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Wave propagation in thermo-poroelasticity: A finite-element approach
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ABSTRACT

We have developed continuous and discrete-time finite-
element (FE) methods to solve an initial boundary-value prob-
lem for the thermo-poroelasticity wave equation based on
the combined Biot/Lord-Shulman (LS) theories to describe
the porous and thermal effects, respectively. In particular, the
LS model, which includes a Maxwell-Vernotte-Cattaneo re-
laxation term, leads to a hyperbolic heat equation, thus avoid-
ing infinite signal velocities. The FE methods are formulated
on a bounded domain with absorbing boundary conditions at
the artificial boundaries. The dynamical equations predict four
propagation modes, a fast P (P1) wave, a Biot slow (P2) wave,
a thermal (T) wave, and a shear (S) wave. The spatial discre-
tization uses globally continuous bilinear polynomials to
represent solid displacements and temperature, whereas the
vector part of the Raviart-Thomas-Nedelec of zero order is
used to represent fluid displacements. First, a priori optimal
error estimates are derived for the continuous-time FE
method, and then an explicit conditionally stable discrete-time
FE method is defined and analyzed. The explicit FE algorithm
is implemented in one dimension to analyze the behavior of
the P1, P2, and T waves. The algorithms can be useful for a
better understanding of seismic waves in hydrocarbon reser-
voirs and crustal rocks, whose description is mainly based on
the assumption of isothermal wave propagation.

INTRODUCTION

Thermoelasticity is the theory that couples the fields of deforma-
tion and temperature, where an elastic source gives rise to a temper-

ature field and attenuation and a heat source induces anelastic
deformations. The theory is useful in a variety of applications such
as seismic attenuation in rocks and material science (Zener, 1938;
Lifshitz and Roukes, 2000; Carcione et al., 2019a). The theory also
might be relevant in low-temperature physics, theories of shocks
and vibrations, and astrophysics.

The classical parabolic-type differential equations of thermoelas-
ticity (nonporous) for the Fourier law of heat conduction are
reported by Biot (1956), but his theory has unphysical solutions, such
as discontinuities and infinite velocities at high frequencies. Sub-
sequently, Lord and Shulman (1967) overcome these problems by
formulating hyperbolic-type differential equations, introducing Max-
well-Vernotte-Cattaneo (MVC) relaxation times into the heat equa-
tion (Rudgers, 1990). The thermoelasticity theory predicts an S wave,
two P waves, and a thermal wave. The fastest P wave and thermal
wave have characteristics similar to the fast and slow P waves of po-
roelasticity, respectively (Carcione et al., 2019a; Carcione, 2022).

The work of Zener (1938) already contains the concept of mode
conversion from a P wave to a thermal mode, e.g., he explains
P-wave dissipation due to the presence of “microscopic stress in-
homogeneities [which] arise from imperfections, such as cavities,
and from the elastic anisotropy of the individual crystallites,” in
the same way that the White model (White et al., 1975) describes
attenuation in porous media due to mesoscopic-scale inhomogene-
ities (as a P wave converted to Biot slow mode). Zener (1946)
anticipates the concept of attenuation due to diffusion, where he
mentions thermal, atomic, and magnetic diffusions as the causes.
However, the Biot slow mode represents loss due to fluid-pressure
diffusion. These attenuation mechanisms (and related velocity
dispersion) are essential in forward modeling and inversion to honor
the amplitude and phase of the wavefield.

Early works in geophysics worth mentioning in this sense were
conducted by Treitel (1959) and Savage (1966), who obtain the
P- and S-wave quality factors for empty round cavities or pores,
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and Armstrong (1984), who considers a finely layered medium. The
subject had been neglected in practice until recent works by Car-
cione and coworkers, who perform the first simulation of the ther-
mal wave in the context of thermoelasticity and poro-
thermoelasticity (Carcione et al., 2019a, 2019b, 2020; Wang et al.,
2020, 2021; Wei et al., 2020). In these works, the numerical sim-
ulation was performed with a direct method to compute the spatial
derivatives, namely, the Fourier pseudospectral differential operator
(e.g., Carcione, 2022). The development of a new technique, based
on the finite-element (FE) algorithm, will provide a more flexible
approach to represent the heterogeneities of the medium and will
provide a further crosscheck of algorithms and the physics of wave
propagation.

Santos et al. (2021) prove the existence and uniqueness of the Biot/
Lord-Shulman formulation in linear thermo-poroelastic isotropic me-
dia, with bounded domains under appropriate boundary and initial
conditions. The analysis shows the existence of a unique solution,
given in terms of displacements of the solid and fluid phases and tem-
perature, and proves its regularity in the space and time variables. The
FE spaces used for the spatial discretization of the initial boundary-
value problem (IBVP) are as follows. The components of the solid
displacement vector and the temperature are represented by globally
continuous piecewise bilinear functions. For the fluid phase, we use
the locally vector part of the Raviart-Thomas-Nedelec space of zero
order. First, we derive a variational formulation of the continuous-
time FE IBVP problem and show the existence and uniqueness of the
continuous-time FE solution. Then, a priori error estimates are given,
which are optimal for the FE spaces used and the assumed regularity
of the solution. A novel explicit discrete-time FE algorithm is defined,
and the conditional stability of the explicit FE procedure is analyzed.
Finally, the implementation of the explicit FE algorithm is illustrated
for the 1D case, with numerical experiments showing the behavior of
all waves when using this nonisothermal model.

MODEL EQUATIONS

We consider a porous medium saturated by a single phase and
compressible viscous fluid and assume that the whole aggregate is
isotropic. Let u* = (1) and u/ = (/) denote the average displace-
ment vectors of the solid and relative fluid phases, respectively, and
set u = (u',u/). Let e(u*) = (g;(u*)) be the strain tensor of the
solid. Also, let 6(u,6) = (c;;(u,0)) and p, = ps(u,6) denote
the stress tensor of the bulk material and the fluid pressure, respec-
tively, with @ being the increment of the temperature above a refer-
ence absolute temperature 0, for the state of zero stress and strain.
The stress-strain relations are

oij(w,0) = 2ue;;(u*) 4 6;;(4,V - w* + BV -w/ — f0), (1)

—pp(u,0) = BV - w* + MV - v/ — 5,0, @)

where u is the wet- or dry-rock shear modulus; 4, = 4+ M,
a=1-(K,/K): M=(((a=p)/K,)+(@/K))": ¢ is the
porosity; and B = aM, with 4, being the Lamé coefficient of the
fluid-saturated frame and K, K,,, and K¢ denoting the bulk moduli
of the grains, solid, and fluid, respectively. The positive coupling co-
efficients # and f3, are the coefficients of thermoelasticity of the bulk
material and fluid, respectively.
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Dynamical equations

Let p, = (1 —¢)p, + ¢p, denote the mass density of the bulk
material, with p; and p; being the mass densities of the grains and
fluid, respectively. Let the positive definite matrix P and the non-
negative matrix B be defined by

7>_<pr 91>’ B_(OI )@

where / is the identity matrix in R with d = 2,3, n is the fluid
viscosity, « is the permeability, and g = (Sp/¢), where S is the
tortuosity.

Let us define the differential operator £(u,8) = (V - 6(u,0),
—Vpy(u,6)). Then, Biot’s dynamical equation taking into account
temperature 1S

Pii + Bi/ — L(u,0) =f. @)

Following Sharma (2008) and Carcione et al. (2019a), the general-
ized heat equation is

e+ cO—V - (yVO) + OV - 0 + pO,V - o/
+ 20,V - ii* + B0,V - i = —q. (5)

In equations 4 and 5, f = (£, f/) is an external force and ¢ is a heat
source. Also, y = (1 —¢)y,, + ¢y, is the bulk coefficient of heat
conduction (or thermal conductivity), with y,, and y, being the heat
conduction of the frame and the fluid, respectively; ¢ = (1 — ¢)c,, +
¢cy is the bulk specific heat of the unit volume in the absence of
deformation; and 7 is an MVC relaxation time. These equations as-
sume thermal equilibrium between the solid and the fluid, i.e., the
temperature in both phases is the same. Thermal equilibrium is valid
when the interstitial heat transfer coefficient between the solid and
fluid is very large and the ratio of pore surface area to pore volume
is sufficiently high. Here, we consider f,,, B¢, v, and c as strictly
positive parameters, obtained from experiments or from a specific
theoretical model.

IBVP

The IBVP is formulated in the 2D case (with obvious extension
to the 3D case) for the case of thermal equilibrium in an open
bounded domain Q with piecewise smooth boundary and a time
interval J = (0,7T) as follows: find (u,8) satisfying equations 4
and 5 with initial conditions

u(x,0)=u’=(u’*,u®), a(x,0)=u!=(u'* u"), xeQ,

(6)
0(x,0)=6°, 6(x.0)=6', xeQ, 7)

and absorbing boundary conditions
—Gr(u,0) =DS(a),—yVo - v = tcvyd, xel, tel,
®)

where
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=(ov-v,6V- Y,

—py)(u,0),

=@ v,u -y u ). 9)
In equations 8 and 9, v and Y are the unit vector outer normal and
unit vector tangent on I" oriented counterclockwise. The absorbing
boundary condition (equation 8) is derived in Santos et al. (1988),
with the matrix D being positive definite. Also, vy = \/7/(zc) is
the heat speed (e.g., Carcione et al., 2020).

In the 3D case, the formulation of the IVP (equations 6-9) re-
mains valid if two tangents (i.e., X, X») are used in equation 9.

An existence and uniqueness result for the solution of equa-
tions 4—7 with different boundary conditions than those in equa-
tion 8 are given in Santos et al. (2021).

A VARIATIONAL FORMULATION

To obtain a variational formulation, we need to introduce some
notation. For Q C R? with boundary I" = 0%, let (-,-)q and (-, -)p
denote the L?(Q) and L?(T") inner products, respectively, for scalar,
vector, or matrix-valued functions. Also, for s € R, || - ||, and | -
|, will denote the usual norms for the Sobolev space H*(Q) and
H*(I'), respectively (Adams and Fournier, 2003). If X = Q or
X =T, the subscript X may be omitted such that (-,-) = (-, ")q,
o= or |- fg =] [ Let

H(div;Q) = {v e [LX(Q]:V - ve LX(Q)}.  (10)

provided with the norm [|v| vy = [IVI§ + [V - VI[5]"/%. We

also will refer to the space:
H'(div;Q) = {ve [H'(Q)*:V-ve H' (Q)}. (1)
The following known results will be used (Girault and Raviart, 1981):

Vvl or < CllVl vy (12)

12)101(1/2
Vor < CIVIGGIVING < ClIvll o (13)

Here, and in what follows, C denotes a generic constant that may take
different values at different places. Also recall Korn’s second inequal-
ity (Duvaut and Lions, 1976):

LIz esmr|a iz cmi

Next, we introduce the space V = [H'(Q)]? x H(div; Q), provided

with the natural norm:

vl = (VIR + 19 1 )2

vi e [H'(Q)]?, v/ € H(div; Q). (15)
Also, for any Banach space Y, let

2 _ . . 2 T 2
12(0,7) = {f.f ~ ¥:|fIEy —A 1F(0) Bt < oo},
(16)

WA163

= ess. sup;es[|f (1) [ly < o0}
a7

2(LY) =A{fT = YAy

To obtain a variational formulation of the IBVP (equations 4-8),
multiply equation 4 by v* and equation 5 by v/ such that v = (v*, v/)
€ V; we use integration by parts and the boundary conditions equa-
tion 8 to obtain

(Pii(x),v)+ (guf,vf> +A(u,) = (O,V V)= (B,0,V V)

4 (7cO,w) + (cO,.w) + (yVO,Vw) + (B0, V - ¥, w)
+(BONV -0 W) + (2O, V - 1, w) + (280, V - i, w)
+(DS(11),S(v)) + (zcvyd,w)

£.v)=(q.w), v=(v*.¥/ w)eVxH'(Q), teJ, (18)

where A(u, v) is the bilinear form
(€€(u), &(v)). (19)

In equation 19, the matrix £ and the column vector £(u) are defined by

Aa,v) =

’114 + 21“ ’114 B O &1 (us)

_ j’u j’u +2ﬂ B 0 ~ _ €33 (us)
E= B B Mol £(u)= v | (20)

0 0 0 4/4 €13(“'Y)

The term (£€(u), €(v)) in equation 19 is associated with the strain
energy of the system, so that the symmetric matrix £ must be positive
definite. Furthermore, A(u,v) < C|lu||y||v|l,-

Also, note that, using equation 14, if éf is the minimum eigen-
value of &, the following Girding inequality holds:

A(v,v) = C|[vIl3 - | vI[3. 1)

FE FORMULATIONS

We will find an FE solution of equation 18 as follows. Let 7"(Q)
be a quasiregular nonoverlapping partition of € into rectangles €;
of diameter bounded by / such that Q =U7j Q;. Let us denote by
WH(Q) the space of globally continuous piecewise bilinear poly-
nomials to be used to approximate each component of the solid dis-
placement u* and the temperature 6. Also, let V'(Q) be the vector
part of the Raviart-Thomas-Nedelec space of zero order (Raviart
and Thomas, 1977; Nedelec, 1980) used to approximate the fluid
displacement vector v/. Then, let

Zh(Q) = WHQ) x WH(Q) X VI(Q) x W(Q).  (22)
Next, let IT: H2(Q) — W"(Q) be the interpolant operators associ-
ated with the space W" and set II® =II x IT - [W"(Q)]?. Let
Q:H'(div; Q) — V"(Q) be the projection defined by

(Qy—w) v,1) =0, B=TorB=T; (23)
The approximating properties of IT and Q are (Raviart and Thomas,
1977; Nedelec, 1980)
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|@—Tlg||+hll@—Tlp||, <Ch*||@l,. peH*(Q).

(24)

o~ ()@ qllo+hlle- ()P, <Ch*|ll,. p[H*(Q)].
(25)

[w— Qwllo < (26)

weH! (div;Q).
(27)

V- (w=0w)lo <Ch(llwll, + IV -wll,),

Continuous-time FE procedure

We find (U(7),0(¢)) € Z"(Q) such that

(PU,v)+ (ﬁUf,vf) +A(U,v)—(pO,V-v*) = (8,0,V-v/)

+ (z¢@,w) + (cO,w) +

+(BOV - UL ,w) + (26, V - U*,
+(DS(U),S(V)) + (rcvy®,w)
(£,v)—( w) € ZMQ), tel.

(yVO,Vw) + (B, V - U*,w)
w) + (286, V - UF ,w)

qg.w), v=(v',v/, (28)
Next, we state Theorem 1 where the existence and uniqueness of the
solution of the problem (equation 28) are demonstrated, and Theo-
rem 2 where a priori error estimates for this FE procedure are pre-
sented. Their proofs are given in Appendix A.

Theorem 1

Assume that the matrices P and B in equation 3 are positive def-
inite and semidefinite, respectively, and that the matrix £ in equa-
tion 20 is positive definite. Also, assume that the coefficients
7,¢,7,f, and By in equation 5 are bounded above and below by
positive constants.

Then, there exists a unique solution (U, ®) € Z" of the continu-
ous-time FE procedure (equation 28) that satisfies the inequality:

10 ey + OOy + 1O
IO 12+ IO
< C([U(O) 3+ [[0O)]3 + [0 >||0+|\1'J<0>||3
+16(0) [+ [0O)]1})
< I ey + 111,

2@

o a7 120)-
(29)

Theorem 2

Assume that the matrices P and B in equation 3 are positive
definite and semidefinite, respectively, and that the matrix £ in
equation 20 is positive definite. Also, assume that the coefficients
7,¢,7,p, and f; in equation 5 are bounded above and below by
positive constants. Then, the solution (U, ®) € Z" of the FE pro-
cedure (equation 28) satisfies the a priori error estimate:

Santos et al.

1B o (g 122 @) + 1B o 220

+ 1Bl oy + (B0l o 1)

+ B0l 1oy () + BN oy 120

< Ch([[u® [l + [}y + |V - u® [} + [[u'],

+ I + (V- u

+ 11612 + 16" |2 + L7 0)lo + 113(0)llo

0 2 @) + 19 s @)
+ ||uf||L2(J,[H3/2(Q)]2) IV |2 0

@ 2 @y + 16 1|2 @) + ||9||L°°(J.H2(Q))

+ 116112 220 - (30)
TIME-STEPPING PROCEDURE
Let
Un+1 —2ur + Un—l Un+1 _ Un—l
()2 n _ o= ———
v At? , U 2At ’
Un+1 . i
DU = ——. 31
‘ AL (31

An explicit time discretization of equation 18 can be stated as
follows: we find (U",®") € Z" such that

(PPU"v)+ (Qde’”,vf ) FA(U" V)= (0", V V)
K

—(;0",V-v/)

+(2c0°0".w)+(c00", )+ (yVO", Vw)+ (B0, V -0U*" ,w)

+(BOV -0U " W)+ (20, V - 0°U*" . w) + (750, V - 02U/ w)

+(DS(aU"),5(v)) + (rcvgo®@" ,w)

(£",v)— =(v'.v . w)ezh(Q), n=1.2,--- M.
(32)

(q".w), v

Conditional stability of the discrete FE procedure
We choose v = gU" = (9U*", dU/") and w = 9@" in equation 32
to obtain

(PPU", aU") + (Zanv", an'~"> + A(U", 9U")

— (pO",V - 9Us") —
+ (7cd*@",00") +
+ (BO,V - OUS", 00"
+ (BO,V - U/, 00" +
+
+

(50", V - oU/ ")
(c0®", 00" + (yVO", Vo)

(zBO,V - PUS" 90")
B0,V - °US M 90n)

(DS(aU™),
(f",9U") —

S(aU™)) +
(¢",00"),

(tcvyo®™", 00™)
n=1,2 - M. 33)
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Next, we use the identities

1
ZAIA(Un, aUn) — 5 [A(U"Jrl, Un+1) _ A(Un_l, Un—l)
+A(U" -

_ A(Un+l

Un—l ,U" _ Un—l)
— U, Ut — U], (34)

1
At(yVO",Vo@") ==[(yvVOt!,vert!) - (yver-! ver-!
2

+(V(©"-0"), V(0" -0)) ~ (Y (0" ~0r),
V(®n+l _@nﬂ , (35)

and add to equation 33 the inequalities

4At[IIU"“Ho [om=tjg] < (HU”+'||3+IIU”“|I%

+(1D,U" |5 +|D, U H%%

1
4-7At(y®n+l ’@n+l ) _ (}/@)n—l ,@n_l )

<c(ler g+ e 5+ DO [§+ D0 [F).  (36)

to obtain
1
2At[(PD u",D U”) (PD,U”'I,D,U"_I)]

[ (Un+l Un+1) (U"_I,Un_l)]

1
4A
1
- U"—U”_I,U"—U"_l —A U"+1—U",U”+1—U"
A )= A( )

1
2A ——|[(z¢D,®",D,0") - (7c¢D,©"!,D,0" )]

- 1/2®n+1 2 _ 1/2®n—1 2
(e = e )

V(-0 ). V(- ~ (v (e ~e),

(@n+1 _@n)}
+ (ganv”,anvn) +(c0®",00") + (DS(aU"),S(aU"))

+ (Tcvy0@",00")

+(O,V - IU,00") + ($0,V - U/, 90"

+ (20, V - 0*US",00") + (10, V - 0*U/ " . 00")

(U™ [+ U3+ DU R+ DU 3

0" -+ 0" |3+ 1D, |3+ 11D,0" )
+(£7,0U") — (q".00") + (BO",V - 0U")

+ (B0, V-9UMM), n=1,- M. 37)

To obtain estimates for the last two terms on the left side of equa-
tion 37, we use the following discrete-time form of equation A-11 in
Appendix A:

WA165

(20,V - U 90" ) +
C, 1

> 2yTn+1 2+l 2y7n—1 2yn—1
> A (PPUTLPU) —(PRU U]

C n n
SIADU".DU) - A(D

+C, KK()ZUf’”,aZUf*”> +(DS(PU),S(0*U))

(20,V - U/ 00"

tU"_I ,D,Un_l )]

— (oS, PUSM) — (aff’",a2US~")}  n=12,--M.  (38)

Next, note that

1D,0"[[§ = | DU [5]

4At[
< C(|p, U5 + |DU[5 + 10*U"5).  (39)

Then, we use equation 38 in equation 37 and add equation 39 to the
resulting inequality to obtain

1

2At
(&
_’_4_ATt[(fP62Un+l ,aZUnJrl ) _ (PaZUn—l ’azUn—l )]

—[(PD,U",D,U")—(PD,U"! ,D,U"1)]

1
4A [ (Un+l Un+l) (Un—l’Un—l)]
1
+E[A(U”_UH—17Un_Un—I) _A(Un+1 —U",U'l+l —Un)}

LG
55, A (DU DU = A (DU DAU )]

1
—I—E[(TCD,@”,Dt@”) —(zeD,©"!,D,0" 1]

+4—At(llr‘/2®”+' IF=lr'2em1})

1 n n—1
+m[(7v(@ -0,

(®n+1 _@n))]

V(@n_@n—l))_(},v(@wd _@n)7

+ (ﬂan”,an’") +(00",00") + (DS(9U"),S(aU™))

K
+ (2c0,00",00")
+C, [(Zazuf’",azuf’ﬂ +(DS(PU"),S(U"))
<c(o 5 +HU G+ DU+ U G+ 107075
+le G+ le5+(1D.e"5+]D.e3)
(0,00~ (q".00") 4 C,[(0F. pUS") 4+ (9, U
+ (B0, V-0US) + (B0, V- QU )
— (PO, -OU",00" ) — (BO,V -OU/" 00" )n=1,-- M. (40)

We multiply equation 40 by At and sum fromn =1ton =N,
N < M. Because
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ZZ[A(Un —U”_I,U" _Un—l)_A

n=1

(Un+1 —Un,U”H _Un)}

1 1
—Z(At)zA(DtUN,D,UN)—|—Z(At)2A(DtU0,D,U0), 41

we obtain

1
E[(PD,UN,D,UN) —(PD,U°,D,UY)]

C
+ [(PPUNL LU+ (PPUN.2UY)
—(P3*U°,PU%) — (PPU',0*U")]

1
+Z[A¢(UN+1,UN+1)+AC(UN,UN)—A§(U1,U1)—Aé(UO,UO)]

¢
+Z[A¢(D,UN .D,UY)=A(D,U°,D,U°)]

1
+Z[A(UN+1,UN+1)+A(UN,UN)—A(Ul,U1>—A(UO,UO)}

_(ar? (a2

A(D,UY,D,UN)+ A(D,U°,D,U°)

1
+5[(rcD,®N,D,®N)—(wD,@O,D,@O)]

1
+7 (I 2OV R+ 2eN -l 200 F - [l 20

(Ar)? (A )’
-k

I72VD,0" 3+ VD, 0"

n=N

+Z< oufn Uf”>At+Z (c0@",00™) At

+C, Z (DS(0*U"),S(0*UM)) At

n=N

+Zc< Uf"a2Uf">+Z [(DS(oU").S(aU"))

n=1
+{tcvy0®",00™)| At
n=N
<C> (" F+llar 13+l g" 3+ 1013

UG+ 11D, 0" 13
DG+ (1020 [§+ O 5+ 1€ [[§+ 1D O[3
+[1D,©""[F) At

n=N n=N
+Z(ﬂ®n»v'aUS’")Al‘-l-Z(ﬁf@",V'()Uf"’)At

n=1 n=1
n=N n=N

= (PO -0U" 00" At=Y " (f0,V-0U/",00")At.  (42)
n=1 n=1

The last four terms in the right side of equation 42 can be bounded
as follows:
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n=N n=N

> (80", V - 0U M)At

n=1

(BO",V - AU At|+

3
Il

n=N n=N
‘ (BOGV - U™, 00" At|+| > " (B6,V - 0U/™, 00") At
n=1 n=1
n=N
<C (|03 + [V - qUu|3 + ||V - oU"|13)As
n=1

n=N
<CY (|85 + llou|})As 43)
n=1

We use the bound equation 43 in equation 42 to obtain the es-
timate:

(PD,UY,D,UY) + i [(PPUNT!,PUNH) - (PPUN, 02U

+ AL (UNHL UV £ A (UN,UN) + C, A (DIUN, DUN)

(Ar?

+A(UN+],UN+1)+A(UN,UN) 2

A(D,U¥ D,UV)

At
+%A(D U, D,U% + (zcD,0N,D,0N)
+ [ PON T+ Iy 20N}
At At
0 e g L0

N 1 5urn fon
+ 27 (K()U ,dU: )At
n=N

+ c@@n,a@")m+c,Z(DS(aZU"),S(am"))Az

n=1 n=1

|| 1/2D @OHZ

n=N n=N
+C,; (gaZU-fﬁ,aZU-f-") At+;[(DS(aU"),S(6U”))

+ (Tcvyo®",00")| At
<C[[3+ 10+ 1D+ [10° 01§ + 10701
n=N
+[O°13+ 11013+ D@15+ > (I£" 15+ lI0s" 115 + Il IF) At
n=1
n=N
+CY (U 3+ U B+ 1D, U7+ (1D, U 3+ 003

n=1
+H© G+ (1O |5+ ]1© 1§+ [1D,0" [+ D0 [|F) At
(44)

Next, note that there exist positive constants Cg, Cy independent of
h such that the following inverse hypothesis holds:

A(UY.OY) < &(E)||E(D,UM)|§ < Cih
I7'/>D,0" ||} < y*C3h~2 || (D,O")][5-

“(DOY)[G

(45)

In equation 45, the constants Cg and Cy have a factor that measures
the quasiuniformity of 7" and £*(€) and y* denote the maximum
eigenvalue of £ and the maximum value of y, respectively. Let
£.(P) and (zc), be the minimum eigenvalue of P and the minimum
value of (zc), respectively. Hence,
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[PY2D,0"|[5~

Ar)?
%A(D,UN .D,UY)

At)? 1
> (6.(P) -G e ()1 D0Y 2 2. (P DU,

(Ar)?
I(ze)" 2D, @[5 ==~ lr"*@"|}

4
> ((ze). -5

1
Cor*h=) D@V [[§ 25 (ze). || D,OY|[5, (46)

provided that At and / satisfy the stability constraint:

wem(nE G2 2 (2))

Hence, for Az and 4 as in equation 47, from equation 44 and the fact
that P is positive definite and A, is V-coercive, we obtain the in-
equality:

£(P)
=5 IDUN 5+ (|05 + U5

HID U+ b+ e

<C(TOI3+ 1T+ 10U+ 1005+ 10°U 13
IR 1017+ 1D,0°13

n=N

+S IR+ l0r1 + a7 )81

"o

FCS (U -+ 10 -+ 10,07

n=1
+[DU" 5+ [10*U" I3
e F+ 0[5+ 10" 5+ 1D,0" |5+ 1D, |[§)Ar.
(48)

Finally, we apply Gronwall’s lemma in equation 48 to conclude the
validity of Theorem 3.

Theorem 3

Assume that the matrices P and B in equation 3 are positive definite
and semidefinite, respectively, and that the matrix £ in equation 20 is
positive definite. Also, assume that the coefficients z, ¢, y, 8, and B in
equation 5 are bounded above and below by positive constants and
that Ar and 4 satisfy the stability constraint (equation 47). Then, there
exists a unique solution (U",®") € Z" of the discrete-time explicit
FE procedure (equation 32), which satisfies the estimate:

max; oy (|0, UV[[5,+[|0° O[5 U3+ 10,05+ | ©V]17)
SCUS+U S+ D5+ 107005+ 0*U 5
+|O%[F+]1©'[[7+]1D,0°

n=N

+> (I 13+ ][0t 13+ |13) Ar) At 49)

n=1
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Remark

Note that the first and second time derivatives in the formulation of
the time-discrete explicit FE procedure (equation 32) are discretized
with errors on the order of (Atf)2. Thus, the arguments for obtaining a
priori error estimates for the time-continuous FE procedure (equa-
tion 28) can be used to conclude that the a priori errors associated
with those discrete-time FE methods are on the order of (At)? + h.

NUMERICAL EXPERIMENTS

The FE explicit procedure (equation 32) is implemented for the
1D case in an interval Q = (0, L), where L = 116 m. Thus, the FE
spaces for the solid, fluid, and temperature spatial representation are
CY piecewise linear polynomials over a partition of Q into subin-
tervals of size h = 0.175m. The time step is dt = 7.95 x 1073 ms.

In the 2D (3D) case, a partition 7" of the computational domain
Q consists of rectangular (parallelepipeds) elements of diameter
bounded by h. The lowest order conforming FE spaces over 7"
are C¥ piecewise continuous polynomials to represent the temper-
ature and each component of the particle displacement vector, with
the local degrees of freedom (DOFs) being the values at the vertices
of the elements. However, the fluid displacement is represented us-
ing the vector part of the Raviart-Thomas-Nedelec space of zero
order (Raviart and Thomas, 1977), with local DOF being the values
at the midpoints of the edges (faces) of the elements.

Among the advantages of the FE method to simulate wave propa-
gation in these types of media are the ability to fit complex subsurface
geometries using variable mesh size as well as providing a natural
way to include absorbing boundary conditions at artificial boundaries
of the computational domain to eliminate spurious reflections.

The point source (f*, £/, q) located at x,o,, = 1 m is defined as

. d
./ = —_— / =
f (x’ t) dx 6x—x50u,g<t)’ J S, fv (50)
q = 0y_x,, 9(1). (51)

with g(r) being the waveform
g(t) = cos[2zfo(t = 1.5/ fo)| exp[=2f5(t = 1.5/f0)*] (52)

and f being the dominant frequency. However, values of the frame
and fluid displacements and temperature are recorded at x, = 59 m.
Table 1 shows the thermoporoelastic material properties (Carcione
et al., 2019a).

The experiments analyzed the coupled and uncoupled cases con-
sidering the coupling coefficients  and f3; nonzero (coupled case)
or null (uncoupled case).

The results of the plane-wave analysis presented in Carcione et al.
(2019a) predict, at the dominant frequency of 150 Hz, the approxi-
mate values of the phase velocities of the P1, P2, and T waves: 2568,
827, and 420 m/s for the coupled case, and 2216, 665, and 604 m/s
for the uncoupled case, respectively.

In the following figures, the labels P1, P2, and T indicate fast,
slow, and temperature waves, respectively.

Figure 1 displays snapshots of temperature at 48 ms for the coupled
and uncoupled cases and nonzero viscosity. In the uncoupled case, as
expected, only a T wave is observed, whereas, in the coupled case,
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two waves are clearly seen, a T wave with a much larger amplitude
than in the uncoupled case and a P1 wave due to the coupling effects.
The P2 wave is not observed due to its diffusive behavior.

Figure 2 exhibits a frame snapshot at 48 ms, where now a T wave is
only observable for the coupled case due to its very small amplitude.
However, two P1 wavefronts can be seen, the one for the coupled
case traveling at a faster speed than for the uncoupled one.

Time histories of the particle displacement of the frame for the
uncoupled and coupled cases are shown in Figures 3 and 4 for null
and nonzero viscosity, respectively.

In Figure 3 (null viscosity), two wave arrivals can be seen for the
uncoupled case, which correspond to the classical P1 and P2 Biot
waves, whereas the coupled case exhibits an additional T wave. No-
tice, for the coupled case, the earlier arrival times of the P1 and P2
waves as compared with those of the uncoupled case. This behavior
is in agreement with the one presented in the plane-wave analysis of
Carcione et al. (2019a), with the values of the measured arrival
times being very close to those predicted by the theory.

Table 1. Material properties.

Grain bulk modulus (K) 35 GPa
Density (p;) 2650 kg/m?
Frame bulk modulus (K,,) 1.7 GPa
Shear modulus (y,,) 1.885 GPa
Porosity (¢) 0.3
Permeability (k) 1D
Fluid bulk modulus (K ) 2.4 GPa
Density (ps) 1000 kg/m?
Viscosity (75) 0.001 Pa-s

50,000 kg/(m s> K)
820 kg/(ms? K)
90,000 kg/(ms? K)

Thermoelasticity coefficient (f;)
Bulk specific heat (c¢)
Thermoelasticity coefficient (/)

Absolute temperature (7)) 300 K
Thermal conductivity (y) 4.5 x 10° kg/m?
Relaxation time (7) 1.5x1072 s
N T
B :: — Uncoupled 1
L :: — — Coupled ’ _|

Normalized amplitude

| | |
0 25 50 75 100
Distance (m)

Figure 1. Snapshot of the temperature field at 48 ms for the un-
coupled and coupled cases with nonzero viscosity.

Santos et al.

Figure 4 (nonzero viscosity) shows only a P1 arrival for the
uncoupled case, whereas, for the coupled case, three waves are seen
to arrive at the receiver, corresponding to P1, P2, and T waves. First,
as shown in Figure 3, the P1 wave arrives earlier in the coupled case
as compared with the uncoupled one. A P2 arrival also is observed,
which would not be present in the uncoupled case because of its
diffusive behavior as a classical P2 Biot wave.

The next example considers a uniform medium stiffer and less per-
meable than the one in Table 1, with K,, = 5.1 GPa, 4 = 5.565, and
k = 0.5 D whereas the other properties are the same.

Figures 5 and 6 display frame snapshots for nonzero viscosity and
uncoupled and coupled cases, respectively, for the medium in Table 1
as well as the stiffer and less permeable medium. Although Figure 5
only shows P1 wavefronts for both media, Figure 6 displays the P1
and T waves, which travel faster and with lower amplitude compared
with the signals related to the medium defined in Table 1.

Next, we consider an inhomogeneous medium representing
an interface using two intervals I; = (0,7) and I, = (I, L), with

L —— Uncoupled
— — Coupled

Nnormalized amplitude

| |
0 50
Distance (m)

Figure 2. Snapshot of the particle displacement of the frame at
48 ms for the uncoupled and coupled cases with nonzero viscosity.

— Uncoupled
— — Coupled

Normalized amplitude
5
v

| | |
0 0.025 0.05 0.075 0.1 0.125 0.15
Time (s)

Figure 3. Time history of the particle displacement of the frame for
null viscosity and uncoupled and coupled cases.
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— Uncoupled -
— — Coupled

P2 T

\

\'- T
YY) ]

Normalized amplitude

| | | | |
0 0.025 0.05 0.075 0.1 0.125
Time (s)

Figure 4. Time history of the particle displacement of the frame for
nonzero viscosity and uncoupled and coupled cases.

T T T T
L — Frame as in Table 1 4
— — Stiffer, less permeable frame
Q
S b i
2
=
g
<
=
3]
N i
=
£
) — —
= PI
Y
| | | | | | |
0 15 30 45 60 75 90 105

Distance (m)

Figure 5. Frame snapshots for the uniform material in Table 1 and
the harder and less permeable one. Uncoupled case and nonzero
viscosity.

T T T T T T T T T T T T T T T

— Frame as in Table 1
— — — Stiffer, less permeable frame

Normalized amplitude

Distance (m)

Figure 6. Frame snapshots for the uniform material in Table 1 and the
harder and less permeable one. Coupled case and nonzero viscosity.
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— Uniform medium as in Table 1
— — Inhomogeneous medium —

Normalized amplitude

| | | | |
0 0.025 0.05 0.075 0.1 0.125
Time (s)

Figure 7. Time history of the particle displacement of the frame for
the uniform medium in Table 1 and the inhomogeneous one repre-
senting an interface. Coupled case and nonzero viscosity.

—— Finite elements
= = = Finite differences

Normalized amplitude

| | | | | | | |
0 15 30 45 60 75 90 105
Distance (m)

Figure 8. Comparison between frame snapshots of the FE pro-
cedure and the finite-differences algorithm for the uniform frame
in Table 1. Coupled case and nonzero viscosity.

I=38 mand L=116 m. In the interval /,, the material properties are
those in Table 1, whereas, in interval /,, the properties are those of
the stiffer medium. Figure 7 displays time histories recorded at 84 m
from the source, which are compared with those corresponding to
the medium of Table 1. It is observed that the P1 wave arrives earlier
in the inhomogeneous case, whereas the opposite occurs for the P2
and T waves.

Finally, Figure 8 compares the results of the FE procedure with
those computed with a finite-difference algorithm. A very good
agreement can be observed.

CONCLUSION

‘We solve the IBVP associated with the thermo-poroelasticity wave
equation by applying continuous and discrete-time FE methods. A
priori error estimates are derived, which are optimal for the assumed
regularity of the solution. Furthermore, we present an explicit
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discrete-time FE method, analyze its stability, and establish the sta-
bility constraint. The numerical experiments illustrate the implemen-
tation of the novel explicit FE algorithm and study the behavior of all
waves for the coupled and uncoupled cases. The proposed algorithms
overcome the limitations of isothermal wave propagation.
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APPENDIX A

PROOF OF THEOREMS
Proof of Theorem 1

We choose v =U,w =0 in equation 28 to obtain

1d
2dt

+ (ﬁUﬂUf)

K

- (pO,V - U*) — (p;0,V - Uf) + (O, 0)

+ (BO,V - U%,0) + (p6,V - U/, 0) + (DS(U), S(U))

+ <TC179®, ®> + (TﬂGOV . I"JS, @) + (Tﬂgov . Uf, @)

= (f,0%) + (/,0) - (¢. ), (A-1)

[(PU,U) + A(U,U) + (7¢0,0) + (yVO, VO)]

teJ.

To handle the last two terms on the left side of equation A-1, we take
the time derivative in equation 28 and choose w = 0 to obtain

(PU°,v) + A(U,v) = (pO,V - v) = (8,0,V -V/)
+ (ZUf,vf) H(DS(U),S(V)) = (f*,v*) + (7 .v).  (A-2)
We choose v* = U*, v/ = 0 in equation A-2 to obtain

(PU, (0%,0)) + AU, (0%,0)) — (6, V - U*)

4+ (DS(0), S(0°,0)) = (f*,0%). (A-3)

Also, the choice v* = 0 and v/ = U/ in equation A-2 yields
(PU0.0)+A(U. (0.07) = (56,507 + (107,
+(DS(1),8(0,07)) = (£/,07). (A-4)

Set

Santos et al.

C, = inf,cq(16)). (A-5)
Then, from equation A-3,
(tp6,V - U*,0) > C,(p0,V - 1)
= C,[(PU, (U°,0)) + A(U, (T?,0))
+(DS(0), S(UF,0)) — (£, 0%)]. (A-6)
Also, from equation A-4,
(zp0,V - U/, 0) > C.(pO,V - U)
= C,[(PU, (0,0/)) + AU, (0,0/))
+ <gufuf> +(DS(1), (0,01 — (#,01)]. (A7)
Next, we use that
C.(PU, (0%,0)) + C,(PU, (0,U0)) = C,(PU, V), (A-8)
C.A(U, (0*,0)) + C,A(U, (0,0)) = C,A(U, 1), (A-9)
and
C.(DS(U), S(}"JS, O».. + C.(DS(U), S(0,U)) A-10)
= C.(DS(U), S(U)).
Hence,
(260, V - U*,0) + (76,V - U/, ©)
>C, [jl (PO, 1) + AU, U)] + (DS(0), S(0)
+ (ZUfo> — (. 0%) - (ff,Uf)} (A-11)

Using equation A-11 in equation A-1, we obtain

%% (PU,U)+A(U,U)+(7¢0,0) +(yVO,VO)]+ <’7Uf ,Uf>
K

—(pO.V-U*)—(8,0,V-U/)+(c0,0)
+(B6,V-U*,0)+ (0, V-U/ ,0)+(DS(U),S(0)) +(1cv40,0)

FSES(PU0)+AU0) 45 [<DS(U>,S<U>> - (Zﬂf,ﬁf)
—(ff,Us)—(ff,Uf)}

<(F5,05)+ (£ 0)—(q.0), teJ. (A-12)

Next, note that, using the Gérding inequality (equation 21), we
can choose  to define the bilinear form:

Ae(v,v) = A(v,v) +{(v,v) (A-13)
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such that A; is V-coercive, i.e.,

Ag(v,v) 2 Go[v]3. (A-14)
Thus, adding to equation A-12 the inequalities
d 2 2 71|12
¢ Ul < £l + 1U]15).
||}’l/29||0 (720115 + llr'/26113). (A-15)

we obtain

1 L
E%[(PU U)+C,(PU,U)+A.(U,U) +C,A(U, 1)

+(ze) 205+ Iy 0l13]

+(gUf,Uf>+(c®,®) H(DS(U).S(0)) + (zcv,)©.0)

[<Ds< ).S(0) + (Uf Uf)}
<C(|IfI3+19l3+11CI+0IF+11©l5+0l3)
+(0,V-U*)+(8,0,V-U/)
—(6,V -U*.0)—(0,V-U’,0) +
+ (00, teJ.

C.[(F. %)
(A-16)

Next, note that the integrals in time of the last six terms on the right
side of equation A-16 can be bounded as follows:

/(ﬂ@ V- U)(

0

<c ["lleE + 0)IRds

\/ (8,0, - U)(s)ds

At(ﬂeov U, ©)(s)ds|+ Ot(ﬂeov U, 6)(5)ds

c /0 1662 + 10(s)[2]ds
/ (65,09 (5)ds | + / (#,07)(5)ds

0 0

C/t[l\f(S)II% +10(s)[5]ds (A-17)
0

Thus, integration in time of equations A-16 and A-14 yields
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(PU,U)
+ | (ze

1)+ (PU.U)(0) + 0[5+ [[U]5;
25+l el

N A ’ [(Zw,w) (5)+(c©.0)(s) + (DS(0).S(V))(s)

(
)

+<ch9®,®)(s)+CT((DS(U),S(U)>(S)

+ (gUf,Uf> (s))]ds
C/)t(\lf(S)H%Jr||61(S)H3)ds

+C([UO)[I5+[T0)]5+10(0)[5+110(0) I3

+[10(0)[5+[1©(0)[7)
C/Ot(||U(S)\|%+||U(S)||3+HU(S)H%JFHU(S)H%/

IO +10(s)IF). rel. (A-18)

Because all integral terms on the left side of equation A-18 are non-
negative, the matrix P is positive definite and the coefficients 7, ¢
and y are bounded below by positive constants, apply Gronwall’s
lemma in equation A-16 to obtain the conclusion of Theorem 1.

Proof of Theorem 2

From equations 18 and 28, we see that Eu = (Eu’,Eu/) =
(u* —U*,u/ — U/) and E9 = @ — © satisfy the equation:

(PEi,v)+ (ZEuf ,vf) +A(Eu,v)

—(PEO,V-v*) = (B,E0,V -v/)

+ (zcEQ,w) + (cEO,w) + (yVEO, Vw) + (6, V - Eir* ,w)

1 (BO,V B, w) + (240, V - Eii*,w) + (150, - Eit/ ,w)

+(DS(E),S(v)) + (tcvgEO,w) =0, 1€ J. (A-19)
We choose Vv* =Eo® +IOw —w', v/ = Ew + Qv — o/,

w=EfO+T110 -0 in equation A-19 to obtain

E%[(PEﬁ,Eﬁ) + A(Eu,Eu) + (zcE,E) + (yVEG, VEO))
+ (ZEﬂf',Eﬁf') — (PEO.V -Ew’)— (B,E0.V -Ei/)
+(cEQ,EQ) + (DS(Eu),S(Ew)) + (zcvyEQ, EQ)
+ (B0, V -Ew* ,EO) + (80, V -EW ,EO) + (10, V - Eii* [E0) + (586, V - Eii/ ,|EQ)
= (PEii, (¢ —P%* 0/ — Qul)) + <gEﬁf o - Qaf>
+A(Eu, (i w0/ — Qu/))
2u)) - (BEO.V - (O — /)
+(rcEé,Hé—(9)+(cEe,é)—ne)+(yVEe,V(né—é)))+(ﬁ00v.Eas,H9—9)

—(BEO.V - (0 —

+(B6,V -E/, né—é) + (26, V -Eii*,110—0) + (19, V - Ei/ ,110-0)

+(DS(E), S0~ w0/ — Qi) + (rcv,E0,TI0—-0), teJ. (A-20)
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The last two terms on the left side of equation A-20 can be handled
by taking the time derivative in equation A-19 and choosing w = 0,
v' =Eii*, v/ =0 and v* = 0,v/ = Eii/ in the resulting equation.
Then, the argument leading to equation A-11 yields the inequality:

(20, V - Eit*, ©) + (z40,V - Eii/, ©)

1

> 7 j [(PEu Eii) + A(Eu, Eu) + (DS(Eii), S(Eii))

+ <ﬂEuf,Eﬁf>].
K

We use equation A-21 in equation A-20 and add to the resulting
equation the inequalities

(A-21)

d .
¢ IEull§ < E(IBullf + [Ea|l3),

d .
2 [7"ZBOIG < (Ily 2E6IG + 7' /2E0lG) - (A-22)

to obtain

ld A A
EZKPEu Eu)+C,(PEi,Eii) +A; (Eu,Eu) +C A, (Ed,Ea)

+(zcEO.E) + (yEO.E0) + (yVEO.VED)]

+ (gEuf,Eﬁf > +(cEQ,E) + (DS(Eu),S(Eu)) -+ (rcv,EQ,EQ)

. [ (DS(Eil),S(Ei)) + (gEﬁf,Eiifﬂ

<C(|[Bul§+ | Ea|[F +[EO|[F + [EOF) + (PEO.V -Eu*) + (5,E0.V-EW)

— (26, V -Ew’ |EH) — (260, V -Ei/ \EQ)

+(PEi, (0 ~1IOw 0/ — Q')+ (gEﬁf W —ow )
+A(Eu, (@ — 1w ,w/ — Qu/))

~(PEO,V- (0 ~T1%w")) + (BEO,V - (Qu/ —i/))
+(vcEQ,TTO—0) + (cEH,0—T10) + (yVEO, V(10 —-0)) + (56, V - Eu’* , 110 —0)
(70, V -Eii/ . TI0—0)

(A-23)

(26, V -Eii* , 10— 0) +

S(Eu),S(i* Qa6 —Qw)) + (zcvyEH.TIH-6), r€J.

(
+ (6, V -Ew/ T16—6) +
+(D,

Next, we obtain estimates for the time integrals of the terms on the
right side of equation A-23. First,

"(BEO),V - Eu*)(s)ds
0

+‘ Al(ﬂfEG), V- Eif)(s)ds

< [ 1eoias+ [ eats)zas)

and

(A-24)

’ / (240, - B’ \EO)(s)ds +‘ / (¢p0,V -Eu! [EO)(5)ds
0 0

<c( [ 1molas+ [ macolRas ).

Next, using the approximating properties of IT in equation 24

(A-25)

Santos et al.

t . . t . . .
(BOV B TI0—0)(s)ds|+| [ (p0,V-Ew/ . 110-0)(s)ds
0 0

<c( [ 1o as+t100s) s

<C </ ||Ell ||2dS+h4||9||L2 (JLH( )))

Also, using equation 26

’ / t <g B/, 0/ — Quf) (s)ds

<C</ |Ew/ (s)||3ds + 2|0

(A-26)

21 (Q))) . (A-27)
Next,

‘ / "A(Eu, (80 = IO, & — Qu))(s)ds
0

< C(|[Enlf}, + [l -

2w+ o/ - QllfHH(de))
! 2 2 50|12
< o [ 1B Bas + 12081

+ 02 (A-28)

DT W)

/ (BEO,V - (0 —TT®w))(5)ds

0

| [ 80,9 (0w a5

t
<c( [ 10 s + 101812

+||V ufHLZ JH ))])9 (A-29)

’ A (CEO,0 = T10)(s)ds

t .
gc(% ||E6(s)||0ds+h4||9||LzJHZ(Q))) (A-30)

and

’ A ' (yVEO, V(110 — 8))(s)ds

t .
SC(A IIEHII%(s)ds+h2||9||Lz(,H_<Q)>), (A31)

The terms on the second time derivatives of Eu and EO on the
right side of equation A-23 can be bounded using integration by
parts in time as follows. First,
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| / (PE, (i - I0&, &/ — 0u/)(s)ds)|
0
= [(PEQ, (& — Tw*, o — Qw/))(1)
— (PEQ, (¢ - T®w, 0/ — 0w))(0)
- / (PEa, (i — IO, i/ — Qiif))(s)ds]
0

< e|[Ea(n)|§ + C/Ot [Ea(s)[[3ds + C(|Ea(0)[[5
+ e 7w,
+ 27
+ ||| 7

@)
4
sum@p) T pep)

L @) (A-32)

Also,

| /I(TﬂHOV - Eii*, T16 — 0)(s)ds|
0

= [2f6,[(V - Ea*, 10 — 6)(1) — (V - Ea*, 10 — 6)(0)]

t . .
—/ (1f0,V - B’ T10 — §)(s)ds| < ]|V - Biv’ (1) 3
0

T c(nv Ew(0)[3 + / "Iv. EuSII%(s)a's)

+ Ch*(Jlo]I7 V8112 e ) (A-33)

e

Proceeding similarly,

| /Ot(fﬂeov LW/, T10 — 0)(s)ds| < ]|V - Ea/ ()2
(19 B O+ 19 - Bar(o)ar

IO )+ W 1)) (A34)

Next,

0

‘ /f(rcEé, 10 — 4)(s)ds

=|(zcE0,T10 — 0)(t) — (zcEH,T10 — 6)(0)

- /t(rcEQ, 16 — 6)(s)ds

0

< €|[EO|3(1) + C(IIE9||

)+ [ IEalgs

+ h4[‘|9||2w(‘].H2 + HQHLZ JHZ ))]) . (A—35)

Also, using the approximating properties of the projections IT and O
in equations 24-26 and equation 13, we obtain
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/ (DS(Ba),S(0° — IO, af — Qu/)) (s)ds

0

<e /0 "(DS(Ew),S(Ew)) (s)ds
+C<At<5(ns—H<2>u5,uf—an),

Slur ~11Chu./ Q) 5)ds

<e A ' (DS(En),S(Ex)) (s)ds

+3 [T )

[ 1= 0 51

<e A "(DS(Ew),S(Ew))(s)ds

+3 [ 1B o) [ (5

<e / "(DS(Ew),S(Ew))(s)ds

0
3 a2
| [0

In a similar fashion,

+h2 HufH (A-36)

L@ m} '

' AP
’/ (zcvgEO, 110 — 0) (s)ds
0

1 .
Se/ (zcvyEO,E0)(s)ds

0
t .
C/o Z|H9—9|é.rnagj(s)d5
J

t . .
<e / (zcvgEO, EB)(s)ds + CH 0|2, (A-37)
0

(HA Q)

Thus, we integrate the inequality in equation A-23 in time and absorb
the ¢ terms in equations A-24—A-37 on the left side of equation A-23.
Then, we apply Gronwall’s lemma in the resulting equation and use
that P is positive definite, A is V-coercive, and the coefficients z, c,
and y are bounded below by positive constants to obtain

HE‘.IHBc )+||Eu||L°° J[LA(Q JFHE‘IHL“’ JV) Jr||E“||L°° JV)
+HE6HL°"(J,H'(Q))+HEHHL‘”(J,LZ(Q))
<C(|Ea(0)|[5+[Ei(0) ][5+ [[Eu(0
+[EQ(0) I3+ EO(0) I}

+h{l9 |2 20

)3+ Ea(0)]5;

) I oo @)+ o2 e
VO | 2y o)
1 2 2 ) 2 10 e

+ HéHLz(l,HZ(Q))D'

o 6] 2 1 0
(A-38)
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The error at + = 0 in equation A-38 can be estimated by defining the
FE initial conditions as follows. First, we take U(0), U(0) € W" x
W x V! such that

A (u®=U(0),v) =A;(Eu(0),v) =0, ve W' x Wx V",
(A-39)

Ar(u' =U(0),v) = A (Ei(0),v) =0, vE W' x WX V!,
(A-40)
We choose v =Eu(0) + (I1®u% —u®, Qu® —u®/) in equa-

tion A-39 and use the V-coercivity of A, and the approximating
properties of [T?) and Q in equations 24-27 to obtain

Cyl[Eu(0)[} < A, (Eu(0). (Iu — 0%, Qu®f —u®))

< Csh|[Eu(0) [y, ([l 4 la®/|[; + IV - u®/ ;).
(A-41)

Thus,

[Eu(0)lly < Ch(|[u®l, + [0, + IV - u®/

). (A-42)

Similarly, by choosing v = Ea(0) + (I®u'* —u'*, Qu'/ —u'/)
in equation A-40, we obtain

Ea(0)[ly < Ch(lu"l; + [l /[, + |V - ul/]},). (A-43)

To obtain a bound for the term ||Eii(0)[|, in equation A-38, we as-
sume that the initial value problem (equations 4 and 5) with the initial
conditions (equation 6) and the boundary condition (equation 8)
satisfies the regularity inequality:

[l + ([l + 1V - o/l =+ (101 < CAL Nl + Hlallo)-
(A-44)

We also assume that equation A-44 holds for time derivatives of u
and 6. Thus, at t = 0, we have

6 (0) 5 + [[6 (0)[]; + IV - @ ()], + [[6(0) I,
<

C(U7O)llo + 1(0)llo)- (A-45)

Hence, defining U(0) by the equation

A (i(0)=0(0),v) = A, (Eii(0),v) =0, vE W' x Whx V",
(A-46)

the choice v = Eii(0) + (I?i*(0) — i*(0), Qi/ (0) — i/ (0)) in
equation A-46 yields the bound:

Ea(0) [}, <Ch(]|i* (0) 1o+l (0)[I+[[V-ii/ (0) [, +[16(0)],)

<Ch(([I£(0)llo+11%(0)llo)- (A-47)
For the temperature variables, we take ©(0), @(0) € W" such that
E0(0) = 6° — ©(0),

EO(0) =60' —O(0)  (A-48)

Santos et al.

satisfy the relations

(YE0(0), w) + (yVEO(0), Vw) = 0,w € Wh,  (A-49)

(YEO(0),w) + (yVEBH(0), Vw) = 0,w € W, (A-50)

Because

ColEO(0)[IF < (vEO(0). EO(0)) + (yVEO(0). VES(0)),
(A-51)

we choose w = EO(0) + I16° — 6° in equation A-49 to obtain

Cs|[E6(0)][7 < (yEO(0).6° —T1¢°) + (yVEO(0),
V(6° —116°)) < C1h|[EO(0) ], [|6°]],, (A-52)

so that

[E6(0)[|, < Chl|6°|],. (A-53)

Similarly, the choice w = E@(0) + I16! — §' in equation A-50 yields
the inequality:

IEO(0)]|, < Ch||6"],. (A-54)

The bounds (equations A-42—-A-54) in equation A-38 imply the
validity of Theorem 2.

REFERENCES

Adams, R. A., and J. F. Fournier, 2003, Sobolev spaces, 2nd ed.: Elsevier.

Armstrong, B. H., 1984, Models for thermoelastic attenuation of waves in
heterogeneous solids: Geophysics, 49, 10321040, doi: 10.1190/1.1441718.

Biot, M. A., 1956, Thermoelasticity and irreversible thermodynamics:
Journal of Applied Physics, 27, 240-253, doi: 10.1063/1.1722351.

Carcione, J. M., 2022, Wave fields in real media. Theory and numerical
simulation of wave propagation in anisotropic, anelastic, porous and
electromagnetic media, 4th ed.: Elsevier.

Carcione, J. M., F. Cavallini, E. Wang, J. Ba, and L. Y. Fu, 2019a, Physics
and simulation of wave propagation in linear thermoporoelastic
media: Journal of Geophysical Research: Solid Earth, 124, 8147-8166,
doi: 10.1029/2019JB017851.

Carcione, J. M., D. Gei, J. E. Santos, L. Y. Fu, and J. Ba, 2020, Canonical
analytical solutions of wave-induced thermoelastic attenuation: Geo-
physical Journal International, 221, 835-842, doi: 10.1093/gji/ggaa033.

Carcione, J. M., Z. W. Wang, W. Ling, E. Salusti, J. Ba, and L. Y. Fu, 2019b,
Simulation of wave propagation in linear thermoelastic media: Geophys-
ics, 84, no. 1, T1-T11, doi: 10.1190/ge02018-0448.1.

Duvaut, G., and J. L. Lions, 1976, Inequalities in mechanics and physics:
Springer-Verlag.

Girault, V., and P. A. Raviart, 1981, Finite element approximation of the
Navier Stokes equations: Springer-Verlag.

Lifshitz, R., and M. L. Roukes, 2000, Thermoelastic damping in micro- and
nanomechanical systems: Physical Review B, 61, 5600-5609, doi: 10
.1103/PhysRevB.61.5600.

Lord, H., and Y. S. Shulman, 1967, A generalized dynamical theory of
thermoelasticity: Journal of the Mechanics and Physics of Solids, 15,
299-309, doi: 10.1016/0022-5096(67)90024-5.

Nedelec, J. C., 1980, Mixed finite elements in R*: Numerische Mathematik,
35, 315-341, doi: 10.1007/BF01396415.

Raviart, P. A., and J. M. Thomas, 1977, A mixed finite element method
for 2nd order elliptic problems, in 1. Galligani and E. Magenes, eds.,
Mathematical aspects of the finite element methods: Springer, Lecture
Notes in Mathematics 606, 292-315.

Rudgers, A. J., 1990, Analysis of thermoacoustic wave propagation in
elastic media: The Journal of the Acoustical Society of America, 88,
1078-1094, doi: 10.1121/1.399856.


http://dx.doi.org/10.1190/1.1441718
http://dx.doi.org/10.1190/1.1441718
http://dx.doi.org/10.1190/1.1441718
http://dx.doi.org/10.1063/1.1722351
http://dx.doi.org/10.1063/1.1722351
http://dx.doi.org/10.1063/1.1722351
http://dx.doi.org/10.1029/2019JB017851
http://dx.doi.org/10.1029/2019JB017851
http://dx.doi.org/10.1093/gji/ggaa033
http://dx.doi.org/10.1093/gji/ggaa033
http://dx.doi.org/10.1190/geo2018-0448.1
http://dx.doi.org/10.1190/geo2018-0448.1
http://dx.doi.org/10.1190/geo2018-0448.1
http://dx.doi.org/10.1103/PhysRevB.61.5600
http://dx.doi.org/10.1103/PhysRevB.61.5600
http://dx.doi.org/10.1103/PhysRevB.61.5600
http://dx.doi.org/10.1103/PhysRevB.61.5600
http://dx.doi.org/10.1016/0022-5096(67)90024-5
http://dx.doi.org/10.1016/0022-5096(67)90024-5
http://dx.doi.org/10.1007/BF01396415
http://dx.doi.org/10.1007/BF01396415
http://dx.doi.org/10.1121/1.399856
http://dx.doi.org/10.1121/1.399856
http://dx.doi.org/10.1121/1.399856

Downloaded 09/13/23 to 68.78.116.51. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms

DOI:10.1190/ge02022-0271.1

Wave solution in thermo-poroelasticity

Santos, J. E., J. M. Carcione, and J. Ba, 2021, Existence and uniqueness of
solutions of thermo-poroelasticity: Journal of Mathematical Analysis and
Applications, 499, 124907, doi: 10.1016/j.jmaa.2020.124907.

Santos, J. E., J. Douglas, Jr., M. E. Morley, and O. M. Lovera, 1988, Finite
element methods for a model for full waveform acoustic logging: IMA
Journal of Numerical Analysis, 8, 415-433, doi: 10.1093/imanum/8.4.415.

Savage, J. C., 1966, Thermoelastic attenuation of elastic waves by cracks: Journal
of Geophysical Research, 71, 3929-3938, doi: 10.1029/JZ071i016p03929.

Sharma, M. D., 2008, Wave propagation in thermoelastic saturated porous
medium: Journal of Earth System Science, 117, 951-958, doi: 10.1007/
$12040-008-0080-4.

Treitel, S., 1959, On the attenuation of small-amplitude plane stress waves in
a thermoelastic solid: Journal of Geophysical Research, 64, 661-665, doi:
10.1029/JZ064i006p00661.

Wang, E., J. M. Carcione, F. Cavallini, M. Botelho, and J. Ba, 2021, Gen-
eralized thermo-poroelasticity equations and wave simulation: Surveys in
Geophysics, 42, 133-157, doi: 10.1007/s10712-020-09619-z.

WA175

Wang, Z. W.,, L. Y. Fu, J. Wei, W. Hou, J. Ba, and J. M. Carcione, 2020,
On the green function of the Lord—Shulman thermoelasticity equations:
Geophysical Journal International, 220, 393403, doi: 10.1093/gji/
2g7453.

Wei, J., L. Y. Fu, Z. W. Wang, J. Ba, and J. M. Carcione, 2020, Green func-
tion of the Lord-Shulman thermo-poroelasticity theory: Geophysical Jour-
nal International, 221, 1765-1776, doi: 10.1093/gji/ggaal00.

White, J. E., N. G. Mikhaylova, and F. M. Lyakhovitskiy, 1975, Low-fre-
quency seismic waves in fluid saturated layered rocks: Izvestija Academy
of Sciences USSR, Physics Solid Earth, 10, 654-659.

Zener, C., 1938, Internal friction in solids II. General theory of thermoelastic
internal friction: Physical Review, 53, 90-99, doi: 10.1103/PhysRev.53.90.

Zener, C., 1946, Anelasticity of metals: AIME.

Biographies and photographs of the authors are not available.


http://dx.doi.org/10.1016/j.jmaa.2020.124907
http://dx.doi.org/10.1016/j.jmaa.2020.124907
http://dx.doi.org/10.1016/j.jmaa.2020.124907
http://dx.doi.org/10.1016/j.jmaa.2020.124907
http://dx.doi.org/10.1016/j.jmaa.2020.124907
http://dx.doi.org/10.1093/imanum/8.4.415
http://dx.doi.org/10.1093/imanum/8.4.415
http://dx.doi.org/10.1093/imanum/8.4.415
http://dx.doi.org/10.1093/imanum/8.4.415
http://dx.doi.org/10.1029/JZ071i016p03929
http://dx.doi.org/10.1029/JZ071i016p03929
http://dx.doi.org/10.1007/s12040-008-0080-4
http://dx.doi.org/10.1007/s12040-008-0080-4
http://dx.doi.org/10.1007/s12040-008-0080-4
http://dx.doi.org/10.1029/JZ064i006p00661
http://dx.doi.org/10.1029/JZ064i006p00661
http://dx.doi.org/10.1007/s10712-020-09619-z
http://dx.doi.org/10.1007/s10712-020-09619-z
http://dx.doi.org/10.1093/gji/ggz453
http://dx.doi.org/10.1093/gji/ggz453
http://dx.doi.org/10.1093/gji/ggz453
http://dx.doi.org/10.1093/gji/ggaa100
http://dx.doi.org/10.1093/gji/ggaa100
http://dx.doi.org/10.1103/PhysRev.53.90
http://dx.doi.org/10.1103/PhysRev.53.90
http://dx.doi.org/10.1103/PhysRev.53.90
http://dx.doi.org/10.1103/PhysRev.53.90

