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Abstract−− A pandemic caused by a new corona vi-

rus has spread worldwide, affecting Argentina. We 

implement an SEIR model to analyze the disease evo-

lution in Buenos Aires and neighboring cities. The 

model parameters are calibrated using the number of 

casualties officially reported. Since infinite solutions 

honor the data, we show different cases. In all of them 

the reproduction ratio 𝑅0 decreases after early lock-

down, but then raises, probably due to an increase in 

the community circulation of the virus. Therefore it is 

mandatory to reverse this growing trend in 𝑅0  by ap-

plying control strategies to avoid a high number of in-

fectious and dead individuals. The model provides an 

effective procedure to estimate epidemic parameters 

(fatality rate, transmission probability, and infection 

and incubation periods) and monitor control 

measures during the epidemic evolution. 

Keywords − COVID-19, SEIR model, reproduction 

ratio, fatality rate. 

I. INTRODUCTION 

In March 9, 2020, the start of the new coronavirus 

(COVID-19) epidemic in Argentina was officially re-

ported by the Argentinean Ministry of Health. By today, 

September 30, 2020, the number of cases is still rising. 

The majority of mathematical models that replicate ill-

nesses outbreaks splits the population into categories, to 

analyze how long will it take for one group to evolve into 

another (Hethcote, 2000; Brauer, 2017). The mathemati-

cal details of these models can be seen in Hethcote (2000) 

and Keeling and Rohani (2008). Here, we use a SEIR 

model, consisting of a system of first-order ODE to de-

scribe the spread of the virus, compute the number of in-

fected individuals and estimate the death toll. As exam-

ples, the SEIR model has been successfully applied to 

study the transmission dynamics of tuberculosis 

(Athithan and Ghosh, 2013) and varicella (Zha et al., 

2020). It is important to clarify that the E class is incu-

bating the disease and has not symptoms. They will have 

symptoms when they pass to class I. Individuals in class 

I may not have symptoms (asymptomatic), but they are 

infectious, while those in class E are not. Moreover, in-

dividuals in class E can move to R without showing 

symptoms, but they are infectious when they are in class 

I.  

The SEIR model has been applied by Carcione et al. 

(2020) to simulate this epidemic in the Lombardy Region 

(Italy), with approximately 16800 casualties reported to 

date. The significant threat COVID-19 carries finds its 

meaning in the elevated number of infected health-care 

workers, such as 20 % of the cases in Italy.  

In order to analyze the epidemic’s behavior, the 

model is calibrated using the number of dead individuals 

to date, which we consider more reliable than the number 

of infectious individuals. The model parameters are: 

probability of transmission per contact, incubation and 

infectious periods and fatality rate.  

Based on China, USA and European Union’s experi-

ence, we are certain that combining rapid diagnosis with 

isolation measures has a substantial effect on the epi-

demic’s dynamics. Evaluating and quantifying the effec-

tiveness of these methods is extremely important (Chow-

ell et al., 2003) and numerical simulators contribute to 

achieve this goal. Dekhordi et al. (2020) presented a case 

study of COVID-19 using a statistical analysis of data 

from countries in Asia and Europe like China, Italy and 

Spain to characterize the dynamics of the pandemia.  

Summarizing, the numerical simulation aim is to pro-

vide an effective procedure to model the virus diffusion 

over time and to analyze the effectiveness of administra-

tive measures. The ODE system solution is obtained em-

ploying a forward Euler scheme (Carcione, 2014) and we 

assume that natural deaths and births are balanced 

(Brauer, 2008; d’Onofrio et al., 2015; Carcione et al., 

2020). In this way the peak of infected and dead individ-

uals per day as a function of time can be predicted based 

on the parameters estimated during calibration. 

II. THE SEIR DIFFERENTIAL MODEL 

This work uses the SEIR (Susceptible-Exposed-Infected-

Removed) epidemic model (Hethcote, 2000; Keeling and 
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Rohani, 2008; Zha et al., 2020) to study the time evolu-

tion of the COVID-19 epidemic in Argentina. The model 

considers a total (initial) population, 𝑁0, composed of 

four compartments: susceptible, 𝑆(𝑡), exposed, 𝐸(𝑡), in-

fected, 𝐼(𝑡) and recovered, 𝑅(𝑡), with 𝑡 being the time 

variable. The initial value problem for the SEIR ODE 

system is formulated as follows: 

 

�́� = 𝛬 − µ𝑆– 𝛽𝑆
𝐼

𝑁
,

�́� = 𝛽𝑆
𝐼

𝑁
− (𝜇 + 𝜀)𝐸,

𝐼 = 𝜀𝐸 − (𝛾 + 𝜇 + 𝛼)𝐼,

�́� = 𝛾𝐼 − 𝜇𝑅,

       (1) 

with initial conditions 𝑆(0), 𝐸(0), 𝐼(0) and 𝑅(0). In Eq. 

(1) the time derivative is denoted by a dot above the var-

iable and 𝑁 is the number of live individuals at time 𝑡, 

e.g. 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅 ≤ 𝑁0. The coefficients in Eq. (1) 

are: the birth rate 𝛬, the natural per-capita death rate µ, 

the virus induced average fatality rate 𝛼 and the proba-

bility of disease transmission per contact 𝛽. Moreover, 

1/γ and 1/ are the infection and incubation periods, re-

spectively. All of these coefficients have units of 

(1/time).  

The traditional SIR (Susceptible-Infected-Removed) 

model (Kumar et al., 2020) is obtained selecting 𝛬 =
 µ = 0 and 𝜀 = ∞ while if 𝛬 and µ are not zero, the model 

is termed endemic SIR (Allen, 2017). However, as the 

SIR model has no exposed compartment, then it would 

not be proper using it for infections with  values such as 

those of the COVID-19. Concerning the meaning of the 

variables in (1), S is the number of humans susceptible to 

be exposed and E is the actual number of exposed indi-

viduals (individuals in which the disease is latent; they 

are infected but not infectious). Individuals move from S 

to E depending on the number of contacts with I individ-

uals, multiplied by the probability of infection (𝛽). Fur-

thermore, exposed (𝐸) become infected (𝐼) with a rate  

and infected become recovered (𝑅) with a rate 𝛾. Since 

lifelong immunity is assumed, people in the 𝑅 class do 

not move back to the S class. Because of the relatively 

short period of the epidemic, it is assumed that 𝛬 = µ𝑁, 

so that the deaths balance the newborns. The deceased 

individuals 𝐷(𝑡) are computed as 𝐷(𝑡) = 𝑁0 − 𝑁(𝑡), 

therefore the dead people per unit time �́�(𝑡) can be ob-

tained as (De la Sen et al., 2014):  

 �́� = 𝛼𝐼(𝑡),  (2)  

if the deaths balance the newborns.  

An important measure to quantify the virus expansion 

is the basic reproduction ratio, 𝑅0, which estimates the 

average number of secondary cases caused by an already 

infected person. For the SEIR model, 𝑅0 is given by 

(Zhang et al., 2013): 

 𝑅0 =
𝛽𝜀

(𝜀+𝜇)(𝛾+𝛼+𝜇)
  (3)  

The basic reproduction ratio is used to estimate the 

virus spread, establishing 𝑅0 = 1 as a stability limit: if 

𝑅0 > 1 the disease invades the population while if 𝑅0 <
1 the disease disappears.  

Another measure is the infection fatality rate (𝐼𝐹𝑅),  

 𝐼𝐹𝑅(%) = 100
𝐷∞

𝑅∞+𝐷∞
  (4)  

where 𝑅∞ + 𝐷∞ represents the final number of infected 

individuals (𝑡 → ∞ refers to the epidemics ending).  

Using the last line in Eq. (1) (with µ = 0) and Eq. (2), 

we obtain  

 𝐼𝐹𝑅(%) = 100
𝛼

𝛼+𝛾
 , (5)  

where this relation is always valid, not just at the epidem-

ics ending.  

A third usually reported coefficient is the case fatality 

rate (𝐶𝐹𝑅), such that 𝐶𝐹𝑅 > 𝐼𝐹𝑅, since this rate under-

estimates the number of infected individuals.  

Equations (1) are discretized using a forward Euler 

discretization scheme with a time step ∆𝑡 = 0.01 day. 

The solution (𝑆𝑛, 𝐸𝑛 , 𝐼𝑛, 𝑅𝑛) = (𝑆, 𝐸, 𝐼, 𝑅)(𝑛∆𝑡), 𝑛 ≥ 1, 
this time discretization procedure yields positive and 

bounded solutions (Brauer, 2017). Furthermore, the solu-

tion converges to an equilibrium, i.e., 𝑆𝑛 + 𝑅𝑛 + 𝐷𝑛 = 

𝑆∞ + 𝑅∞ + 𝐷∞ = 𝑁0 for 𝑡 → ∞.  

A sensitivity analysis of the model to changes in its 

parameters is presented by Carcione et al. (2020). It is 

observed that higher values of the incubation period 

(𝜀−1) delay the epidemic, and increasing the infectious 

period (𝛾−1) induces the same effect. Furthermore, when 

more individuals are initially exposed (𝐸(0)), the inten-

sity of the peak does not change, but anticipates the epi-

demic. Other results indicate that if 𝑅0 does not change 

during the epidemic, the peak of infected people is hardly 

sensitive to the initial number of infected individuals, and 

an earlier lockdown highly reduces the number of dead 

individuals.  

III. THE COVID-19 EPIDEMIC IN THE RMBA 

Next, we attempt to model the COVID-19 epidemic in 

the RMBA (Región Metropolitana de Buenos Aires), 

comprising the city of Buenos Aires and neighboring cit-

ies, with a population 𝑁0 = 14,839,026 individuals. For 

this purpose, we use as reliable data the total number of 

casualties from day 1 (March 9, 2020) to day 206 (Sep-

tember 30, 2020). The reported infected people cannot be 

used for calibration, since at present the number of 

asymptomatic, undiagnosed infectious individuals is un-

known. The number of death individuals is also uncer-

tain, since there were delays in the upload of official data. 

In order to overcome this limitation, we consider 22% 

more casualties in the estimation (average percentage 

chosen for Argentina based on our data and general un-

derestimation of COVID-19 mortality; Kung et al., 

2021). Predictions of high accuracy are not possibly due 

to the lack of information about the probability of the dis-

ease transmission, characteristics of the disease and ini-

tial conditions of the SEIR model. We assume 

𝜇−1=3.6×10−5 / day, corresponding to a life expectancy 

of 76 years (available at https://datatopics.worldbank. 

org/world-development-indicators/). Parameter  𝛽 varies 

as a piecewise constant function in time intervals [𝑡0, 𝑡1), 

[𝑡1, 𝑡2), …, [𝑡𝐿−1, ∞), with changes associated with ad-

ministrative measures taken by the state (such as lock-

down) and behavior of the population. In this case, 𝑡0 =
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1 day, 𝑡1 = 31 day and 𝑡2 = 50 day, i.e., 𝐿 = 3, since 

after 𝑡1 (April 8), home isolation, social distancing and 

partial Nation lockdown started to be effective, as indi-

cated by an inflection point in the curve of casualties, and 

after 𝑡2 (April 27), the situation became worst with an 

increase in the slope of the curve. The SEIR model pa-

rameters, 𝛼, 𝛽, 𝜀, 𝛾, together with the initial exposed in-

dividuals 𝐸(0) are estimated fitting the number of fatal 

victims. This constitutes an inverse problem with infinite 

solutions. A Quasi Newton approximation technique for 

nonlinear least squares problem with the formula of 

Broyden-Fletcher Goldfarb-Shanno is applied. This tech-

nique was successfully applied to estimate parameters in 

reservoir engineering (Savioli and Bidner 1994, Savioli 

and Fernández Berdaguer, 2007). The L2-norm of the 

differences between simulated and measured casualties is 

minimized and yields 𝐸(0) and the model parameters on 

each time  interval. In fact, while 𝛼, 𝜀 and 𝛾 remain con-

stant throughout the entire simulation, 𝛽 varies in the in-

tervals [𝑡0, 𝑡1), [𝑡1, 𝑡2), [𝑡2, ∞). We present the results of 

four different cases that honor the data. Computational 

implementation is done by writing Fortran codes and 

plotting with gnuplot public software. The parameters 

constraints are shown in Table 1 (Carcione et al., 2020; 

Lauer et al., 2020; Read et al., 2020), while initial values 

and results for the four cases are displayed in Table 2. All 

the cases assume an initial number of infectious individ-

ual 𝐼(0) = 100, although this value may also affect the 

result. The last four files in Table 2 are:  date of the peak 

of infected individuals, day of the last infected individual 

(the end of the epidemic in theory), total number of in-

fected individuals at the end of the epidemic, i.e., 𝐼∞ =
𝑅∞ + 𝐷∞ ; and death toll 𝐷∞ (note that the end of the 

epidemic is predicted by the model without considering 

that effective vaccines or treatments are developed).   

The results are very sensitive to variations of the pa-

rameter 𝛽 and, consequently, those of 𝑅0, mostly due to 

the impact of the performed intervention strategies. 

In fact, the model predictions are strongly influenced 

by the behavior of 𝑅0 during the last period, after day 50. 

Therefore, a reduction of 𝑅0 is essential to avoid a tragic 

situation.  

Figures 1 and 2 show the fit and extended curves cor-

responding to Case 1, which predicts an initial 𝑅0 =
1.70, decreasing to 0.74 in April 8, after the lockdown, 

and increasing to 1.23 after April 27, most probably due 

to an increase of the community circulation of the virus.  

This case predicts an 𝐼𝐹𝑅 = 0.94 %, a high death toll 

(nearly 49 k) and 5.16 million infected individuals at the 

end of the epidemic. However, this is due to the last 𝑅0 

trend that can be inverted by implementing more isola-

tion. In fact, if the value of 𝑅0 = 0.74 had been main-

tained after April 27 only 575 casualties and 61,400 in-

fected individuals would have occurred. In the situation 

shown in Case 1, the maximum number of infected indi-

viduals is approximately 113,300 people at day 228 (Oc-

tober 22, 2020). If only 5 % of these individuals require 

intensive care, this amounts to 5,665 humans. Besides, 

the end of the epidemic is predicted by January 27, 2022. 

The other cases honor the data with smaller fatality 

rate 𝛼, and, consequently, predict less casualties, com-

pared to Case 1, with 𝐼𝐹𝑅 between 0.3 % and 0.5 % ap-

proximately. For instance, Case 2 (Fig. 3) which predicts 

an initial 𝑅0=3.17, decreasing to 𝑅0 = 1.03 (approxi-

mately the stability limit) in April 8, and increasing to 

1.40 after April 27. 

 

Table 1 – Parameter constraints applied in the estimation pro-

cedure 

Variable Lower bound Upper bound 

𝛼 (day-1) 1x10-5 1x10-2 

𝛽 (day-1) 0.1 0.9 

𝜀−1 (day) 3 9 

𝛾−1 (day) 3 9 

𝐸(0) 10 1000 

Table 2 - Initial values and results of the estimation procedure 

 Case  1 Case 2 Case 3 Case 4 

 Final (initial) Final (initial) Final (initial) Final (initial) 

𝛼 (day-1) 0.003128  (0.003) 0.0006(0.003) 0.001408 (0.003) 0.001407  (0.004) 

𝛽1 (day-1) 0.5713  (0.5) 0.5102 (0.5) 0.5349  (0.58) 0.4590  (0.5) 

𝛽2 (day-1) 0.2471 (0.3) 0.1655 (0.3) 0.3600  (0.31) 0.3809  (0.3) 

𝛽3 (day-1) 0.4140  (0.4) 0.2243 (0.4) 0.3760 (0.4) 0.4491  (0.4) 

𝜀−1 (day) 4.38 (6) 4.10 (6) 4.25 (4) 6.31 (5) 

𝛾−1 (day) 3.01 (6) 6.25 (6) 3.42 (4) 3.01 (5) 

𝐸(0) 925 (500) 14 (200) 260 (300) 3426 (200) 

𝑅01 1.70 3.17 1.82 1.37 

𝑅02 0.74 1.03 1.22 1.14 

𝑅03 1.23 1.40 1.28 1.34 

𝐼𝐹𝑅(%) 0.94 0.37 0.48 0.42 

Peak of Infected October 22, 2020 September 21,  2020 September 22,  2020 September 23,  2020 

End of epidemic January 27,    2022 December 5,  2021 November 11, 2021 November 22, 2021 

𝐼∞(𝑘) 5156 7466 5934 6794 

𝐷∞(𝑘) 49 28 29 29 

𝐼(0) = 100. The values of 𝛽 refer to the periods (in days): [1, 31), [31, 50) and [50, ∞) (in days). 

𝐼∞: the total infected individuals at the end of the epidemic, obtained when 𝐼 < 1. 𝐷∞ is the death toll at the end of the epidemic. 

Read et al. (2020) report the mean values 𝜀−1 = 4 days and 𝛾−1 = 3.6 days.    

Lauer et al. (2020) report 𝜀−1 = 5.1 days. Ferguson et al. (2020) estimates an average 𝐼𝐹𝑅 = 0.9 % 
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Figure 1. RMBA case history. Dead individuals (a) and dead 

individuals per day (b). The dots represent the data and the 

solid line corresponds to Case 1-Table 2. 

 

 

 

Figure 2. Number of individuals in each clase (a) and deaths 

(b), corresponding to Case 1 in Table 2. In (b) the solid and 

dashed curves refer to the accumulated deaths and deaths per 

day. The peak of infected individuals (and deaths per day) oc-

curs at approximately day 228 (October 22, 2020). 

Case 2 estimates the highest peak of infected individ-

uals, 400 thousand at 197 days (September 21, 2020), as 

can be seen in Fig. 3 (a). This amount implies 20,000 pa-

tients if 5 % require intensive care, a number that can 

overload the capacity of the hospitals. This situation is 

related with the infectious period 𝛾−1  which is higher 

than 6 days. Also the total number of infected individuals 

at the end of the epidemic, 𝐼∞is the highest, 7466 thou-

sand people. Keeping 𝑅0=1.02 from day 31 (April 8), the 

epidemic would be under control with a minimum death 

toll (4477 individuals) and a minimum number of in-

fected humans at the end of the epidemic (1131 thousand 

people).  

Besides the last three cases predict similar dates of 

occurrence of the peak of infected individuals (Septem-

ber 21-23, 2020) and of the end of the epidemic (Novem-

ber 11, 2021 to December 5, 2021).  

Data provided by literature can be compared with the 

values shown in Table 2. The population’s age affects the 

IFR and fatality rate. As an example an estimated IFR of 

0.657 % for the whole Chinese population grows to 3.28 

for population over 60 yr. age (Verity et al., 2020 – Table 

I). If the amount of infected people is considerably supe-

rior than the reported cases, the mortality rate could be 

substantially lower than the official one, indicating 

COVID-19 is less lethal than SARS and MERS, despite 

of being far more contagious. Read et al. (2020) states an 

average value 𝑅0=4, whereas Wu et al. (2020) get values 

within 1.8 and 2. As reported by Chowell et al. (2003) 

IFR = 4.8 % for SARS, and Verity et al. (2020) state that 

CFR of SARS is superior to that of COVID-19, with ap-

proximately 1.38 %. Again, COVID-19 appears to be far 

more contagious.  

An extended approach consists in using time deriva-

tives of fractional order to generalize the diffusion pro-

cess. Such models include both memory and non-local 

effects in a natural way (Mainardi, 2010). Indeed, replac-

ing the first-order temporal derivative by a Caputo frac-

tional derivative of non-natural order (Caputo et al, 2011) 

we obtain a new parameter to adjust the data: the deriva-

tive order. This modeling can be performed by using frac-

tional derivatives computed with the Grünwald-Letnikov 

approximation, which is a generalization of the finite-dif-

ference derivative (Carcione, 2014) or solving the differ-

ential equations in the frequency domain (Gauzellino et 

al., 2014, Santos and Gauzellino, 2017). Furthermore, the 

model can be made two-dimensional by including the 

spatial diffusion of the virus (Naheed et al., 2014) to 

model local outbreaks and be able to isolate them. The 

approach can be based on a finite-element method in the 

space-frequency domain with domain decomposition. 

This numerical procedure has already been applied to 

wave propagation in 2D and 3D media in geophysics 

(Santos and Gauzellino, 2017). Moreover, there are more 

complex versions of the SEIR model as, for instance, in-

cluding a quarantine class and a class of isolated (hospi-

talized) members (Brauer, 2017). Finally, since signals 

propagate instantaneously in diffusion equations, the 

model predicts that there are more infectious humans (𝐼  
 

(b) 

(a) 

(a) 

(b) 
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Figure 3. Number of individuals in each class (a) and deaths (b), 

corresponding to Case 2 in Table 2. In (b) the solid and dashed 

curves refer to the accumulated deaths and deaths per day. The 

peak of infected individuals (and deaths per day) occurs at day 

197 (September 21, 2020). 

class) than actual before the latent period and at late 

stages of the epidemic. Solutions to this problem can be 

found, for instance, in Keeling and Rohani (2008) – Sec-

tion 3.3.  

IV. CONCLUSIONS 

The SEIR epidemic model is implemented to simulate the 

time evolution of the COVID-19 epidemic in Argentina, 

specifically in the RMBA, where the situation is more 

critical compared to other parts of the country. We cali-

brate the model parameters by using the number of offi-

cially reported casualties, considered more reliable than 

the number of infected individuals. The simulation at-

tempts to provide a simple but effective procedure to 

model the virus diffusion over time, in view of the lack 

of knowledge of many variables related to the epidemic. 

At present, the epidemic in the Buenos Aires area is un-

der control due to the early lockdown, because most pre-

dictions have estimated the peak of infected individuals 

by the end of September, and the health system was not 

collapsed. But we found that the reproduction ratio first 

decreased and then increased, causing a drastic prediction 

of the death toll if this trend persist in the future. In gen-

eral, the incubation and infectious periods are in the range 

4-7 days and 3-7 days, respectively, and the infection fa-

tality rate (IFR) between 0.4 % and 1.0 %. A case with a 

high infectious period yields a high peak of infected in-

dividuals that can overload the intensive care capacity. 

The total amount of infected individuals will be between 

5.0 million and 7.5 million people if the increasing 𝑅0  

trend is not inverted. In general, the results indicate that 

the peak of infected individuals in RMBA has occurred 

approximately at September 22th, but other predictions 

delay this peak to October 22th. We show how the effec-

tiveness of the lockdown, the incubation and infectious 

periods, the probability of transmission and the initially 

exposed individuals affect the evolution of the epidemic. 

More complex models, i.e., with more classes or com-

partments and considering spatial diffusion, can be used 

in the future when some of the properties of the virus can 

be established more accurately, mainly the incubation 

and infectious periods and the fatality rate. 
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