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DETERMINATION OF A TRANSVERSELY ISOTROPIC MEDIUM
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POROELASTIC MEDIUM. A FINITE ELEMENT APPROACH∗
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Abstract. The purpose of this work is to present a numerical upscaling procedure to deter-
mine a viscoelastic material equivalent to a horizontally fractured fluid-saturated poroelastic—Biot—
medium where fractures are modeled as explicit boundary conditions. At long wavelengths compared
to the average distance between fractures, the Biot medium behaves as an equivalent (effective) trans-
versely isotropic and viscoelastic (TIV) medium. The stiffness components of the TIV medium are
determined using a finite element (FE) technique based on time-harmonic experiments. Each exper-
iment is associated with a boundary value problem (BVP) representing compressibility and shear
experiments applied to a sample of the fractured Biot medium. The solutions of these BVP allow
us to measure the changes in volume and shape of the sample which in turn determine the stiffness
components. Uniqueness of the solution of the continuous and discrete BVP’s is demonstrated and a
priori L2 and H1 error estimates are derived. The procedure to determine the stiffness components
is validated against a theory valid for uniform media, fluid flow perpendicular to the fracture layer-
ing, and independent of the loading direction. Finally, an example for the case of patchy gas-brine
saturation for which no analytical solution is available is presented.
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1. Introduction. Reservoir rocks have in many cases plane compliant discon-
tinuities, like fractures and faults, that in general control the hydrocarbon flow and
production in the reservoir [1], [2]. Also, in many cases reservoirs rocks contain dense
sets of fractures aligned in preferred directions.

Numerical simulations of seismic wave propagation through fractured reservoirs
require an interface model describing the seismic response of fractures. A fracture
embedded in a fluid-saturated poroelastic—Biot—medium is a very thin compliant
and highly permeable layer. Since the layer thickness is on the order of millimeters,
much smaller than the predominant wavelengths of the traveling waves, any finite
difference (FD) or finite element (FE) spatial discretization of a fractured reservoir
would require extremely fine meshes to simulate wave propagation in the reservoir,
making the procedure unfeasible. Thus, numerical simulations of seismic wave propa-
gation through fractured reservoirs requires an interface model describing the seismic
response of fractures.
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FRACTURES IN POROELASTIC MEDIUM B245

In this paper, fractures are modeled using a set of boundary conditions proposed
by Nakagawa and Schoenberg [3] to represent fluid-solid interaction within a frac-
ture and the effect of its permeability on seismic wave scattering. These boundary
conditions impose continuity of the total stress components, pressure discontinuities
proportional to average fluid velocities across the fracture, and displacement dis-
continuities proportional to stress components and average fluid pressures along the
fracture.

This interface model allows us to represent wave-induced fluid flow, by which the
fast waves are converted to slow (diffusive) Biot waves when traveling across fractures
(mesoscopic-loss) heterogeneities [4], [5].

In [6], White, Mikhaylova, and Lyakhovitskiy were the first to introduce the
mesoscopic-loss mechanism using the Biot theory considering alternating thin poroe-
lastic layers along the direction perpendicular to the layering plane [4].

A dense set of horizontal fractures in a fluid-saturated poroelastic medium be-
haves as a TIV medium when the average fracture distance is much smaller than the
predominant wavelength of the traveling waves. This leads to frequency and angular
variations of velocity and attenuation of seismic waves.

Gelinsky and Shapiro [7] obtained the relaxed and unrelaxed stiffnesses of the
equivalent poroviscoelastic medium to a finely layered horizontally homogeneous ma-
terial. Krzikalla and Müller [8] combined the two previous models to obtain the five
complex and frequency-dependent stiffnesses of the equivalent transversely isotropic
viscoelastic (TIV) medium. Their approach assumes that the fluid-flow direction
is perpendicular to the fracture layering. The model considers only one relaxation
function, corresponding to the symmetry-axis compressional wave stiffness. These as-
sumptions fail for heterogeneous layers, where the propagation of waves may depend
on direction.

FE harmonic compressibility and shear tests are first presented in [9] to obtain
a viscoelastic medium-long wavelength equivalent to a highly heterogeneous isotropic
sample. Then, in [10], [11], and [12] the procedure is extended to determine long-wave
equivalent media to finely layered viscoelastic and poroelastic materials.

The novel aspects of this work reside in the fact that the procedure presented here
can be used to study the wave-propagation characteristics of fluid-saturated poro-
elastic fractured media with arbitrary (heterogeneous) properties of the background
medium and fractures. This can be performed only by using a numerical method
such as the FEM method. In addition, we obtain the stress-strain relation through
the complex stiffness components. To the best of our knowledge, no other similar
technique has been proposed for porous media, where fractures have been modeled
explicitly as boundary conditions.

Among other authors employing numerical simulations to study attenuation and
dispersion effects in fluid-saturated poroelastic materials, we mention Saenger et al.
[13] where they present numerical simulations in two-dimensional (2D) and three-
dimensional (3D) media porous media saturated with fluids to analyze Biot’s pre-
dictions in the high and low frequency limits of poroelasticity. Also, numerical ap-
proaches to determine effective media corresponding to fractured rocks were presented
by Grechka and Kachanov [14], [15], where they perform 3D static finite-element sim-
ulations, summing up the individual contributions of the fractures and ignoring their
interactions.

In this work, we present and analyze a collection of time-harmonic FE compress-
ibility and shear experiments on fluid-saturated poroelastic samples with an embedded
dense set of horizontal fractures represented as internal boundary conditions within
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the sample.
Each experiment is associated with a boundary value problem (BVP) representing

compressibility and shear tests, allowing us to determine the complex and frequency
dependent stiffnesses of the effective TIV medium at the macroscale. Thus this pro-
cedure can be regarded as a numerical upscaling method to bring the effect of the
mesoscale fractures to the macroscale.

To discretize each component of the solid displacement vector, we employ locally
piecewise bilinear functions that are discontinuous along the fractures. For the fluid
phase we use locally the vector part of the Raviart–Thomas–Nedelec space of zero
order [16], also making them discontinuous along fractures.

First, we derived a variational formulation of the continuous problems and ana-
lyzed their uniqueness. Then, we formulated the FE procedures and derived a priori
L2 and H1 estimates which are optimal for the given regularity of the solution.

Next, the a priori L2 error estimate is computationally confirmed by carrying
out mesh refinements, while the quasistatic experiments to determine the stiffnesses
coefficients are validated by comparison with the theory by Krzikalla and Müller [8].
Finally, the methodology is applied to the case of patchy gas-brine saturation, for
which no analytical solutions are available.

2. A Biot medium. The modeling method at the mesoscale. This sec-
tion presents the stress-strain relations and Biot’s equation in the diffusive range as
well as the boundary conditions to model fractures embedded in a poroelastic solid
saturated by a single-phase compressible viscous fluid (a Biot medium). All equations
will be stated in the space-frequency domain. Biot’s equations will be solved on a
representative sample of the fractured material with appropriate boundary conditions
associated with compressibility and shear harmonic experiments. The FE solutions
will allow us to measure volume and shape changes in the sample that in turn will
allow us to determine the stiffness coefficients of the equivalent TIV medium at the
macroscale.

2.1. The stress-strain relations in a Biot medium. We consider a fractured
Biot medium and assume that the whole aggregate is isotropic. Let the superindex
(θ), θ = b, f indicate solid matrix and saturant fluid properties associated with the
background and fractures, respectively.

Let us = (us,i) and ũf = (ũf,i), i = 1, . . . , 3, denote the averaged displacement
vectors of the solid and fluid phases, respectively. Also let

uf = φ(θ)(ũf − us)

be the average relative fluid displacement per unit volume of bulk material, with φ(θ)

denoting the effective porosity. Set u = (us,uf ) and note that

ξ = −∇ · uf

represents the change in fluid content.
Let ε(us) be the linearized strain tensor of the solid. Also, let τ and pf denote

the stress tensor of the bulk material and the fluid pressure, respectively.
Following [17], the linear stress-strain relations in our fractured fluid-saturated

poroelastic medium are

τst(u) = 2G(θ) εst(us) + δst(λ
(θ)
U ∇ · us − α

(θ) M (θ) ξ),(1a)

pf (u) = −α(θ) M (θ)∇ · us +M (θ)ξ, θ = b, f.(1b)
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In (1a) δst denotes the Kroenecker delta. Also, the coefficient G(θ) is equal to the
shear modulus of the bulk material, considered to be equal to the shear modulus of
the dry matrix. Besides

λ
(θ)
U = K

(θ)
U −

2

3
G(θ),(2)

with K
(θ)
U being the bulk modulus of the saturated material. Following [18] and [19],

the coefficients in (1a)–(1b) can be obtained from the relations

α(θ) = 1− K
(θ)
m

K
(θ)
s

, M (θ) =

(
α(θ) − φ(θ)

K
(θ)
s

+
φ(θ)

K
(θ)
f

)−1

,(3)

K
(θ)
U = K(θ)

m + (α(θ))2M (θ), θ = b, f,

where K
(θ)
s ,K

(θ)
m , and K

(θ)
f denote the bulk modulus of the solid grains composing

the solid matrix, the dry matrix, and the saturant fluid, respectively. The coefficient
α(θ) is known as the effective stress coefficient of the bulk material.

2.2. The boundary conditions at a fracture inside a Biot medium. Con-
sider a rectangular domain Ω = (0, L1)×(0, L3) with boundary Γ in the (x1, x3)-plane,
with x1 and x3 being the horizontal and vertical coordinates, respectively.

Let us assume that the domain Ω contains a set of J (f) horizontal fractures
Γ(f,l), l = 1, . . . , J (f) each one of length L1 and aperture h(f). This set of fractures
divides Ω in a collection of nonoverlapping rectangles R(l), l = 1, . . . , Jf + 1, so that

Ω = ∪J
(f)+1
l=1 R(l).

Figure 1 shows a prototype model of the fractured sample Ω.
Consider a fracture Γ(f,l) and the two rectangles R(l) and R(l+1) having as a

common side Γ(f,l). Let νl,l+1 and χl,l+1 be the unit outer normal and a unit tangent
(oriented counterclockwise) on Γ(f,l) from R(l) to R(l+1) , such that {νl,l+1, χl,l+1} is
an orthonormal system on Γ(f,l).

Let [us], [uf ] denote the jumps of the solid and fluid displacement vectors at Γ(f,l),
i.e.,

[us] =
(
u(l+1)
s − u(l)

s

)
|Γ(f,l) ,

where u
(l)
s ≡ us|R(l) denotes the trace of us as seen from to R(l).

The following boundary conditions on Γ(f,l), representing the approximate acous-
tic response of a fracture as a very thin, compliant, and highly permeable layer, are
derived in [3, eq. (52)]:
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[us · νl,l+1] = ηN

(
(1− α(f)B̃(f)(1−Π))τ (u)νl,l+1 · νl,l+1(4)

−α(f) 1

2

((
− p(l+1)

f

)
+
(
− p(l)

f

))
Π

)
, Γ(f,l),[

us · χl,l+1

]
= ηT τ (u)νl,l+1 · χl,l+1, Γ(f,l),(5)

[uf · νl,l+1] = α(f)ηN

(
− τ (u)νl,l+1 · νl,l+1(6)

+
1

B̃(f)

1

2

((
− p(l+1)

f

)
+
(
− p(l)

f

)))
Π, Γ(f,l),

(−p(l+1)
f )− (−p(l)

f ) =
iωµ(f)Π

κ̂(f)

1

2

(
u

(l+1)
f + u

(l)
f

)
· νl,l+1, , Γ(f,l),(7)

τ (u)νl,l+1 · νl,l+1 = τ (u)νl+1,l · νl+1,l, Γ(f,l),(8)

τ (u)νl,l+1 · χl,l+1 = τ (u)νl+1,l · χl+1,l, Γ(f,l).(9)

Here ηN and ηT are the normal and tangential fracture compliances, respectively.
Also, µ(f) is the fluid viscosity in the fracture and

κ̂(f) =
κ(f)

h(f)
.(10)

The fracture dry plane wave modulus H
(f)
m = K

(f)
m + 4

3G
(f) and the dry fracture

shear modulus G(f) are defined in terms of the fracture aperture h(f) and the fracture
compliances by the relations

ηN =
h(f)

H
(f)
m

, ηT =
h(f)

G(f)
.(11)

Besides,

ε =
(1 + i)

2

(
ω µ(f) α(f) ηN

2 B̃(f) κ̂(f)

)1/2

, Π(ε) =
tanh ε

ε
, B̃(f) =

α(f)M (f)

H
(f)
U

.(12)

Note that Π = Re(Π)− i Im(Π) ≡ ΠR − i ΠI with ΠR > 0,ΠI > 0.
In the high-permeability limit (κ → ∞), it can be seen that Π → 1 and (4)–(9)

reduce to [3, eq. (53)]:

[us · νl,l+1] = ηN

(
τ (u)νl,l+1 · νl,l+1 − α(f)(−p(l+1)

f )
)
, Γ(f,l),(13) [

us · χl,l+1

]
= ηT τ (u)νl.l+1 · χl,l+1, Γ(f,l),(14)

[uf · νl,l+1] = αηN

(
−τ (u)νl,l+1 · νl,l+1 +

1

B̃(f)
(−p(l+1)

f )

)
, Γ(f,l),(15)

(−p(l+1)
f ) = (−p(l)

f ), , Γ(f,l),(16)

τ (u)νl,l+1 · νl,l+1 = τ (u)νl+1,l · νl+1,l, Γ(f,l),(17)

τ (u)νl,l+1 · χl,l+1 = τ (u)νl+1,l · χl+1,l, Γ(f,l).(18)
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R
l

Γ f,l

Γ

Γ
Γ

Γ

R l+1

R
L

T

B

Fig. 1. Prototype model of the domain Ω with boundary Γ = ΓL ∪ ΓR ∪ ΓB ∪ ΓT , the partition
of Ω into rectangles R(l), and a horizontal fracture Γ(f,l) separating R(l) and R(l+1).

The analysis will be carried over for the more general fracture boundary conditions
(4)–(9), with the analysis for the boundary conditions (13)–(18) being a particular
case.

Set

a11 = ηN

(
1− α(f)B̃(f)(1−Π)

)
, a12 = α(f)ηNΠ,(19)

a22 =
α(f)ηNΠ

B̃(f)
, Θ = a11a22 − a2

12.

Then from (4) and (6) we obtain

τ (u)νl,l+1 · νl,l+1 =
a22

Θ
[us · νl,l+1] +

a12

Θ
[uf · νl,l+1] , Γ(f,l),(20)

(−p(l+1)
f ) + (−p(l)

f ) = 2
a12

Θ
[us · νl,l+1] + 2

a11

Θ
[uf · νl,l+1] , Γ(f,l).(21)

Adding (7) and (21),

(−p(l+1)
f ) =

a12

Θ
[us · νl,l+1] +

a11

Θ
[uf · νl,l+1](22)

+
iωµ(f)Π

κ̂(f)

1

4

(
u

(l+1)
f + u

(l)
f

)
· νl,l+1, Γ(f,l).

Using (22) in (21), we get

(−p(l)
f ) =

a12

Θ
[us · νl,l+1] +

a11

Θ
[uf · νl,l+1](23)

− iωµ(f)Π

κ̂(f)

1

4

(
u

(l+1)
f + u

(l)
f

)
· νl,l+1, Γ(f,l).
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In the analysis that follows, we will employ the more convenient form of the
boundary conditions given by (5), (8), (9), (20), (22), and (23).

2.3. Biot’s equation in the diffusive range. Let the differential operator
L(u) and the matrix B ∈ R4×4 be defined as

L(u) = (∇ · τ (u),∇pf (u)) , B =

0I2 0I2

0I2
µ(θ)

κ(θ)
I2

 ,(24)

where I2 is the 2×2 identity matrix, µ(θ) is the fluid viscosity, and κ(θ) is the intrinsic
permeability.

Biot’s equations in the diffusive range and in the absence of external forces are
[20], [21]:

iωBu + L(u) = 0,(25)

where i =
√
−1 and ω is the angular frequency.

3. The macroscale. The equivalent TIV medium at long wavelengths.
At long wavelengths (or low frequencies) compared to the average distance between
fractures and the size of the heterogeneities, the Biot medium behaves as an equivalent
(effective) medium, whose stiffness components can be obtained by a FE technique
based on oscillatory (harmonic) experiments over representative samples of the frac-
tured material. Here, we illustrate this technique. In particular, there are analytical
solutions that can be used to validate the numerical experiments.

As shown by Gelinsky and Shapiro [7], a horizontally fractured Biot medium
behaves as a transversely isotropic (TI) medium with a vertical symmetry axis (the
x3-axis) at long wavelengths. They obtained the low- and high-frequency limit real-
valued stiffnesses, respectively. Later, assuming a one-dimensional (1D) character of
the fluid pressure equilibration process, Krzikalla and Müller [8] presented a model to
obtain the five complex and frequency-dependent stiffness pIJ , I, J = 1, . . . , 6, of the
equivalent TIV medium that is included in Appendix B.

Denote by σij(ũs) and εij(ũs) the stress and strain tensor components of the
equivalent TIV medium, where ũs denotes the solid displacement vector at the macro-
scale. The corresponding stress-strain relations, stated in the space-frequency domain,
are [22], [5]

σ11(ũs) = p11 ε11(ũs) + p12 ε22(ũs) + p13 ε33(ũs),(26)

σ22(ũs) = p12 ε11(ũs) + p11 ε22(ũs) + p13 ε33(ũs),(27)

σ33(ũs) = p13 ε11(ũs) + p13 ε22(ũs) + p33 ε33(ũs),(28)

σ23(ũs) = 2 p55 ε23(ũs),(29)

σ13(ũs) = 2 p55 ε13(ũs),(30)

σ12(ũs) = 2 p66 ε12(ũs).(31)

In (26)–(31) we have assumed a closed system, for which the variation of fluid content
ζ = −∇·uf is equal to zero. The pIJ are the complex and frequency-dependent Voigt
stiffnesses to be determined using the solution of the harmonic experiments.

Note that in a TIV medium the following relation holds [5]:

p12 = p11 − 2 p66(32)
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so that only five independent stiffness coefficients need to be considered.
In the next sections we present and analyze a FE procedure to determine the

coefficients in equations (26)–(31) and the corresponding velocities and quality factors.
These properties, which depend on frequency and propagation direction, are given in
Appendix C.

To determine each stiffness pIJ we will solve Biot’s equation (25) together with
the fracture boundary conditions (5), (8), (9), (20), (22), and (23) and additional
boundary conditions to be defined in the next section.

4. The quasistatic experiments to determine the stiffnesses pIJ . Here
we show that the stiffness pIJ can be determined applying a set of compressibility and
shear tests on a 2D representative sample Ω = (0, L1)×(0, L3) of boundary Γ = ∂Ω of
the fractured Biot material in the (x1, x3)-plane. Each test is defined as a BVP in the
space-frequency domain which will be solved using a FE procedure. The solutions of
each test will allow us to measure volume and shape changes in the sample Ω. Below
it is explained how those changes determine in turn the stiffnesses pIJ .

Set Γ = ΓL ∪ ΓB ∪ ΓR ∪ ΓT , where

ΓL = {(x1, x3) ∈ Γ : x1 = 0}, ΓR = {(x1, x3) ∈ Γ : x1 = L1},
ΓB = {(x1, x3) ∈ Γ : x3 = 0}, ΓT = {(x1, x3) ∈ Γ : x3 = L3}.

Denote by ν the unit outer normal on Γ, and let χ be a unit tangent on Γ so that
{ν,χ} is an orthonormal system on Γ.

4.1. Determination of p33. Consider the solution of (25) in Ω with the fracture
boundary conditions (5), (8), (9), (20), (22), and (23) together with the following
boundary conditions:

τ (u)ν · ν = −∆P, (x1, x3) ∈ ΓT ,(33)

τ (u)ν · χ = 0, (x1, x3) ∈ Γ,(34)

us · ν = 0, (x1, x3) ∈ Γ \ ΓT ,(35)

uf · ν = 0, (x1, x3) ∈ Γ.(36)

Denoting by V the original volume of the sample, its (complex) oscillatory volume
change, ∆V (ω), allows us to define p33 by using the relation

(37)
∆V (ω)

V
= − ∆P

p33(ω)
,

valid for a viscoelastic homogeneous medium in the quasistatic case.
After obtaining the solution u(33) of (25) with the indicated set of boundary

conditions, we compute the average vertical displacement u
(33,T )
s,3 (ω) suffered by the

boundary ΓT . Then, the volume change ∆V (ω) can be approximated by ∆V (ω) ≈
Lu

(33,T )
s,3 (ω), enabling us to compute p33(ω) from (37).

4.2. Determination of p11. Here we solve (25) in Ω with the fracture boundary
conditions (5), (8), (9), (20), (22), and (23) together with the boundary conditions

τ(u)ν · ν = −∆P, (x1, x3) ∈ ΓR,(38)

τ (u)ν · χ = 0, (x1, x3) ∈ Γ,(39)

us · ν = 0, (x1, x3) ∈ Γ \ ΓR,(40)

uf · ν = 0, (x1, x3) ∈ Γ.(41)
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In this experiment ε33(us) = ε22(us) = ∇ · uf = 0 and from (26) we see that
this experiment determines p11 as indicated for p33 measuring the oscillatory volume
change.

4.3. Determination of p55. Consider the solution u(55) of (25) in Ω with the
fracture boundary conditions (5), (8), (9), (20), (22), and (23) and the additional
boundary conditions

−τ (u)ν = g, (x1, x3) ∈ ΓT ∪ ΓL ∪ ΓR,(42)

us = 0, (x1, x3) ∈ ΓB ,(43)

uf · ν = 0, (x1, x3) ∈ Γ,(44)

where

g =


(0,∆G), (x1, x3) ∈ ΓL,

(0,−∆G), (x1, x3) ∈ ΓR,

(−∆G, 0), (x1, x3) ∈ ΓT .

The change in shape of the rock sample allows us to obtain p55(ω) by using the relation

(45) tg(βω)) =
∆G

p55(ω)
,

where β(ω) is the departure angle between the original positions of the lateral bound-
aries and those after applying the shear stresses (see, for example, [23]). Equation
(45) holds for this experiment in a viscoelastic homogeneous media in the quasistatic
approximation.

After computing the average horizontal displacement u55,T
s,1 (ω) suffered by the

boundary ΓT the change in shape suffered by the sample can be approximated by
tg(β(ω)) ≈ u55,T

s,1 (ω)/L, which from (45) determines p55(ω).

4.4. Determination of p13. Here we solve (25) in Ω with the fracture boundary
conditions (5), (8), (9), (20), (22), and (23) and the boundary conditions

τ (u)ν · ν = −∆P, (x1, x3) ∈ ΓR ∪ ΓT ,(46)

τ (u)ν · χ = 0, (x1, x3) ∈ Γ,(47)

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓB ,(48)

uf · ν = 0, (x1, x3) ∈ Γ.(49)

Thus, in this experiment ε22(us) = ∇ · uf = 0, and from (26) and (28) we get

σ11 = p11ε11 + p13ε33,(50)

σ33 = p13ε11 + p33ε33,

where ε11 and ε33 are the (macroscale) strain components at ΓL and ΓT , respectively.
Then from (50) and the fact that σ11 = σ33 = −∆P (cf. (46)), we obtain p13(ω) as

(51) p13(ω) =
p11ε11 − p33ε33

ε11 − ε33
.
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4.5. Determination of p66. Let us consider the solution of (25) in Ω with
the fracture boundary conditions (5), (8), (9), (20), (22), and (23) and the following
boundary conditions:

−τ (u)ν = g2, (x1, x2) ∈ ΓB ∪ ΓR ∪ ΓT ,(52)

us = 0, (x1, x2) ∈ ΓL,(53)

uf · ν = 0, (x1, x2) ∈ Γ,(54)

where

g2 =


(∆G, 0), (x1, x2) ∈ ΓB ,

(−∆G, 0), (x1, x2) ∈ ΓT ,

(0,−∆G), (x1, x2) ∈ ΓR.

Then, we proceed as indicated for p55(ω).
The stiffnesses coefficients pIJ allow us to calculate the wave velocities and quality

factors of the effective TIV medium as explained in Appendix C.
Figure 2 shows a schematic representation of the five quasistatic experiments.

5. A variational formulation to solve the BVP associated with p33. Let
us first introduce some notation. For X ⊂ Rd with boundary ∂X, let (·, ·)X and
〈·, ·〉∂X denote the complex L2(X) and L2(∂X) inner products for scalar, vector, or
matrix valued functions. Also, for s ∈ R, ‖ · ‖s,X will denote the usual norm for the
Sobolev space Hs(X) [24]. In addition, if X = Ω or X = Γ, the subscript X may be
omitted such that (·, ·) = (·, ·)Ω or 〈·, ·〉 = 〈·, ·〉Γ.

Let us define the following closed subspace of [L2(Ω)]2:

V33(Ω) = {v ∈ [L2(Ω)]2 : v|R(l) ∈ [H1(R(l))]2, v · ν = 0 on Γ \ ΓT }.

Also, set

H0(div;∪lR(l)) = {v ∈ [L2(Ω)]2 : v|R(l) ∈ H(div, R(l)),v · ν = 0 on Γ},

H1
0 (div;∪lR(l))

= {v ∈ [L2(Ω)]2 : v|R(l) ∈ [H1(R(l)]2 : ∇ · v ∈ H1(R(l)), v · ν = 0 on Γ}.
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Fig. 2. Figures 1(a)–1(e) illustrate the five experiments needed to compute the stiffnesses compo-
nents. In Figures 1(a) and 1(b) we show how to compute p33 and p11 using the boundary conditions
(33)–(36) and (38)–(41), respectively. On the other hand, using the boundary conditions (42)–(44),
we obtain the stiffness p55 by performing the experiment shown in 1(c) and the stiffness p66 with
the experiment shown in 1(e) (boundary conditions (52)–(54)). Finally, Figure 1(d) displays the
experiment to determine p13 using the boundary conditions (46)–(49).

Let

Z33(Ω) = V33(Ω)×H0(div;∪lR(l)).

To obtain the variational formulation of the BVP associated with the determina-
tion of p33 as explained in section 4.1, multiply (25) by v = (vs,vf ) ∈ Z33(Ω), use
integration by parts on each rectangle R(l) applying the fracture boundary conditions
(5), (8), (9), (20), (22), and (23) and the additional boundary conditions (33), (34),
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(35), and (36) to get the weak form: find u(33) = (u
(33)
s ,u

(33)
f ) ∈ Z33(Ω) such that

Λ(u(33),v) ≡ iω

(
µ(b)

κ(b)
u

(33)
f ,vf

)
+
∑
l

(
τ st(u

(33)), εst(vs)
)
R(l)
−
(
pf (u(33)),∇ · vf

)
R(l)

+
∑
l

〈
F
([

u(33)
s · νl,l+1

]
,
[
u(33)
s · χl,l+1

]
,
[
u

(33)
f · νl,l+1

])T
,

(
[vs · νl,l+1] ,

[
vs · χl,l+1

]
, [vf · νl,l+1]

)T〉
Γ(f,l)

+
∑
l

〈
iωµ(f)Π

κ̂(f)

1

4

(
u

(33,l+1)
f + u

(33,l)
f

)
· νl,l+1,

(
v

(l+1)
f + v

(l)
f

)
· νl,l+1

〉
Γ(f,l)

= −〈∆P,vs · ν〉ΓT ∀v = (vs,vf ) ∈ Z33(Ω).(55)

In (55) the superindex T indicates the transpose and the 3 × 3 complex matrix F is
given by

F = FR + iFI =

f11 0 f12

0
1

ηT
0

f12 0 f22

 ,(56)

where (see (19))

f11 =
a22

Θ
= f11,R + if11,I , f12 =

a12

Θ
= f12,R + if12,I , f22 =

a11

Θ
= f22,R + if22,I .

It will be assumed that FR is positive definite, that f11.R > 0, and FI is nonnegative.
These assumptions are valid for all physically meaningful data.

Note that in (55), we can write

∑
l

(
τst(u

(33)), εst(vs)
)
R(l)
−
(
pf (u(33)),∇ · vf

)
R(l)

(57)

=

J(f)∑
l=1

(
S(b) ε̃(u(33)), ε̃(v)

)
R(l)

.

In (57), the matrix S(b) and the column vector ε̃(u(33))) are defined by

S(b) =


λ

(b)
U + 2G(b) λ

(b)
U α(b)M (b) 0

λ
(b)
U λ

(b)
U + 2G(b) α(b)M (b) 0

α(b)M (b) α(b)M (b) M (b) 0
0 0 0 4G(b)

, ε̃(u(33)) =


ε11(u

(33)
s )

ε33(u
(33)
s )

∇ · u(33)
f

ε13(u
(33)
s )

 .

Then we can state the variational formulation (55) in the equivalent form: find u(33)
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= (u
(33)
s ,u

(33)
f ) ∈ Z33(Ω) such that

Λ(u(33),v) ≡ iω

(
µ(b)

κ(b)
u

(33)
f ,vf

)
+
∑
l

(
S(b) ε̃(u(33)), ε̃(v)

)
R(l)

(58)

+
∑
l

〈
F
([

u(33)
s · νl,l+1

]
,
[
u(33)
s · χl,l+1

]
,
[
u

(33)
f · νl,l+1

])T
,

(
[vs · νl,l+1] ,

[
vs · χl,l+1

]
, [vf · νl,l+1]

)T 〉
Γ(f,l)

+
∑
l

〈
iωµ(f)Π

κ̂(f)

1

4

(
u

(33,l+1)
f + u

(33,l)
f

)
· νl,l+1,

(
v

(l+1)
f + v

(l)
f

)
· νl,l+1

〉
Γ(f,l)

= −〈∆P,vs · ν〉ΓT ∀ v = (vs,vf ) ∈ Z33(Ω).

Problem (58) will be solved using a FEM to be described later, and the FE approxi-
mation to the solution u(33) used as indicated in section 4.1.

5.1. Variational formulations for the solution of the BVP’s associated
with p11, p13, p55, and p66. Let us define the spaces

V11(Ω) = {v ∈ [L2(Ω)]2 : v|R(l) ∈ [H1(R(l))]2, v · ν = 0 on Γ \ ΓR},

V13(Ω) = {v ∈ [L2(Ω)]2 : v|R(l) ∈ [H1(R(l))]2, v · ν = 0 on ΓL ∪ ΓB},

V55(Ω) = {v ∈ [L2(Ω)]2 : v|R(l) ∈ [H1(R(l))]2, v = 0 on ΓB},

V66(Ω) = {v ∈ [L2(Ω)]2 :: v|R(l) ∈ [H1(R(l))]2, v = 0 on ΓL}.

Next, for (I, J) = (1, 1), (1, 3), (5, 5), (6, 6) let

ZIJ(Ω) = VIJ(Ω)×H0(div;∪lR(l)).

A weak formulation for the BVP’s associated with the determination of p11, p13, p55

and p66 can be obtained applying the boundary conditions indicated in sections 4.2,
4.4, 4.3, and 4.5 and the fracture boundary conditions (5), (8), (9), (20), (22), and
(23). Thus, we get the following problems:

• For p11: find u(11) = (u
(11)
s ,u

(11)
f ) ∈ Z11(Ω) such that

Λ(u(11),v) = −〈∆P,vs · ν〉ΓR ∀ v = (vs,vf ) ∈ Z11(Ω).(59)

• For p13: find u(13) = (u
(13)
s ,u

(13)
f ) ∈ Z13(Ω) such that

Λ(u(11),v) = −〈∆P,vs · ν〉ΓR∪ΓT ∀ v = (vs,vf ) ∈ Z13(Ω).(60)

• For p55: find u(55) = (u
(55)
s ,u

(55)
f ) ∈ Z55(Ω) such that

Λ(u(55),v) = −〈g,vs〉Γ\ΓB ∀ v = (vs,vf ) ∈ Z55(Ω).(61)

• For p66: find u(66) = (u
(66)
s ,u

(66)
f ) ∈ Z66(Ω) such that

Λ(u(66),v) = −〈g2,vs〉Γ\ΓL ∀ v = (vs,vf ) ∈ Z66(Ω).(62)

Uniqueness for the solution of the variational problems is shown in the accompa-
nying supplementary file (uniqueness.pdf [local/web 111KB]).
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6. The FE method to solve the BVP’s associated with the stiffnesses
pIJ . Let T h(Ω) be a nonoverlapping partition of Ω into rectangles Ωj of diameter
bounded by h such that Ω = ∪Jj=1Ωj . We will assume the Ωj ’s are such that their hor-
izontal sides either have empty intersection or they coincide with one of the fractures.
Let

Ωf = ∪Ifj=1Ωj , ΩNf = Ω \ Ωf = ∪INf

j=1Ωj .(63)

In (63) If is the number of Ωj ’s having one top or bottom side contained in some
fracture Γ(f,l) for some l in the range 1 ≤ l ≤ J (f), while INf is the number of all
Ωj ’s such that ∂Ωj ∩ Γf,l = ∅ ∀ l.

Let
N h
j = P1,1(Ωj)× P1,1(Ωj), RTNh

j = P1,0(Ωj)× P0,1(Ωj),

where Ps,t(Ωj) denotes the polynomials of degree up to s in x1 and up to t in x3 on
Ωj . Denote by Γjk = ∂Ωj ∩ ∂Ωk the common side of two adjacent rectangles Ωj and

Ωk and νjk the unit outer normal from Ωj to Ωk. Also, let Γ
(f,l)
jk = Γjk ∩ Γ(f,l) and

set

Vh,Nf33 (ΩNf ) = {vs : vs|Ωj ∈ N h
j ,vs is continuous across Γjk ∀(64)

Ωj ⊂ ΩNf ,Ωk ⊂ ΩNf , vs · ν = 0 on Γ \ ΓT },

Vh,f33 (Ωf ) = {vs : vs|Ωj ∈ N h
j ∀ Ωj ⊂ Ωf , vs is continuous across Γjk(65)

if Ωk ⊂ ΩNf , vs · ν = 0 on Γ \ ΓT }.

Also set

Wh,Nf (ΩNf ) = {vf : vf |Ωj ∈ RTN
h
j ,vf · νjk is continuous across(66)

Γjk ∀ Ωj ⊂ ΩNf , Ωk ⊂ ΩNf , vf · ν = 0 on Γ}

Wh,f (Ωf ) = {vf : vf |Ωj
∈ RTNh

j ∀ Ωj ⊂ Ωf , vf · νjk is continuous across(67)

Γjk if Ωk ⊂ ΩNf , vf · ν = 0 on Γ}.

6.1. The FE method for the solution of the BVP associated with p33.
To find a FE approximation u(h,33) to u(33) to be used to determine p33 we will employ
the FE space

Zh33(Ω) =
(
Vh,Nf

33 (ΩNf ) ∪ Vh,f33 (Ωf )
)
×
(
Wh,Nf (ΩNf ) ∪Wh,f (Ωf )

)
.(68)

The FE procedure associated to p33 is defined as follows: find u(h,33) ∈ Zh33(Ω) such
that

Λ(u(h,33),v) = −〈∆P,vs · ν〉ΓT ∀ v ∈ Zh33(Ω).(69)

6.2. The FE methods to solve the BVP’s associated with pIJ , (I, J) =
(1, 1), (1, 3), (5, 5), (6, 6). To formulate the FE procedures associated with deter-

mining pIJ , (I, J) = (1, 1), (1, 3), (5, 5), (6, 6), we define the Vh,NfIJ and Vh,fIJ (Ωf )

identically to the spaces Vh,Nf3 and Vh,f33 (Ωf ) but changing the boundary conditions
vs · ν = 0 on Γ \ ΓT imposed in those spaces as follows:

D
ow

nl
oa

de
d 

03
/2

0/
17

 to
 1

28
.2

10
.1

26
.1

99
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B258 J. E. SANTOS, R. M. CORREDOR, AND J. M. CARCIONE

• for (I, J) = (1, 1) use vs · ν = 0 on Γ\ΓR,
• for (I, J) = (1, 3) use vs · ν = 0 on ΓL ∪ ΓB ,
• for (I, J) = (5, 5) use vs = 0 on ΓB ,
• for (I, J) = (6, 6) use vs = 0 on ΓL.

Next, let

ZhIJ(Ω) =
(
Vh,Nf

IJ (ΩNf ) ∪ Vh,fIJ (Ωf )
)
×
(
Wh,Nf (ΩNf ) ∪Wh,f (Ωf )

)
.

Now, we formulate the FE procedures associated with determining the stiffnesses
pIJ ’s as follows:

• p11(ω): find u(h,11) ∈ Zh11(Ω) such that

Λ(u(h,11),v) = −〈∆P,vs · ν〉ΓR ∀ v ∈ Zh11(Ω).(70)

• p13(ω): find u(h,13) ∈ Zh13(Ω) such that

Λ(u(h,13),v) = −〈∆P,vs · ν〉ΓR∪ΓT ∀ v ∈ Zh13(Ω).(71)

• p55(ω): find u(h,55) ∈ Zh55(Ω) such that

Λ(u(h,55),v) = −〈g,vs〉Γ\ΓB ∀ v ∈ Zh55(Ω).(72)

• p66(ω): find u(h,66) ∈ Zh66(Ω) such that

Λ(u(h,66),v) = −〈g2,vs〉Γ\ΓL ∀ v ∈ Zh66(Ω).(73)

Uniqueness for the FE procedures (69)–(73) can be shown with the same argument
used for the continuous case. Existence follows from finite dimensionality.

A set of a priori error estimates for the FE procedures to compute the solutions
u(h,IJ), (I, J) = (11), (33), (13), (55), (66) is included in Appendix A.

7. Numerical experiments. In this section we first validate the FE method
to solve Biot’s equations (69)–(73), which is the first step of the upscaling procedure
presented.

Next, we validate the procedure to determine the stiffnesses pIJ at the macroscale
by comparison with the analytical solutions in [8] and summarized in Appendix B.
For this purpose the corresponding energy velocities and dissipation coefficients are
determined as indicated in Appendix C; see also [5].

Finally the complex stiffnesses pIJ(ω), energy velocities, and dissipation coeffi-
cients are determined for the case of patchy brine-gas saturation for which no analyt-
ical solutions are available.

7.1. Validation of the FE method to solve the BVP’s. Here we run exper-
iments to check the validity of the solutions of the FE procedures (69)–(73) associated
with the determination of the stiffnesses pIJ . For this purpose we choose the varia-
tional formulation (71) to compute u(h,13) for the case of nine fractures of fracture
aperture 1 mm inside a square sample of side length 2 m and at a single frequency,
chosen to be 30 Hz. Figure 3 shows a schematic representation of the configuration
of the sample used in the validation procedure.

The material properties of background and fractures taken from [3] are given in
Table 1. The saturant fluid is brine, with properties given in Table 2.

Since no analytical solution is available, we discretized the sample with a 960×960
uniform mesh and the computed solutions u(h,13) for this fine mesh were taken as the
reference solution to validate the FE solutions for other coarser meshes.
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Fig. 3. Schematic representation of the sample Ω with nine fractures. Black regions correspond
to the background and white regions correspond to fractures.

More specifically, the FE solution u(h,13) was computed for uniform meshes of
mesh size h = 0.0666, 0.0333, 0.0166, 0.0083 meters (30×30, 60×60, 120×120, and
240× 240 uniform meshes), to obtain the numerical value of the exponent of h in the
a priori error estimate given in Theorem A.1 in Appendix A.

The solution u(h,13) for the fine mesh is referred to as u(ref), while the solutions
for the other four meshes are denoted as uh, h = 0.0666, 0.0333, 0.0166, 0.0083.

Let us define the following L2 and broken H1(Ω) plus H(div,Ω) errors of the FE
procedure for each mesh size as

Eh0 = ‖u(ref) − uh‖0 = Chα,(74)

Eh1 =

J(f)+1∑
l=1

(
‖urefs − u(h)

s ‖1,R(l) + ‖∇ · (uref)
f − u

(h)
f ‖0,R(l)

)
= Chβ ,

h = 0.0666, 0.0333, 0.0166, 0.0083.(75)

In Table 3 we show the estimated values of the exponents α and β associated
with the errors Eh0 and Eh1 defined in (74) and (75) for the four mesh sizes. This
table shows the asymptotic convergence to the theoretical values 1 for the L2 case
and 0.5 for the broken H1(Ω) plus H(div,Ω) case as given in Theorem A.1. These a
priori error estimates are optimal due to the assumed regularity of the solution and
the arguments given in Theorem A.1.

The solutions of the other variational problems yield similar results, which are
omitted.

7.2. Validation of the quasistatic experiments to determine the stiff-
nesses pIJ . In all the following experiments we used square samples of side length
2 m, with 9 fractures at equal distance of 20 cm and fracture aperture 1 mm.

The next experiment (Figures 4, 5, 6, 7, and 8) validates the FE procedure against
the analytical solution given in [8] using a 50× 50 mesh. Instead of showing graphs of
the stiffness coefficients pIJ , we show other physically meaningful quantities, i.e., the
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Table 1
Material properties of background and fractures

Background Solid grains bulk modulus, Ks 36. GPa
solid grains density, ρs 2700 kg/m3

Dry bulk modulus Km 9 GPa
shear modulus G 7 GPa
Porosity φ 0.15
permeability κ 0.1 Darcy

Fractures Solid grains bulk modulus, Ks 36. GPa
solid grains density, ρs 2700 kg/m3

Dry bulk modulus Km 0.0055 GPa
shear modulus G 0.0033 GPa
Porosity φ 0.5
permeability κ 10 Darcy

Table 2
Fluid properties

Brine bulk modulus, Kf 2.25 GPa
density, ρf 1000 kg/m3

viscosity, µ 0.001 Pa · s

Gas bulk modulus, Kf 0.012 GPa
density, ρf 78 kg/m3

viscosity, µ 0.00015 Pa · s

energy velocities and dissipation coefficients for qP, qSV, and Sh waves, determined
from the pIJ ’s as explained in Appendix C.

The material properties of background and fractures are the same as those in
subsection 7.1 and given in Table 1. The saturant fluid is brine, with properties given
in Table 2.

Figures 4, 5, 6, and 7 show polar plots of the energy velocity vector and dissipation
factors [(1000/Q)(sinθ, cosθ)] for qP, qSV waves as functions of the propagation angle,
while Figure 8 displays a polar plot of the energy velocity vector for SH waves. Fre-
quency is 30 Hz. Here 0 degrees and 90 degrees correspond to waves arriving parallel
and normal to the fracture layering, respectively. A very good agreement between the
numerical and analytical curves is obtained for all angles. The qP curves in Figures
4 and 5 show velocity anisotropy and strong attenuation for waves arriving normal
to the fracture layering. On the other hand, Figures 6 and 7 show that qSV waves
have stronger velocity anisotropy than qP waves, have no loss along the directions
parallel and normal to the fracture layering, and have maximum attenuation at about
45 degrees. The energy velocity of qSV waves has the typical cuspidal triangles (or
triplications), observed previously in fractured media [25]. Figure 8 shows that SH
waves have velocity anisotropy; they are lossless.

Note that in the chosen frequency of 30 Hz the diffusive slow wave and its asso-
ciated wave-induced fluid flow is properly being captured, matching the mesoscopic
attenuation and dispersion effects predicted in the theory in [8].

7.3. Application of the quasistatic experiment to determine the stiff-
nesses pIJ in the case of patchy brine-gas saturation. The last experiment
considers the same sample but for full brine saturation, full gas saturation and 10%
and 50% patchy brine-gas saturation. Brine and gas has the properties given in Table
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Table 3
Error analysis for the FE method to determine u(h,13) using (71). Frequency is 30 Hz.

Mesh size h (m) α β

0.0666 0.48980 0.25411

0.0333 0.52559 0.27343

0.0166 0.66619 0.36171

0.0083 1.01407 0.51910
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Fig. 4. Polar representation of the energy velocity of qP waves as function of the propagation
angle. Frequency is 30 Hz. The symbols correspond to the FE experiments, while solid lines indicate
the analytical values.
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Fig. 5. Polar representation of the dissipation factor [(1000/Q)(sinθ, cosθ)] of qP waves as a
function of the propagation angle. Frequency is 30 Hz. Symbols correspond to the FE experiments,
while solid lines indicate the analytical values.
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Fig. 6. Polar representation of the energy velocity of qSV waves as a function of the propagation
angle. Frequency is 30 Hz. The symbols correspond to the FE experiments, while solid lines indicate
the analytical values.
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Fig. 7. Polar representation of the dissipation factor [(1000/Q)(sinθ, cosθ)] of qSV waves as a
function of the propagation angle. Frequency is 30 Hz. Symbols correspond to the FE experiments,
while solid lines indicate the analytical values.

2. Frequency is 30 Hz and a 100 × 100 mesh was employed. No analytical solutions
are available for the case of patchy brine-gas saturation, as it is the case for any
heterogeneous fluid saturated fractured porous media.

Considering patchy distribution of fluids is relevant in practice since it may occur
when shale strings seal off local pockets of gas, creating many gas-liquid contacts, or
during hydrocarbon reservoir field production, when gas may come out of solution
and create distributed pockets of free gas [6].

Patchy gas-brine distributions were generated using the procedure explained in
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Fig. 8. Polar representation of the energy velocity of SH waves as a function of the propagation
angle. Frequency is 30 Hz. The symbols correspond to the FE experiments, while solid lines indicate
the analytical values.

[12], summarized below for completeness. To generate a patchy gas-brine saturation
we employ the von Karman self-similar correlation function, which the spectral density
is given by [26]

(76) Sd(rx, rz) = N0(1 +R2a2)−(H+E/2).

Here, R =
√
r2
x + r2

z is the radial wavenumber, a the correlation length, H is a self-
similarity coefficient (0 < H < 1), N0 is a normalization constant, and E is the
Euclidean dimension. The von Karman correlation (76) describes a self-affine, fractal
processes of fractal dimension D = E + 1 −H at a scale smaller than a. We choose
E = 2, D = 2.2, and a to be 1.0% of the domain size. Once a continuous fractal
distribution of brine is obtained over the 100 × 100 mesh and a threshold value S∗b
is selected, at each computational cell with brine saturation below and above S∗b we
assign either full gas or full brine saturation, respectively. Following this procedure
two different patchy gas-brine distributions of overall 10% and 50% gas saturations
were generated.

Figures 9, 10, 11, and 12 display polar plots of energy velocity vectors and quality
of qP and qSV waves as a function of the propagation angle for 0%, 10%, 50%,
and 100% global gas saturations. Frequency is 30 Hz. Figure 9 indicates that the
velocity of qP waves decreases as gas saturation increases, while Figure 10 shows that
qP anisotropy is enhanced by patchy saturation, is maximum for qP waves arriving
normally to the fracture layering, and decreases as gas saturation increases. Maximum
attenuation occurs at 10% gas saturation for all angles.

For qSV waves, Figure 11 shows that velocity decreases as gas saturation in-
creases, with different anisotropic behavior depending on the value of gas saturation.
Concerning the dissipation factor for qSV waves, Figure 12 shows maximum atten-
uation at 10% gas saturation, and decreasing anisotropy as gas saturation increases.
Besides, qSV anisotropy shows different behavior for different values of gas satura-
tion. The patchy nature of the saturation breaks the symmetry of the curves (see the
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Fig. 9. Polar representation of the energy velocity of qP waves as a function of the propagation
angle for full brine, full gas, and 10% and 50% patchy gas-brine saturation. The material properties
of background and fractures are given in Table 1, while the saturant fluids are brine and gas with
properties in Table 2. Frequency is 30 Hz.
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Fig. 10. Polar representation of the dissipation factor [(1000/Q)(sinθ, cosθ)] of qP waves as
a function of the propagation angle for full brine, full gas, and 10% and 50% patchy gas-brine
saturation. The material properties of background and fractures are given in Table 1, while the
saturant fluids are brine and gas with properties in Table 2. Frequency is 30 Hz.

cuspidal triangles in Figure 11), with the attenuation of the qSV wave having higher
values at different angles.

On the other hand, the horizontally polarized shear (SH) wave is lossless and
energy velocity of SH waves is unaffected by different values of gas saturation, the
corresponding curves coincide with that in Figure 8 and are omitted.

Figure 13 shows the fluid pressure distribution (in Pa) for compressions normal
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Fig. 11. Polar representation of the energy velocity of qSV waves as a function of the prop-
agation angle for full brine, full gas, and 10% and 50% patchy gas-brine saturation. The material
properties of background and fractures are given in Table 1, while the saturant fluids are brine and
gas with properties in Table 2. Frequency is 30 Hz.
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Fig. 12. Polar representation of the dissipation factor [(1000/Q)(sinθ, cosθ)] of qSV waves
as a function of the propagation angle for full brine, full gas, and 10% and 50% patchy gas-brine
saturation. The material properties of background and fractures are given in Table 1, while the
saturant fluids are brine and gas with properties in Table 2. Frequency is 30 Hz.

to the fracture layering (p33 experiment) for 10% patchy gas saturation, where the
higher pressure values occur at the fracture locations, while the darker region values
identify the gas patches. This figure illustrates the mesoscopic attenuation mechanism
affecting compressional and shear waves at the macroscale and characterized in the
previous patchy-related figures.
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Fig. 13. Fluid pressure for normal compression to the fracture plane at 10% patchy gas-brine
saturation. The material properties of background and fractures are given in Table 1, while the
saturant fluids are brine and gas with properties in Table 2. Frequency is 30 Hz.

8. Conclusions. This work presented a FE procedure to determine the five
complex and frequency-dependent stiffnesses of the TIV medium equivalent to a hor-
izontally fractured Biot medium, with fractures represented as internal boundary
conditions. These stiffnesses were determined by solving a collection of boundary
value problems associated with compressibility and shear experiments formulated in
the space-frequency domain, which were solved using the finite element method. A
priori L2 and H1 error estimates were derived, which are optimal for the regularity
of the solution; they were computationally confirmed carrying out mesh refinements.

The procedure was validated against analytical solutions, and then applied to
arbitrarily heterogeneous fractured media, for which no analytical solutions are avail-
able. In particular, it was analyzed in the case of patchy gas-brine saturation.

The experiments show that fractures induce strong velocity and attenuation
anisotropy, enhanced for the case of patchy saturation.

It is also shown that higher fluid pressure gradients occur close to the fractures,
which illustrates the mesoscopic loss mechanism and in turn explains the strong ve-
locity and attenuation anisotropy observed in fractured Biot media.

The procedure allows us to compute the complex stiffness components of the
medium and the wave velocities and quality factors as a function of frequency and
propagation angle. This is useful to obtain solutions for arbitrarily complex media
when there is no analytical solution. Its applications range from oil exploration (reser-
voir rocks) to material science (artificial composite materials).

This study reveals that higher fluid pressure gradients occur close to the fractures
and explains the strong velocity and attenuation anisotropy induced by fractures in
Biot media.

Appendix A. A priori error estimates. The a priori error estimates are
stated in the following theorem.
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Theorem A.1. Assume that for (I, J) = (1, 1), (3, 3), (1, 3), (5, 5), (6, 6) u
(IJ)
s ∈

[H3/2(∪lR(l))]2 we have that u
(IJ)
f ∈ H1

0 (div;∪lR(l)). Also assume that FR is positive
definite, that f11,R > 0, and that FI is nonnegative. Then for sufficiently small h > 0
the following error estimate holds:

‖u(IJ) − u(h,IJ)‖0(77)

+ h1/2

[
J(f)+1∑
l=1

(
‖u(IJ)

s − u(h,IJ)
s ‖1,R(l) + ‖∇ · (u(IJ)

f − u
(h,IJ)
f ‖0,R(l)

)

+

J(f)∑
l=1

∑
jk

(∥∥∥ [(u(IJ)
s − u(h,IJ)

s ) · νl,l+1

] ∥∥∥
0,Γ

(f,l)
jk

+
∥∥∥ [(u(IJ)

s − u(h,IJ)
s ) · χl,l+1

] ∥∥∥
0,Γ

(f,l)
jk

+
∥∥∥ [(u(IJ)

f − u
(h,IJ)
f ) · νl,l+1

] ∥∥∥
0,Γ

(f,l)
jk

+
∥∥∥(u

(IJ)
f − u

(h,IJ)
f ) · νl,l+1

∥∥∥
0,Γ

(f,l)
jk

)]

≤ C h

J(f)+1∑
l=1

(
‖u(IJ,l)

s ‖3/2,R(l) + ‖u(IJ,l)
f ‖1,R(l) + ‖∇ · u(IJ,l)

f ‖1,R(l)

)
.

Proof. The proof is given in the accompanying supplementary file (apriori-error-
proof.pdf [local/web 144KB]).

Appendix B. Mesoscopic-flow attenuation theory for anisotropic poroe-
lastic media. White’s mesoscopic attenuation theory of interlayer flow [6], [4] de-
scribes the equivalent viscoelastic medium of a stack of two thin alternating porous
layers of thickness d1 and d2, such that the period of the stratification is d = d1 + d2.
The theory gives the complex and frequency dependent stiffness p33. White’s model
has been generalized in [8] by Krzikalla and Müller to anisotropic media, i.e., they
have obtained the five stiffnesses of the equivalent TI medium, denoted by pIJ . The
stress-strain relations is given by (26)–(31) and

pIJ(ω) = cIJ +

(
cIJ − crIJ
c33 − cr33

)
[p33(ω)− c33],(78)

where crIJ and cIJ are the relaxed and unrelaxed stiffnesses.
According to Gelinsky and Shapiro [7, eq. (14)], the quasistatic or relaxed effective
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constants of a stack of poroelastic layers are

(79)

cr66 = B∗1 = 〈µ〉,

cr11 − 2cr66 = cr12 = B∗2 = 2

〈
λmµ

Em

〉
+

〈
λm
Em

〉2〈
1

Em

〉−1

+
B∗6

2

B∗8
,

cr13 = B∗3 =

〈
λm
Em

〉〈
1

Em

〉−1

+
B∗6B

∗
7

B∗8
,

cr33 = B∗4 =

〈
1

Em

〉−1

+
B∗7

2

B∗8

=

[〈
1

Em

〉
−
〈
α

Em

〉2〈
EG
MEm

〉−1
]−1

,

cr55 = B∗5 = 〈µ−1〉−1,

B∗6 = −B∗8

(
2

〈
αµ

Em

〉
+

〈
α

Em

〉〈
λm
Em

〉〈
1

Em

〉−1
)
,

B∗7 = −B∗8
〈
α

Em

〉〈
1

Em

〉−1

,

B∗8 =

[〈
1

M

〉
+

〈
α2

Em

〉
−
〈
α

Em

〉2〈
1

Em

〉−1
]−1

,

where (with Km, G,M, κ, µ) corresponding to the background in our notation (su-
perindex θ = b),

(80) λm = Km −
2

3
G and Em = Km +

4

3
G,

and we have also reported the notation of that paper for clarity. In the case of no
interlayer flow, i.e., the unrelaxed regime, the stiffnesses are

(81)

c66 = cr66,

c11 − 2c66 = c12 = 2

〈
(EG − 2µ)µ

EG

〉
+

〈
EG − 2µ

EG

〉2〈
1

EG

〉−1

,

c13 =

〈
EG − 2µ

EG

〉〈
1

EG

〉−1

,

c33 =

〈
1

EG

〉−1

, c55 = cr55,

[7, eq. (15)], where

(82) EG = Em + α2M,

and M is given in (3).
Finally, the P-wave modulus p33 is [6] (also see in [5]),

p33 =

[
1

c33
+

2(r2 − r1)2

iω(d1 + d2)(I1 + I2)

]−1

,(83)
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where for each single layer

r =
αM

EG
, I =

η

κa
coth

(
ad

2

)
, a =

√
iωµEG
κMEm

.(84)

The main assumption in [8] is that the fluid-flow direction is perpendicular to the
fracture layering and that the relaxation behavior is described by a single relaxation
function or stiffness, i.e., p33(ω). Thus the theory is valid for plane layers and cannot
be used when 2D or 3D heterogeneities are present.

Appendix C. Wave velocities and quality factors. We consider homoge-
neous viscoelastic waves [5]. The complex velocities are the key quantity to obtain
the wave velocities and quality factor of the equivalent anisotropic medium. They are
given by

(85)

vqP = (2ρ̄)−1/2
√
p11l21 + p33l23 + p55 +A,

vqSV = (2ρ̄)−1/2
√
p11l21 + p33l23 + p55 −A,

vSH = ρ̄−1/2
√
p66l21 + p55l23,

A =
√

[(p11 − p55)l21 + (p55 − p33)l23]2 + 4[(p13 + p55)l1l3]2,

where ρ̄ is the average density, l1 = sin θ and l3 = cos θ are the directions cosines, θ is
the propagation angle between the wavenumber vector and the symmetry axis, and
the three velocities correspond to the qP, qS, and SH waves, respectively. The phase
velocity and quality factor are given by

vp =

[
Re

(
1

v

)]−1

, Q =
Re(v2)

Im(v2)
,(86)

where v represents either vqP, vqSV, or vSH. The energy-velocity vector of the qP and
qSV waves is given by

(87)
ve
vp

= (l1 + l3 cotψ)−1ê1 + (l1 tanψ + l3)−1ê3

in [5], where

(88) tanψ =
Re(β∗X + ξ∗W )

Re(β∗W + ξ∗Z)

defines the angle between the energy-velocity vector and the z-axis,

(89) β =
√
A±B, ξ = ±pv

√
A∓B, B = p11l

2
1 − p33l

2
3 + p55 cos 2θ,

where the upper and lower signs correspond to the qP and qS waves, respectively.
Moreover,

(90) W = p55(ξl1 + βl3), X = βp11l1 + ξp13l3, Z = βp13l1 + ξp33l3,

where “pv” denotes the principal value, which has to chosen according to established
criteria.
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On the other hand, the energy velocity of the SH wave is

(91) ve =
1

ρ̄vp
(l1c66ê1 + l3c55ê3)

and

(92) tanψ =

(
c66

c55

)
tan θ

[5, eq. 1.148], since p55 and p66 are real quantities.
In general, the phase velocity is related to the energy velocity by

(93) vp = ve cos(ψ − θ),

where ve = |ve|.
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