
Computational Geosciences
https://doi.org/10.1007/s10596-021-10077-8

ORIGINAL PAPER

Effective viscoelastic representation of gas-hydrate bearing
sediments from finite-element harmonic experiments

Juan E. Santos1,2,3 · Patricia M. Gauzellino4 · José M. Carcione1,5 · Jing Ba1
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Abstract
We present a novel numerical upscaling technique for modeling the wave response of gas-hydrate bearing sediments
composed of a rock frame, gas-hydrate and water, where the hydrate consists of ice-like lattice of water molecules with
methane trapped inside. These sediments are highly heterogeneous at mesoscopic scales, much smaller than the wavelength
but much larger than the pore size, inducing substantial seismic wave attenuation and dispersion due to mode conversions.
The proposed numerical upscaling procedure simulates the wave-induced fluid-flow loss mechanism by computing an
average effective viscoelastic medium having the same behavior of the original sediment. The method determines the
complex stiffness coefficients associated with the viscoelastic medium by solving numerically boundary value problems
formulated in the space-frequency domain, representing compressibility and shear experiments. The procedure is applied to
composite media with regions of different amounts of hydrate with patchy or periodic-layer distributions, which define an
anisotropic effective viscoelastic medium, respectively. The examples demonstrate that variations in hydrate content induce
strong attenuation and dispersion effects on seismic waves due to the mesoscopic loss mechanism.

Keywords Gas-hydrate sediments · Finite elements · Wave-induced fluid flow attenuation · Seismic velocity

Mathematics Subject Classification (2010) 35Q86 · 35D30 · 65N30

1 Introduction

Gas-hydrate (GH) bearing sediments are partially frozen
porous rocks with heterogeneities at mesoscopic scales.
These sediments consist of a water phase and two non-
welded solid phases, the skeleton and gas-hydrates, which
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are ice-like lattices of water molecules with gas methane
trapped inside [1, 10]. These formations, found in per-
mafrost and continental margins, are considered important
future energy resources [1]. Their elastic properties and seis-
mic velocities were analyzed by Lee and Collet [14, 15] and
Carcione and Tinivella [4].

A theory to describe the static and dynamic behavior of
partially frozen porous media was presented by Leclaire
et al. [12], a generalization of the classic Biot theory to
the case of two solids and one fluid. The theory, valid
for uniform porosity, predicts the existence of additional
compressional and shear waves which were observed in
laboratory experiments [13]. Carcione and Seriani [3]
designed a generalization of this theory to evaluate gas-
hydrate concentration. Carcione et al. [6] and Santos et al.
[17] generalized the theory of Leclaire et al. in [12] to
the variable porosity case. In this generalization, the solid
and GH matrices exchange kinetic and potential energy and
the topology of the pores and grains is general, as that of
Biot theory. Numerical simulations of wave propagation in
partially frozen porous media were presented by Carcione
and Seriani [5] and Carcione et al. [6]. We also refer to



Comput Geosci

the Special Issue by Linga at al. [16] on gas hydrates and
applications.

Seismic waves traveling through sediments with regions
of different GH content suffer mode conversions at inter-
faces between those regions, generating wave-induced fluid
flow (WIFF) in what it is known as the mesoscopic loss
mechanism. This mechanism was first analyzed by White
et al. [22] for the case of layered porous rocks saturated gas
and water.

Among other authors working on the characterization
of GH bearing sediments, we mention Waite et al. [21],
whose theory is the classic Gassmann equation, where the
fluids are mixed by using the Reuss average to obtain
their bulk moduli, and do not consider the mesoscopic loss
caused in thin layered media and/or patchy heterogeneities.
On the other hand, Guerin and Goldberg [10] consider a
composite model similar to that in Carcione et al. [6] and
Santos et al. [17]. Their work provides some explanation
of the attenuation on the basis of the squirt-flow model.
Friction between minerals and ice is considered by using
an empirical parameter and there is attenuation data from
logs, but not from seismic data, a requirement to analyze the
WIFF loss mechanism.

Even though in principle the generalized theory of Leclaire
presented in [6] and [17] may be used to simulate wave
propagation in highly heterogeneous gas-hydrate bearing
sediments, a large number of degrees of freedom (DOF)
would be required to properly represent the heterogeneities,
i.e., extremely fine meshes. This in turn implies the solution
of very large linear systems of equations, thus making
such approach not feasible. As an alternative method, this
work proposes the use of a numerical upscaling procedure
allowing to determine an effective viscoelastic medium
(EVM) that models the WIFF loss effect and behaves as a
highly heterogeneous gas-hydrate bearing sediment.

The complex stiffnesses defining the EVM are obtained
as solutions of boundary value problems (BVP’s) for the
quasi-static equations for composite materials derived in
[17]. The BVP’s impose boundary conditions associated
with compressibility and shear experiments whose solutions
are obtained with a finite-element (FE) procedure, so that
the computer is used as a virtual laboratory. For a detailed
description of using harmonic experiments combined with
FE procedures to determine the seismic response of Biot-
type media with different types of heterogeneities, we refer
to [20]. The advantage of the proposed methodology con-
sist of characterizing the seismic response of heterogeneous
gas-hydrate bearing sediments with simple viscoelastic
models. In particular, because of the reduction in DOF, this
approach allows to define efficient computational algo-
rithms to simulate wave propagation in this type of environ-
ments.

The organization of the paper is as follows. In Section 2, we
present the model for GH bearing sediments. Section 3 is
devoted to define the compressibility and shear experiments
to determine a viscoelastic model long-wave equivalent to
the original GH bearing sediment. Section 4 shows a collec-
tion of numerical experiments as follows. First, the proce-
dure is validated for the homogeneous case against a classic
Biot model as defined in Appendix B. Then, we analyze
the WIFF mesoscopic loss mechanism in the inhomoge-
neous case: the isotropic case of patchy GH distributions,
and periodic thin-layers of different GH content, leading to
a anisotropic EVM (TI-EVM) representation of the original
layered medium at long wavelengths. These media have not
been measured experimentally yet.

2 Themodel

Let us consider an elementary cube Ω composed of two
weakly-coupled porous solid phases, (sandstone and GH)
referred to by the subscripts or superscripts 1 and 3,
saturated by a single-phase fluid indicated by the subscript
or superscript 2. Thus, Ω = Ω1 ∪ Ω2 ∪ Ω3. The water
content (effective porosity) and the two solid fractions over

the bulk material are defined as φw = V2

Vb

, φ1 = V1

Vb

and

φ3 = V3

Vb

, respectively, where Vb = V1 + V2 + V3 and

Vm is the volume of the phase Ωm. The absolute porosity
φa , corresponding to the case when the rock is completely
unfrozen is φa = φw + φ3 = 1 − φ1. The GH content is

defined as I = φ3

1 − φ1
, so that 0 ≤ I ≤ 1.

Let τ (1) =
(
τ

(1)
ij

)
and τ (3) =

(
τ

(3)
ij

)
denote the stress

tensors in Ω1 and Ω3 averaged over the bulk material Ω ,
respectively, and let pf denote the fluid pressure. Also,
let u(1), u(2) and u(3) be the averaged solid and fluid
displacements over the bulk material, while the relative fluid
displacement is defined as

w = φw

(
u(2) − S1u(1) − S3u(3)

)
, (1)

with S1 = V1

V1 + V3
, S3 = V3

V1 + V3
and ζ = −∇ · w

representing the change in fluid content.
Furthermore, let

εij (u
(m)) = 1

2

(
∂u

(m)
i

∂xj

+ ∂u
(m)
j

∂xi

)
, m = 1, 3,

denote the strain tensor in Ωm with linear invariant θm =
εii(u

(m)). Also, the deviatoric strain tensor in Ωm is

d
(m)
ij = εij (um)) − 1

3
θ(m)δij , m = 1, 3.
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The diffusion and constitutive equations for GH bearing
sediments are derived in Santos et al. [17]:

iωf11u(1) − iωf12u(2) − iωf11u(3) = ∇ · τ (1), (2)

−iωf12u(1) + iωf22u(2) + iωf12u(3) = −∇pf , (3)

−iωf11u(1) + iωf12u(2) + iωf11u(3) = ∇ · τ (3). (4)

where ω is the angular frequency, i = √−1 and

τ
(1)
ij = [

KG1θ1 − B1ζ + B3θ3
]
δij + 2μ1d

(1)
ij (5)

+μ1,3d
(3)
ij ,

τ
(3)
ij = [

KG3θ3 − B2ζ + B3θ1
]
δij + 2μ3d

(3)
ij (6)

+μ1,3d
(1)
ij , j, k = 1, 2, 3,

pf = −B1θ1 − B2θ3 + Kavζ . (7)

The determination of the elastic constants in Eqs. 5–7 and
the diffusion coefficients f11, f22 and f12 in Eqs. 2–4 is
explained in Appendices A and B, respectively..

As already stated, to perform numerical simulations using
Eqs. 2–4 it is necessary to employ extremely fine meshes
to properly represent the mesoscopic-scale heterogeneities
and their attenuation effects on the fast waves. As an alter-
native, we present in the next section a numerical upscal-
ing procedures to determine the effective complex and
frequency-dependent coefficients defining an EVM long-
wave equivalent medium to the original Biot medium.
We consider two cases, i.e., isotropic and finely layered
(anisotropic) media, with the procedures yielding isotropic
an anisotropic EVM, respectively.

3 The numerical upscaling procedure

3.1 The isotropic case. Experiments to determine
the P- and S-wave complexmoduli

Let us denote by T (̃us) and E (̃us) the time Fourier trans-
forms of the stress and strain tensors of the isotropic EVM,
and set Θ̃s = ∇·̃us , where ũs denotes the solid displacement
vector. The constitutive equations of the EVM are

Tij (̃us) = λΘ̃sδij + 2μEij (̃us). (8)

To determine the complex and frequency dependent
moduli Eu = λ + 2μ and μ in Eq. 8 we consider a square
domain Ω = (0, L)2 in the (x1, x3)-plane with boundary
Γ = Γ L∪Γ B∪Γ R∪Γ T . Here Γ L, Γ R , Γ T and Γ B denote
the left, right, top and bottom boundaries of Γ , respectively.
Let {ν, χ} be an orthonormal system on Γ , where ν is the
unit outer normal on Γ and χ is a unit tangent on Γ oriented
counterclockwise.

The complex modulus Eu is determined by solving
Eqs. 2–4 in Ω with the boundary conditions

τ (m)(u)ν · ν = −ΔPm, (x1, x3) ∈ Γ T , m = 1, 3, (9)

τ (m)(u)ν · χ = 0, (x1, x3) ∈ Γ, m = 1, 3, (10)

u(m) · ν = 0, (x1, x3) ∈ Γ \ Γ T , m = 1, 3, (11)

w · ν = 0, (x1, x3) ∈ Γ . (12)

Note that the solution of this BVP satisfies the relations

ε11(u(1)) = ε13(u(1)) = ε11(u(3))

= ε13(u(3)) = ∇ · w = 0.

Thus, E11(̃us) = E13(̃us) = 0 and Eq. 8 reduces to

T33 = EuE33. (13)

Now Eu can be determined from Eq. 13 in terms of T33 and
E33 as averages of the mesoscopic stress and strain tensors
associated with the solid 1 phase over the sample Ω , i.e.,

T33 = 1

Ω

∫

Ω

τ
(1)
33 dΩ, E33 = 1

Ω

∫

Ω

ε
(1)
33 dΩ . (14)

Next, the complex shear modulus μ is determined by
solving Eqs. 2–4 in Ω with the boundary conditions

−τ (1)(u)ν = g1, (x1, x3) ∈ Γ T ∪ Γ L ∪ Γ R, (15)

−τ (3)(u)ν = g3, (x1, x3) ∈ Γ T ∪ Γ L ∪ Γ R, (16)

u(m) = 0, (x1, x3) ∈ Γ B, m = 1, 3, (17)

w · ν = 0, (x1, x3) ∈ Γ, (18)

where

g1 =

⎧⎪⎨
⎪⎩

(0, ΔG1), (x1, x3) ∈ Γ L,

(0, −ΔG1), (x1, x3) ∈ Γ R,

(−ΔG1, 0), (x1, x3) ∈ Γ T ,

(19)

g3 =

⎧⎪⎨
⎪⎩

(0, ΔG3), (x1, x3) ∈ Γ L,

(0, −ΔG3), (x1, x3) ∈ Γ R,

(−ΔG3, 0), (x1, x3) ∈ Γ T .

(20)

The solution of this BVP satisfies the conditions

ε11(u(1)) = ε33(u(1) = ε11(u(3)) = ε33(u(3)) = ∇ ·w = 0,

and consequently E11(̃us) = E33(̃us) = 0. Hence, Eq. 8
reduces to

T13 = μ E13. (21)

Now μ is obtained from Eq. 21 by computing T13 and
E13 averaging the mesoscopic stress and strain tensors
associated with the solid 1 phase over the sample Ω:

T13 = 1

Ω

∫

Ω

τ
(1)
13 dΩ, E13 = 1

Ω

∫

Ω

ε
(1)
13 dΩ . (22)

The average bulk density of the sample is

ρ = φ1ρ1 + φwρ2 + φ3ρ3,
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with ρm, m = 1, 2, 3 denoting the mass densities of the
solid and fluid constituents in Ω . The complex compres-
sional and shear velocities are [8]

vPc(ω) =
√

Eu(ω)

ρ
, vSc(ω) =

√
μ(ω)

ρ
.

The effective P and S phase velocities vn(ω) and quality
factors Qn(ω), n = P, S are [8]

vn(ω) =
[

Re

(
1

vnc(ω)

)]−1

,
1

Qn(ω)
= Im(v2

nc(ω))

Re(v2
nc(ω))

.

The approximate solution of the diffusion equations
Eqs. 2–4 with the boundary conditions Eqs. 9–12 to deter-
mine Eu and Eqs. 15–18 to determine μ is obtained with the
FE method. See Santos et al. [18] for details on the appli-
cation of the FE method to solve these type of harmonic
experiments.

3.2 The anisotropic case. Periodic thin layers with
dissimilar GH content

Finely layered media behaves as a TI-EVM at long wave-
lengths and five complex and frequency dependent stiff-
nesses pIJ (ω) need to be determined. The constitutive
equations for a TI-EVM are

T11(̃us) = p11 E11(̃us) + p12 E22(̃us) + p13 E33(̃us), (23)

T22(̃us) = p12 E11(̃us) + p11 E22(̃us) + p13 E33(̃us), (24)

T33(̃us) = p13 E11(̃us) + p13 E22(̃us) + p33 E33(̃us), (25)

T23(̃us) = 2 p55 E23(̃us), (26)

T13(̃us) = 2 p55 E13(̃us), (27)

T12(̃us) = 2 p66 E12(̃us), (28)

where p12 = p11 − 2p66.
Note that in finely layered media p33 and p55 can be

identified with Eu and μ, respectively. Next, in order to
analyze the behavior of waves traveling parallel to the

Table 1 Material properties

Grain bulk modulus, Ks1 38.7 GPa

shear modulus, μs1 39.6 GPa

density, ρs1 2650 kg/m3

permeability, κs1 1.07 10−13 m2

Gas hydrate bulk modulus, Ks3 8.58 GPa

shear modulus, μs3 3.32 GPa

density, ρs3 920 kg/m3

permeability, κs3 5 10−4 m2

Water bulk modulus, Kf 2.25 GPa

density, ρ2 1040 kg/m3

viscosity, η 0.0018 Pa · s

Table 2 Effective P-wave velocities (m/s) at 50 Hz as function of
gas-hydrate content I

I Composite classic Error (%)

model Biot model

2/3 4120.23 4291.95 4.0

0.583 4064.18 4208.35 3.42

1/2 4027.02 4146.20 2.87

0.416 4004.44 4100.76 2.34

1/3 3992.67 4067.86 1.85

1/4 3988.48 4043.88 1.37

1/6 3989.24 4025.78 0.9

The sample is a square of side length 10 cm

layering (‘11’ waves), we define a new experiment to deter-
mine the stiffness p11. This coefficient can be determined
by solving Eqs. 2–4 in Ω with the boundary conditions

τ (m)(u)ν · ν = −ΔPm, (x1, x3) ∈ Γ R, m = 1, 3, (29)

τ (m)(u)ν · χ = 0, (x1, x3) ∈ Γ, m = 1, 3, (30)

u(m) · ν = 0, (x1, x3) ∈ Γ \ Γ R, m = 1, 3, (31)

w · ν = 0, (x1, x3) ∈ Γ . (32)

The solution of this BVP for p11 satisfies

ε33(u(1)) = ε12(u(1)) = ε33(u(3))

= ε12(u(3)) = ∇ · w = 0,

so that E33(̃us) = E13(̃us) = 0 and Eq. 23 reduces to

T11 = p11E11. (33)

Now, Eq. 33 determines p11 since T11 and E11 can be
obtained as averages of the mesoscopic stress and strain
tensors associated with the solid phase 1 over the sample, as
indicated in Eq. 14 for determining p33.

Numerical approximations to the complex coefficients
Eu and μ and p11 are computed with the FE method. See
Santos and Gauzellino [20], Chapters 7 and 8, and also

Table 3 Effective S-wave velocities (m/s) at 50 Hz as function of
gas-hydrate content I

I Composite classic Error (%)

model Biot model

2/3 2627.56 2639.26 0.44

0.583 2627.56 2572.36 0.28

1/2 2565.15 2526.03 0.16

0.416 2493.87 2495.93 0.08

1/3 2476.96 2477.85 0.03

1/4 2467.65 2467.95 0.01

1/6 2462.93 2462.99 0.0

The sample is a square of side length 10 cm
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Fig. 1 Binary patchy gas-hydrate content I . Yellow regions have I =
2/3, black regions have I = 1/6. Correlation length is 3.33 cm. Overall
gas-hydrate content is 36 %. The sample is a square of side length 10 cm

Santos et al. [18] and Santos and Carcione [19] for details
on the implementation of the FE methods to determine
complex stiffness in isotropic and anisotropic media.

4 Numerical experiments

4.1 Validation by comparison with the classic Biot
model

There are no analytical solutions corresponding to the WIFF
loss mechanism in composite porous media. We verify the
methodology in the most complex case, where an analytical
solution can be established for the wave velocity, but attenu-
ation is negligible at seismic frequencies. We apply the tests
to water saturated media. Then, the effective phase velocities
vn corresponding to the EVM, obtained with the harmonic
experiments, are compared with those of the associated clas-
sic Biot model defined in Appendix B, which is long-wave
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Fig. 2 Binary patchy gas-hydrate content I . Yellow regions have I =
2/3, black regions have I = 1/6. Correlation length is 2.22 cm. Overall
gas-hydrate content is 36%. The sample is a square of side length 10 cm
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Fig. 3 Lamé shear coefficient μ1 associated with the binary patchy
gas-hydrate content of correlation length 2.22 cm in Fig. 2. Overall
gas-hydrate content is 36%. The sample is a square of side length 10 cm

equivalent to the original composite model. Thus, we con-
sider a water saturated homogeneous square sample of side
length 10 cm discretized in a 80 × 80 uniform mesh. Abso-
lute porosity is φa = 0.3. The material properties of solid 1,
solid 3 (GH) and water are given in Table 1. In all the exam-
ples, the mesh size is chosen so that the diffusion length is
properly discretized. The validation is carried out by varying
the GH content and as a function of frequency.

Table 2 shows the results for the effective P-wave phase
velocities at 50 Hz varying the GH content. Its comparison
with the values of the associated classic Biot model is displayed
in the column of the percentual error. The error decreases
with decreasing GH content. We consider that this is due to
the very dissimilar elastic behavior of solids 1 and 3 (GH).

Furthermore, the effective P-wave velocities as a function
of frequency for I = 1/3 were computed in the range 1
Hz-1 kHz (low-frequency range). We obtained an effective
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Fig. 4 Lamé shear coefficient μ1 associated with a binary patchy gas-
hydrate content of correlation length 0.04 cm and fractal dimension D

= 2.2. Overall gas-hydrate content is 41%. The sample is a square of
side length 1 cm
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Fig. 5 Effective S-wave phase
velocity as function of frequency
for the composite model and a
binary patchy gas-hydrate
content of correlation length
0.04 cm and overall gas-hydrate
content of 41%. The sample is a
square of side length 1 cm
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P-wave velocity of 3992.67 m/s and numerically an ∞
for the quality factor Q. We also computed the P-wave
velocity for the associated classic Biot model defined
in Appendix B using a plane-wave analysis, obtaining a
constant of 4087.86 and dissipation factors in the range
10−2−10−5. Therefore, we verified that, at low frequencies,
an homogeneous sample of the GH bearing sediment does
not suffer attenuation and dispersion.

Table 3 presents the results for the effective S-wave
phase velocities, showing – as for P-waves – that the errors
decrease with decreasing GH content. We also computed the
effective S-wave velocities as a function of frequency for I

= 1/3. In the frequency range 1 Hz–1 kHz, we obtained an
effective S-wave velocity of 2476.96 m/s and numerically
an ∞ for the quality factor Q. The plane-wave analysis for

the associated classic Biot model gives an S-wave phase
velocity of 2477.85 m/s, while the dissipation factors are in
the range 10−2 − 10−5. Similar results were obtained for
different sample sizes.

4.2 Isotropic effective viscoelastic model
for the case of patchy GH-content

Gas-hydrate bearing sediments have local variations in GH
content I at multiple mesoscopic scales. To model wave
propagation in this type of medium, a convenient approach
is to use an isotropic EVM by solving the compressibility
and shear experiments as defined in Section 3.1 using the
FE method. This EVM takes into account WIFF and the
associated dispersion and attenuation effects.

Fig. 6 Effective P-wave phase
velocity as a function of
frequency for the composite and
classic Biot models and fractal
binary gas-hydrate content I as
in Fig. 2. Correlation length is
2.22 cm and overall gas-hydrate
content is 36%. The sample is a
square of side length 10 cm
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Fig. 7 Logarithm of effective
P-wave dissipation factor as a
function of frequency for the
composite and classic Biot
models and fractal binary
gas-hydrate content I as in
Fig. 2. Correlation length is 2.22
cm and overall gas-hydrate
content is 36%. The sample is a
square of side length 10 cm
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The water-saturated sample Ω is a square of side length
10 cm discretized with a 80 × 80 uniform mesh. The binary
multiscale quasi-fractal heterogeneities in GH content were
generated with the von Karman self-similar correlation
function [9]. The examples use a fractal dimension D =2.2
and two correlation lengths, 3.33 cm and 2.22 cm. For
details on the procedure to generate these type of fractal
distributions, we refer to Santos et al. [18].

Figures 1 and 2 display the patchy GH content distribution
I for correlation lengths 3.33 cm and 2.22 cm, respectively.
Overall the GH content I is 36%. Figure 3 shows the Lamé
shear coefficient μ1 associated with the patchy GH content
distribution I in Fig. 2, where the local heterogeneities in μ1

are due to local variations in the GH content. Fig. 4 shows

the shear coefficient associated with a binary patchy gas-
hydrate content of correlation length 0.04 cm, and Fig. 5
gives the effective S-wave phase velocity as function of
frequency for the composite model.

Figures 6 and 7 show the effective phase velocities and
logarithm of the dissipation factors of P waves as a function
of frequency for the composite and classic Biot models in
the range 0.01 Hz–140 Hz and binary GH content I as
in Fig. 2 (correlation length 2.22 cm). The results for the
classic Biot model were obtained with the FE upscaling
procedure. The P-wave velocity for the composite model in
Fig. 6 is lower than that of the classic Biot model, and shows
a stronger dispersive behavior, while that of the classic Biot
model is almost constant in all the frequency range. Figure 7

Fig. 8 Effective P-wave
dissipation factor as a function
of frequency for the composite
model and fractal binary
gas-hydrate content I as in
Fig. 1 (correlation length is 3.33)
and Fig. 2 (correlation length is
2.22). The attenuation peak
moves to higher frequencies for
the shorter correlation length.
Overall gas-hydrate content is
36%. The sample is a square of
side length 10 cm
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Fig. 9 Effective velocity of ‘33’
waves as a function of frequency
for the composite and classic
Biot models. The numerical
sample is a square of side length
18 cm and has six alternating
layers of gas-hydrate contents I

= 2/3 and 1/6
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shows that the attenuation of the P waves is much higher for
the composite model than for the classic Biot model. This
attenuation mechanism, due to the induced WIFF effect, is
not present when the latter model is used.

Figure 8 exhibits dissipation factors as a function of
frequency for the composite model and the binary GH
content distributions in Figs. 1 and 2. Two attenuation peaks
are clearly observed. The peak located at lower frequencies
corresponds to the larger GH patches (Fig. 1).

4.3 Shear waves in GH sediments with fractal patchy
GH distribution

The next experiment analyzes the behavior of the shear
waves as a function of frequency due to variations in GH
content. In this case, the sample is a square of side length 1
cm with a multiscale quasi-fractal patchy GH distribution.
The patches have a GH content I = 2/3 and I = 1/6. Absolute
porosity is φa = 0.3, correlation length is 0.04 cm and frac-
tal dimension is D = 2.2. The overall GH content is 41%.
Figure 4 displays the shear Lamé coefficient associated with
this quasi-fractal GH distribution. It is observed that the
S wave suffers very little velocity dispersion (see Fig. 5)
and negligible attenuation. We also computed the corre-
sponding effective phase velocity and dispersion coefficient
of the classic Biot model, obtaining a constant shear phase
velocity of 2428 m/s and negligible attenuation.

4.4 Effective viscoelastic model for the case
of layeredmedia with periodic variations
in GH content

We consider a square sample of side length 18 cm dis-
cretized with a 120 × 120 uniform mesh. The numerical

sample has six alternating layers of GH contents I = 2/3 and
1/6. Absolute porosity is φa = 0.3.

First, we analyze waves traveling normal to the layers
(‘33’ waves). The curves labeled associated classic Biot in
the following Figures were obtained as follows. First, we
determine the associated Biot model for each layer of the
periodic sequence as indicated in Appendix B. Then, we use
the theory given in Krzikalla and Müller [11] to obtain the
theoretical values. The FE curves to determine p11 and p33

were computed by using the diffusion Eqs. 2–4 with the
boundary conditions Eqs. 9–12, Eqs. 15–18 and Eqs. 29–32.]

Figure 9 exhibits effective ‘33’-wave velocities for the
composite model increasing with increasing frequency,
while those of the classic Biot model are almost constant
in the whole frequency range. Furthermore, for almost all
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Fig. 10 Effective dissipation factor of ‘33’ waves as a function of
frequency for the composite model. The numerical sample is a square
of side length 18 cm and has six alternating layers of gas-hydrate
contents I = 2/3 and 1/6
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Fig. 11 Logarithm of the
effective dissipation factor of
‘33’ waves as a function of
frequency for the composite and
classic Biot models. The
numerical sample is a square of
side length 18 cm and has six
alternating layers of gas-hydrate
contents I = 2/3 and 1/6
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frequencies, the composite model exhibits lower effective
velocities than the classic model, due to the high dispersion
induced by the WIFF mechanism. Figure 10 displays the
effective ‘33’-wave dissipation factor of the composite
model, where it can be observed high attenuation of P-waves
due to the interlayer WIFF mechanism, with an attenuation
peak of 80 for the dissipation factor at about 70 Hz.
Figure 11 displays the logarithm of the dissipation factor
of ‘33’-waves for the composite and classic Biot models,
where attenuation is negligible for the latter model.

Figures 12 and 13 show the gradient of fluid pressure for
the p33 experiment at 10 Hz and 70 Hz, where the higher
values that can be observed at the interlayer boundaries are
due to variations in GH content. These figures illustrate the
WIFF mechanism. Furthermore, these gradients are much
higher at 70 Hz than at 10 Hz, in accordance with Fig. 10.
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Fig. 12 Gradient of fluid pressure for compression normal to the
layering (p33-experiment) at 10 Hz for a square numerical sample
of side length 18 cm and with six alternating layers of gas-hydrate
contents I = 2/3 and 1/6

Finally we analyze the behavior of ‘33’ and waves
traveling parallel to the layering plane, denoted in the
Figures as ‘11’ waves.

Figures 14 and 15 display effective phase velocities of
‘11’ and ‘33’ waves as function of frequency in the range
1Hz- 1kHz. In the range 1Hz- 100Hz, the associated classic
Biot model predict that both waves have constant values of
about 4170 m/s and 4167 m/s, respectively. After 100 Hz,
velocities increase reaching values of 4189 m/s and 4181
m/s for ‘11’ and ‘33’ waves, respectively.

A completely different behavior is predicted by the
effective comoposite model for both waves. ‘11’ waves
exhibit strong dispersion between 1Hz and 100Hz, with
values of 3600 m/s at 1Hz and reaching with values of
about 3925 m/s at 100 Hz, staying at that value until 1kHz.
Concerning ‘33’ waves, velocity stays at a constant value of
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Fig. 13 Gradient of fluid pressure for compression normal to the
layering (p33-experiment) at 70 Hz for a square numerical sample of
side length 18 cm with six alternating layers of gas-hydrate contents I

= 2/3 and 1/6
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Fig. 14 Effective velocity of
‘11’ and ‘33’ waves as a
function of frequency for the
composite and classic Biot
models computed using the FE
method. The numerical sample
is a square of side length 18 cm
and has six alternating layers of
gas-hydrate contents I = 2/3 and
1/6
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about 3925 m/s between 1 and 10 Hz, afterwards showing
strong dispersion with a value of 4046 at 1 kHz.

Figure 15 shows that dissipation factors are negligible for
the classic Biot model with peaks at 300 Hz of approximate
values 1000/6 and 1000/4 for ‘11’ and ‘33’ waves, respec-
tively. On the other hand, attenuation predicted by the effec-
tive composite model is much higher, with Q-values of about
10 at 7 Hz for ‘11’ waves and 12 at 70 Hz for ‘33’ waves,
respectively. The strong velocity dispersion and attenuation
of ‘11’ and ‘33’ waves predicted by the effective composite
model may be explained by the difference between the dis-
placements of the two solid phases appearing in the diffu-
sion coefficient f12 in Eq. 3, which induce energy dissipa-
tion not present in the associated classic Biot model.

5 Conclusions

We have developed a novel numerical upscaling technique
for modeling the wave response of gas-hydrate bearing
sediments. The procedure determines the complex and fre-
quency dependent stiffness coefficients associated with an
effective viscoelastic medium behaving as the original sed-
iment. The modeling methodology uses an extension of
Biot’s theory, where the solid and fluid phases exchange
kinetic and potential energy and exhibit dissipative behav-
ior. Consequently, seismic waves exhibit mode conversions
when traveling across interfaces between regions with dif-
ferent amounts of gas-hydrate, inducing the associated meso-
scopic loss effect.

Fig. 15 Logarithm of
dissipation factors of ‘11’ and
‘33’ waves a function of
frequency for the composite and
classic Biot models. computed
using the FE method. The
numerical sample is a square of
side length 18 cm with six
alternating layers of gas-hydrate
contents I = 2/3 and 1/6
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The numerical harmonic experiments allow us to esti-
mate the stiffness coefficients of effective isotropic and
anisotropic viscoelastic media that takes into account the
wave-induced fluid-flow (mesoscopic) loss effect. This in
turn allows us to implement simple and efficient computa-
tional algorithms to model wave propagation in heteroge-
neous sediments. The methodology is applied to study the
seismic response of water saturated sediments with a patchy
distribution of gas hydrate. The behavior of waves traveling
normal and parallel to a periodic alternating horizontal lay-
ers with different amounts of gas-hydrate is also analyzed,
based on an anisotropic representation of the original finely
layered medium. The analysis shows that local variations
in gas-hydrate content induce high velocity dispersion and
attenuation of waves traveling normal or parallel to the lay-
ering, while the S waves are less sensitive to this type of
heterogeneities.

Appendix A

The coefficients in the constitutive relations Eqs. 5–7 are
computed as follows. Let Ks1,m, Ks3,m, μs1,m and μs3,m

denote the bulk and shear modulus of the two solid (dry)
frames, respectively. We assume that Ks1,m is known and
Ks3,m, μs1,m and μs3,m can be determined using a perco-
lation-type model. See formulas A8-A9 of Appendix A in
[17] for details. Then with Ks1, μs1, Ks3 and μs3 denoting
the bulk and shear moduli of the grains in the two solid
phases, respectively, and Kf the bulk modulus of the fluid
phase, the coefficients μ1, μ3 and μ13 are:

μ1 = [(1 − g1)φ1]2μav + μs1,m, (34)

μ3 = [(1 − g3)φ3]2μav + μs3,m,

μ13 = (1 − g1)(1 − g3)φ1φ3μav,

g1 = μs1,m

φ1μs1
, g3 = μs3,m

φ3μs3
,

μav = [ (1 − g1)φ1

μs1
+ φ

2ωη
+ (1 − g3)φ3

μs3

]−1.

The symbol ω in the definition of μav above denotes the
angular frequency, taken to be 2 π in the examples. The
remaining elastic coefficients in Eqs. 5–7 are given by the
following expressions [17]

KG1 = K1 + (S1)
2K2 + 2S1C12,

KG3 = K3 + (S3)
2K2 + 2S3C23,

B1 = S1K2 + C12

φ
, (35)

B2 = S3K2 + C23

φ
,

B3 = C13 + S3C12 + S1C23 + S3S1K2,

Kav =
[
(1 − c1)

φ1

Ks1
+ φ

Kf

+ (1 − c3)
φ3

Ks3

]−1

,

where

K1 = [(1 − c1)φ1]2 Kav + Ks1,m, (36)

K2 = φ2
wKav

K3 = [(1 − c3)φ3]2 Kav + Ks3,m,

C12 = (1 − c1)φ1φKav,

C13 = (1 − c1)(1 − c3)φ1φ3Kav,

C23 = (1 − c3)φφ3Kav,

c1 = Ks1,m

φ1Ks1
, c3 = Ks3,m

φ3Ks3
.

Appendix B

Here we describe a procedure to determine the dissipation
factors of an associated classic Biot model that in the low-
frequency range is equivalent to a composite material. The
following notation is used to define the associated classic
Biot model [2].

The solid and fluid particle displacements are denoted as
û(s), û(f ), while σ̂ and p̂f denote the total stress and fluid
pressure.

The constitutive relations and the diffusion equation of
the classic Biot model are

σ̂ij = [
KGθ̂(s) − Bθ̂(f )

]
δij + 2μd̂

(s)
ij , (37)

p̂f = −Bθ̂(s) − K̂avθ̂
(f ), (38)

∇ · σ̂ = 0, (39)

iω
η

κ̂
û(f ) + ∇pf = 0, (40)

where

d̂
(s)
ij = εij (̂us)) − 1

3
θ̂ (s)δij , θ̂ (m) = ∇ · û(m), m = s, f .

In Eqs. 37–40, KG and μ are the bulk and shear moduli of
the saturated material, while B and K̂av are elastic coupling
coefficients. Furthermore, κ̂ denotes the rock permeability
and η the fluid viscosity.

Let Ka
s , Ka

m, Kf denote the bulk moduli of the solid
grains, dry matrix and fluid, respectively. The coefficient
μ is the shear modulus of the dry matrix and the other
coefficients in Eqs. 37–40 can be determined from the
relations

KG = Ka
m + α2K̂av, α = 1 − Ka

m

Ka
s

, (41)

K̂av =
[
α − φw

Ka
s

+ φw

Kf

]−1

, B = αK̂av . (42)
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Assume that u(1) = u(3) ≡ u(s) (the low-frequency
assumption is used here) and define the total stress tensor as

τij = τ
(1)
ij + τ

(3)
ij . (43)

Then adding Eqs. 5 and 6, we obtain

τij = [
(KG1 + KG3 + 2 B3) θ(s) (44)

− (B1 + B2) θ(f )]δij + 2 (μ1 + μ3 + μ13) d
(s)
ij ,

pf = −(B1 + B2)θ
(s) − Kavθ

(f ). (45)

Now from Eqs. 37, 38 and Eqs. 44, 45, we can identify the
elastic coefficients of the associated classic Biot model as
follows

KG = KG1 + KG3 + 2 B3, (46)

B = B1 + B2, (47)

μ = μ1 + μ3 + μ13, (48)

K̂av = Kav, (49)

with the coefficients in the right-hand side of Eqs. 46– 49
computed by the relations given in Appendix A.

Next, note that we can determine α, Ka
m and Ka

s in
Eqs. 41 and 42 as follows:

α = B

K̂av

, Ka
m = KG − α2K̂av Ka

s = Ka
m

1 − α
, (50)

where B, K̂av and KG are given in terms of the coefficients
of the GH-bearing sediments by Eqs. 46, 47 and 49,
respectively.

The procedure to determine the coefficients KG, B, K̂av

and μ in Eqs. 46–49 can be shown to give identical results
to those given in Carcione et al. [7]

Furthermore, from equations (B5) and (B8) in Santos
et al. [17]

φw (S3φwf22 − f12) = b23, (51)

φw (f12 + S1φf22) = b12, (52)

where

b12 = φ2
w

η

κ1
, b23 = φ2

w

η

κ3
, (53)

with κ1 and κ3 denoting the permeabilities of two solid
phases Thus, add Eqs. 51 and 52 to get

f22 = η

(
1

κ1
+ 1

κ3

)
. (54)

Next, from the low-frequency assumption, the f12-terms in
Eq. 3 cancel and this equation reduces to

iωf22u(2) + ∇pf = 0. (55)

Thus Eqs. 40, 54 and 55 allow to identify the effective perme-
ability κ̂ of the associated classic Biot model by the relation

1

κ̂
=

(
1

κ1
+ 1

κ3

)
. (56)

Equations 48 and 50 allow to determine the coefficients in
Eqs. 41–42 in the constitutive relations of the the associated
classic Biot medium to the GH-bearing sediment.

Remark Equations 46–49 and 56 may also be used in the
case of shaley sandstones as presented in Santos et al. [17].
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