed on a single node
machine, comprising MacBookPro 2018 laptop with 8 cores and 2.3GHz
clock frequency. The comparison clearly shows a very good agreement
between the theoretical and actual runtime, considering the fact that the
code is not optimized, substantially.

As confirmed by Fig. 10, it can be concluded that the efficiency of
the presented numerical scheme will be primarily dominated by the
scalability of the FFT algorithm on a multinode architecture with a dis-
tributed memory hierarchy. The FFT has been already proven to be a
strong scale algorithm (Pippig, 2013), which guarantees strong scalabil-
ity of the presented numerical scheme on a multinode machine.

6. Conclusions

We have simulated the wave equation in attenuative media, effi-
ciently and accurately, by implementing the REM and pseudo-spectral
method to compute the time and fractional spatial derivatives respec-
tively. Various computational experiments reflect the fact that the pro-
posed efficient numerical scheme accurately incorporates the velocity
dispersion, which is caused by Q. A comparison between the analytical
and the numerical solutions shows a very good agreement. Numerical
simulation for large scale reservoir model, shows a substantial efficiency
of REM over second-order finite-difference scheme. We also presented
the efficiency of our code by comparing the theoretical and actual run
times, which shows a very good agreement.

Computer code availability

To accelerate the dissemination and adoption of presented method
in the wider community, we have made the entire project open source
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Fig. 9. Spectrogram or time-frequency plot of shot gather in (a) lossy medium (Fig. 8a),
(b) lossless medium (Fig. 8b). Spectrogram is computed for a trace at an offset of .

Fig. 10. A comparison between the theoretical and actual run time of the code written in
the current work.

under the permissive MIT License. The code is hosted at https://github.
com/rajexplo/REM_COMPUTER_GEOSCIENCE. The code is written
FORTRAN90 language and collaboratively developed by authors of the
current paper. This code requires a third party library FFTW, extensively
used for Fast Fourier transformation. This code is tested on MacBookPro
2018 laptop with 8 cores and 2.3GHz clock frequency. GNU compiler
(gfortran) is used to compile and link the code. This code originally pro-
duces Fig. 5a and b presented in the current manuscript and just repre-
sent a prototype implementation of presented algorithm. For any ques-
tion please contact at email address of corresponding author of the cur-
rent manuscript.
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Appendix A Green's function and analytical solution

Equation of motion for wave propagation in anelastic media is ex-
pressed as (Carcione, 2014, p. 101)

(A.1)

Stress-strain relation in anelastic medium is expressed as

(A.2)

where . Substituting equation (A.2) in equation (A.1) we
get

(A.3)

Taking Fourier transform of equation (A.3)

(A.4)
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Using equation (8), b(iω)2 − β = M(ω), we rewrite equation (A.3) as

(A.5)

where is wave number and is complex phase veloc-
ity.

If vc is real the medium is lossless. Solution to lossless acoustic equa-
tion (Δ + p2)G = − 8δ(r) is the Green function G (Carcione, 2007) and
can be expressed as

(A.6)

where c0 is real velocity in lossless media, is zero order Henkel func-
tion of second kind. Coordinate pair (x0,y0) is location of source and

. (Caputo et al., 2011) computed anelastic so-
lution by invoking the correspondence principle (Bland, 1960). Accord-
ing to the correspondence principle, solution in lossy media can be ob-
tained by substituting c0 in equation (A.6) with vc. Thus Green function
for strain is

(A.7)

Since ΔG = − p2G away from the source and σ = M(ω)ε, then
Green's function for the stress can be expressed as

(A.8)

To ensure the inverse Fourier Transform of Green's function to
be real, we will set G( − ω) = G*(ω), where ∗ is complex conjugate.
Thus the frequency domain solution for stress is given by

, where f(ω) is frequency domain repre-
sentation of f(t). As Henkel function has singularity at ω = 0, we will
assume G(ω = 0) = 0.

Appendix B Convergence and stability of scheme

We prove the convergence criteria of M > ΔtR for series in
(equation (13). We rewrite 13 as

(B.1)

The accuracy of HM(ϕΔt), a polynomial approximation, is defined
by its asymptotic rate of convergence as M→∞. Consider the interval

, where the asymptotic behavior of equation (B.1) is defined.
Thus to a prescribed accuracy, the minimal , should be
> m0 to resolve all the Fourier modes. This is a necessary and sufficient
condition as proven by (Tal-Ezer, 1986). Now we can derive the value
of m0 for equation (B.1). It is a well known fact that the Bessel's function
of order k, defined for a variable x as Jk(x), converges to zero exponen-
tially fast if k > x (Abramowitz and Stegun, 1972). Thus to resolve all
the Fourier modes the interval of asymptotic behavior would be [z,∞],
with m0 = x. Thus, it proves that HM(ϕΔt) will converge exponentially
if k > ΔtR.

Appendix C Phase velocity and attenuation

The analysis of he propagation characteristic of the medium, defined
by equation (8), is performed. The phase velocity (vp) and attenuation
factor (α), in a medium of constant properties, for a plane wave, defined
by σ = exp[i(ωt − kxx − kzz)], are

(C.1)

(C.2)
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