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a b s t r a c t

A fractured medium behaves as an anisotropic medium when the wavelength is much larger than the dis-
tance between fractures. These are modeled as boundary discontinuities in the displacement and particle
velocity. When the set of fractures is plane, the theory predicts that the equivalent medium is transversely
isotropic and viscoelastic (TIV). We present a novel procedure to determine the complex and frequency-
dependent stiffness components. The methodology amounts to perform numerical compressibility and
shear harmonic tests on a representative sample of the medium. These tests are described by a collection
of elliptic boundary-value problems formulated in the space-frequency domain, which are solved with a
Galerkin finite-element procedure. The examples illustrate the implementation of the tests to determine
the set of stiffnesses and the associated phase velocities and quality factors.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Wave propagation through fractures is an important subject in
seismology, exploration geophysics and mining (e.g. Schoenberg
and Douma [1]). Modeling fractures requires an interface model
for describing their dynamic response. Here, we consider that the
stress components are proportional to the displacement and veloc-
ity discontinuities through the specific stiffnesses and viscosities,
respectively. Displacement discontinuities conserve energy while
velocity discontinuities generate energy loss at the interface. The
specific viscosity accounts for the presence of a viscous liquid un-
der saturated conditions, which introduces a viscous coupling be-
tween the two surfaces of the fracture [2–4].

A dense set of parallel plane fractures can be modeled as a TIV
medium if the dominant wavelength of the traveling waves is
much larger than the distance between the fractures. Chichinina
et al. [5] described anisotropic attenuation in a TI medium using
Schoenberg’s linear-slip model with complex-valued normal and
tangential fracture stiffnesses. Carcione et al. [6] generalized this
theory by extending the orthorhombic model given in Schoenberg
and Helbig [7] to the anelastic monoclinic case. The medium con-
sists of sets of vertical fractures embedded in a TI background med-
ium (generally horizontal fine layering) to form a long-wavelength
equivalent monoclinic medium. There are a few papers presenting

numerical approaches to determine effective media corresponding
to fractured rocks. Grechka and Kachanov [8,9] perform 3D static
finite-element simulations, summing up the individual contribu-
tions of the fractures and ignoring their interactions. An analysis
of the non-interaction approximation and differential schemes to
predict effective elastic properties of fractured media is presented
in [10]. On the other hand, Saenger et al. [11] present a finite-
difference procedure to solve the viscoelastic wave equation in
the space–time domain. They apply a Heaviside source function
and drive the system to the static limit, which yields the desired
static stiffnesses coefficients. Besides, Saenger et al. [12] perform
numerical simulations in 2D and 3D media saturated with fluids
to analyze Biot’s predictions in the high and low frequency limits
of poroelasticity. An analysis on the effects of fracture
heterogeneity, orientation and size on seismic signatures can be
found in [13].

To test and validate Schoenberg’s theory in [16], we present a
novel finite element approach to determine the complex stiffness
coefficients of the TIV equivalent medium [14]. The methodology
consists of applying time-harmonic oscillatory tests at a finite
number of frequencies. Each test is performed by using the
viscoelastic wave equation of motion expressed in the space-fre-
quency domain, with appropriate boundary conditions, and
solved with a finite-element method (FEM). These tests can be
regarded as an upscaling method to obtain the effect of the fine
layering scale on the macroscale. Finally, we employ the finite
element simulators to determine equivalent TIV effective media
in more realistic scenarios for which no analytical solutions are
available.
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2. The stress–strain relations

Let us consider a viscoelastic background medium and its
description in the frequency domain. The medium has a set of
parallel (horizontal) fractures which are described by appropriate
boundary conditions (see below). Let x ¼ ðx1; x2; x3Þ and uðxÞ ¼
ðu1; u2; u3Þ denote the time Fourier transform of the displacement
vector of the viscoelastic medium. Let rij and eijðuÞ denote the stress
and strain tensors of the medium. The stress–strain relations of a
general anisotropic medium, including attenuation, are

rjkðuÞ ¼ pjklmelmðuÞ; elmðuÞ ¼
1
2

@ul

@xm
þ @um

@xl

� �
; ð1Þ

where the coefficients pjklm are complex and frequency dependent
[3].

When the background medium is isotropic and viscoelastic, the
stress–strain relation is

rjkðuÞ ¼ kdjkr � uþ 2lejkðuÞ; ð2Þ

where djk is the Kroenecker delta and k and l are the complex Lamé
constants.

Let q ¼ qðxÞ be the mass density. The equation of motion is

x2quðx;xÞ þ r � rðuðx;xÞÞ ¼ 0; ð3Þ

where x is the angular frequency, r is given by (1) for a general
medium and by (2) in the isotropic and viscoelastic case.

Let us consider x1 and x3 as the horizontal and vertical coordi-
nates, respectively. If a dense set of parallel fractures is present,
Schoenberg and Douma [1] have shown that the medium behaves
as a TIV medium with a vertical x3-axis of symmetry at long wave-
lengths. Denoting by sij the stress tensor of the equivalent TIV
medium at the macroscale, the corresponding stress–strain rela-
tions, stated in the space-frequency domain, are [15,3]

s11ðuÞ ¼ p11�11ðuÞ þ p12�22ðuÞ þ p13�33ðuÞ; ð4Þ
s22ðuÞ ¼ p12�11ðuÞ þ p11�22ðuÞ þ p13�33ðuÞ; ð5Þ
s33ðuÞ ¼ p13�11ðuÞ þ p13�22ðuÞ þ p33�33ðuÞ; ð6Þ
s23ðuÞ ¼ 2p55�23ðuÞ; ð7Þ
s13ðuÞ ¼ 2p55�13ðuÞ; ð8Þ
s12ðuÞ ¼ 2p66�12ðuÞ: ð9Þ

Schoenberg’s theory predicts that if the background medium is
homogeneous, the stiffnesses pIJ ’s in (4)–(9) are given by [16,6]

p11 ¼ p22 ¼ E� k2ZNcN; p12 ¼ k� k2ZNcN p13 ¼ kcN; ð10Þ
p33 ¼ EcN; p55 ¼ lcT ; p66 ¼ l:

where

cN ¼ ð1þ EZNÞ�1 and cT ¼ ð1þ lZTÞ�1
; ð11Þ

ZN and ZT are the normal and tangential complex compliances of the
fractures (see below) and E ¼ kþ 2l. The theory assumes that dis-
tance between fractures is much smaller than the wavelength of the
signal and that the boundary condition is the same for all the frac-
tures. Moreover, we assume that the fracture distance is constant,
i.e., there is periodicity. On the other hand, the numerical solver
may consider an inhomogeneous background medium, unequal
fracture distances and dissimilar boundary conditions at the frac-
tures surfaces.

Remark. The �ij’s are strain components at the macroscale.
The pIJ are the complex and frequency-dependent Voigt stiff-

nesses to be determined numerically with the harmonic experi-
ments and compared to those given in Eq. (10). In the next section,
we present a numerical procedure to determine the coefficients in
(4)–(9) and the corresponding phase velocities and quality factors.

We will show that for this purpose it is sufficient to perform a
collection of oscillatory tests on representative 2D samples of the
viscoelastic material.

3. Determination of the stiffness components

In order to determine the coefficients in (4)–(9) we proceed as
follows. We solve (3) in the 2D case on a reference square
X ¼ ð0;HÞ2 with boundary C in the ðx1; x3Þ-plane.

Set C ¼ CL [ CB [ CR [ CT , where

CL ¼ fðx1; x3Þ 2 C : x1 ¼ 0g; CR ¼ fðx1; x3Þ 2 C : x1 ¼ Hg;
CB ¼ fðx1; x3Þ 2 C : x3 ¼ 0g; CT ¼ fðx1; x3Þ 2 C : x3 ¼ Hg:

Denote by m the unit outer normal on C and let v be a unit tangent
on C so that fm;vg is an orthonormal system on C.

Let us assume that we have a set of Jðf Þ horizontal fractures
Cðf ;lÞ; l ¼ 1; . . . ; Jðf Þ each one of length L in our domain X. This set
of fractures divides our domain in a collection of nonoverlapping
rectangles RðlÞ; l ¼ 1; . . . ; Jf þ 1, so that

X ¼ [Jðf Þþ1
l¼1 RðlÞ:

Consider a fracture Cðf ;tÞ and the two rectangles RðtÞ and Rðtþ1Þ having
as a common side Cðf ;tÞ. Let mt;tþ1;vt;tþ1 be the unit outer normal and
a unit tangent (oriented counterclockwise) on Cðf ;tÞ from RðtÞ to
Rðtþ1Þ, such that fmt;tþ1;vt;tþ1g are an orthonormal system on Cðf ;tÞ.

The boundary conditions at each one of the fractures Cðf ;tÞ are
the stress continuity and the condition that stress components be
proportional to the displacement and velocity discontinuities
through specific stiffnesses and viscosities, respectively. More pre-
cisely, if uðtÞ ¼ ujRðtÞ denotes the restriction of ui to RðtÞ, we will im-
pose the conditions

rðuðtÞÞmt;tþ1¼rðuðtþ1ÞÞmt;tþ1 ðx1;x3Þ 2Cðf ;tÞ; t¼1; . . . ; Jðf Þ; ð12Þ

rðuðtÞÞmt;tþ1 �mt;tþ1;rðuðtÞÞmt;tþ1 �vt;tþ1

� �T

¼DðtÞðxÞ ½u� �mt;tþ1; ½u� �vt;tþ1

� �T
ðx1;x3Þ 2Cðf ;tÞ; t¼1; . . . ; Jðf Þ: ð13Þ

where T indicates the transpose, ½u� denotes the jump at Cðf ;tÞ of dis-
placement vector u, i.e.,

½u� ¼ uðtÞ � uðtþ1Þ� �
jCðf ;tÞ

and

DðtÞðxÞ ¼ aðtÞ 0
0 bðtÞ

 !
ð14Þ

where

aðtÞðx1; x3;xÞ ¼ aðtÞR ðx1; x3Þ þ ixaðtÞI ðx1; x3Þ ð15Þ
bðtÞðx1; x3;xÞ ¼ bðtÞR ðx1; x3Þ þ ixbðtÞI ðx1; x3Þ; t ¼ 1; . . . ; Jðf Þ;

are the complex (scalar) stiffnesses (per unit length, i.e., stress/
length) associated with the fractures. It will be assumed that
aðtÞR ;a

ðtÞ
I ;b

ðtÞ
R and bðtÞI are strictly positive. These stiffnesses and the

compliances in Eq. (10) and (11) are related as

LZðtÞN aðtÞ ¼ 1 and LZðtÞT bðtÞ ¼ 1; ð16Þ

where L is the average spacing between the fractures.
Let us omit the superscript ðtÞ for simplicity in the following.

The components (10) can be obtained by assuming a periodic med-
ium composed of two layers, where one of the layers has the Lamé
constants k and l (the background medium) and the other, repre-
senting the fracture, is very thin with Lamé constants lf ¼ pLb
¼ p=ZT and Ef ¼ kf þ 2lf ¼ pLa ¼ p=ZN , where p� 1 is the volume
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proportion of fractures, and L is the fracture spacing (constant). The
displacement discontinuities (boundary conditions) associated
with the fractures are ½u�3 ¼ LZNr33 and ½u�1 ¼ LZTr13 along the x3

– and x1-directions, respectively (see Schoenberg [16], Eqs. (21)–
(23).

According to Eq. (16), the imaginary parts of ZðtÞN and ZðtÞT are neg-
ative, since aðtÞR ;a

ðtÞ
I ; b

ðtÞ
R and bðtÞI are defined strictly positive.

The compliances Z (ZN or ZT ) are complex and frequency-depen-
dent and can be expressed as [4,6]

Z�1 ¼ Lðjþ ixgÞ; ð17Þ

where j is a specific stiffness and g is a specific viscosity, having
dimensions of stiffness and viscosity per unit length, respectively.

It follows how to obtain the stiffness components.
(i) To determine p33, we solve (3) in X using the fracture bound-

ary conditions (12) and (13) and the following boundary
conditions:

rðuÞm � m ¼ �DP; ðx1; x3Þ 2 CT ; ð18Þ
rðuÞm � v ¼ 0; ðx1; x3Þ 2 C; ð19Þ
u � m ¼ 0; ðx1; x3Þ 2 CL [ CR [ CB: ð20Þ

In this experiment �11ðuÞ ¼ �22ðuÞ ¼ 0 and from (6) we see that this
experiment determines p33 as follows.

Denoting by V the original volume of the sample, its (complex)
oscillatory volume change, DVðxÞ, we note that

DVðxÞ
V

¼ � DP
p33ðxÞ

; ð21Þ

valid in the quasistatic case.
After solving (3) with the boundary conditions (12) and (13)

and (18)–(20), the vertical displacements u3ðx;H;xÞ on CT allow
us to obtain an average vertical displacement us;T

3 ðxÞ suffered by
the boundary CT . Then, for each frequency x, the volume change
produced by the compressibility test can be approximated by
DVðxÞ � Hus;T

3 ðxÞ, which enable us to compute p33ðxÞ by using
the relation (21).

(ii) To determine p11, we solve (3) in X using (12) and (13) plus
the following boundary conditions

rðuÞm � m ¼ �DP; ðx1; x3Þ 2 CR; ð22Þ
rðuÞm � v ¼ 0; ðx1; x3Þ 2 C; ð23Þ
u � m ¼ 0; ðx1; x3Þ 2 CL [ CB [ CT : ð24Þ

In this experiment �33ðuÞ ¼ �22ðuÞ ¼ 0 and from (4) we see that this
experiment determines p11 as indicated for p33 measuring the oscil-
latory volume change.

(iii) To determine p55, let us consider the solution of (3) in X
with the fracture boundary conditions (12) and (13) added to the
following boundary conditions

� rðuÞm ¼ g; ðx1; x3Þ 2 CT [ CL [ CR; ð25Þ
u ¼ 0; ðx1; x3Þ 2 CB; ð26Þ

where

g ¼
ð0;DGÞ; ðx1; x3Þ 2 CL;

ð0;�DGÞ; ðx1; x3Þ 2 CR;

ð�DG;0Þ; ðx1; x3Þ 2 CT :

8><>:
The change in shape of the rock sample allows to recover p55ðxÞ by
using the relation

tgðhðxÞÞ ¼ DG
p55ðxÞ

; ð27Þ

where hðxÞ is the departure angle between the original positions of
the lateral boundaries and those after applying the shear stresses
(see for example, [17]).

Measuring the horizontal displacements u1ðx1;H;xÞ at the top
boundary CT , we obtain an average horizontal displacement
us;T

1 ðxÞ suffered by the boundary CT . This average value allows us
to approximate the change in shape by tgðhðxÞÞ � us;T

1 ðxÞ=H, which
from (27) let us estimate p55ðxÞ.

(iv) The stiffness p66 is associated with shear waves traveling
in the ðx1; x2Þ-plane. We consider a fractured horizontal slab in
the x2-direction and an homogeneous sample X2 ¼ ð0;HÞ2 in the
ðx1; x2Þ-plane, with boundary C2 ¼ CL

2 [ CB
2 [ CR

2 [ CT
2, where

CL
2 ¼ fðx1; x2Þ 2 C : x1 ¼ 0g; CR

2 ¼ fðx1; x2Þ 2 C : x1 ¼ Hg;
CB

2 ¼ fðx1; x2Þ 2 C : x2 ¼ 0g; CT ¼ fðx1; x2Þ 2 C : x2 ¼ Hg:

We then consider the solution of (3) in X2 using the conditions (12)
and (13) added to the following boundary conditions

� rðuÞm ¼ g; ðx1; x3Þ 2 CT
2 [ CL

2 [ CR
2; ð28Þ

u ¼ 0; ðx1; x2Þ 2 CB
2; ð29Þ

where

g ¼
ð0;DGÞ; ðx1; x2Þ 2 CL

2;

ð0;�DGÞ; ðx1; x2Þ 2 CR
2;

ð�DG;0Þ; ðx1; x2Þ 2 CT
2:

8><>:
Thus, we proceed as indicated for p55ðxÞ.

The calculation of p66 requires an alternative treatment due to
the fact that the sample is finite along the fracture planes which
do not remain parallel after the deformation. In this case, we set
to zero the displacement perpendicular to those planes. This con-
straint has no effect on the calculation since this component is
uncoupled from the motion related to p66.

(v) To determine p13 we solve (3) in X using (12) and (13) with
the additional boundary conditions

rðuÞm � m ¼ �DP; ðx1; x3Þ 2 CR [ CT ; ð30Þ
rðuÞm � v ¼ 0; ðx1; x3Þ 2 C; ð31Þ
u � m ¼ 0; ðx1; x3Þ 2 CL [ CB: ð32Þ

Thus, in this experiment �22 ¼ 0, and from (4) and (6) we get

(a) (b)

(d)(c)

Fig. 1. Harmonic tests performed to obtain (a) p33, (b) p11 (c) p55 and (d) p66 The
orientation of the horizontal fractures and the directions of the applied stresses on
the boundaries are indicated. The thick black lines indicate zero normal displace-
ments in (a) and (b) and zero displacements in (c) and (d) as in (20), (24), (26) and
(29).
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s11 ¼ p11�11 þ p13�33; ð33Þ
s33 ¼ p13�11 þ p33�33;

where �11 and �33 are the (macroscopic) strain components at the
right lateral side and top side of the sample, respectively. Then from
(33) and the fact that s11 ¼ s33 ¼ �DP (c.f. (30)) we obtain p13ðxÞ as

p13ðxÞ ¼
p11�11 � p33�33

�11 � �33
: ð34Þ

Figs. 1(a)–(d) illustrate the experiments needed to compute the
stiffnesses components.

4. The variational formulation

To state a variational formulation for the boundary-value prob-
lems defined in the previous section we need to introduce some
notation. For X � Rd with boundary @X, let ð�; �ÞX and �; �h i@X denote
the complex L2ðXÞ and L2ð@XÞ inner products for scalar, vector, or
matrix valued functions. Also, for s 2 R, k � ks;X will denote the usual
norm for the Sobolev space HsðXÞ [18]. In addition, if X ¼ X or
X ¼ C, the subscript X may be omitted such that ð�; �Þ ¼ ð�; �ÞX or
�; �h i ¼ �; �h iC. Also, let us introduce the following closed subspaces

of ½H1ðXÞ�2 and ½H1ðX2Þ�2:

W11ðXÞ ¼ fv 2 ½L2ðXÞ�2 : vjRðlÞ 2 ½H
1ðRðlÞÞ�2; v � m

¼ 0 on CB [ CT [ CLg;

W33ðXÞ ¼ fv 2 ½L2ðXÞ�2 : vjRðlÞ 2 ½H
1ðRðlÞÞ�2; v � m

¼ 0 on CL [ CR [ CBg;

W13ðXÞ ¼ fv 2 ½L2ðXÞ�2 : vjRðlÞ 2 ½H
1ðRðlÞÞ�2; v � m ¼ 0 on CL [ CBg;

W55ðXÞ ¼ fv 2 ½L2ðXÞ�2 : vjRðlÞ 2 ½H
1ðRðlÞÞ�2; v ¼ 0 on CBg;

W66ðX2Þ ¼ fv 2 ½L2ðX2Þ�2<vjRðlÞ 2 ½H
1ðRðlÞÞ�2; v ¼ 0 on CB

2g:

Set

Kðu;vÞ ¼ �x2ðu;vÞ þ
XJðf Þþ1

l¼1

X
s;t¼1;3

rstðuÞ; �stðvÞð ÞRðlÞ

þ
XJðf Þ
l¼1

aðlÞ½u�3; ½v �3
� 	

Cðf ;lÞ þ bðlÞ½u�1; ½v �1
D E

Cðf ;lÞ

h i
: ð35Þ

Note that the term
PJðf Þþ1

l¼1

P
s;t¼1;3 rstðuÞ; �stðvÞð ÞRðlÞ in (35) can be

written in the form

XJðf Þþ1

l¼1

X
s;t¼1;3

rstðuÞ; �stðvÞð ÞRðlÞ ¼
XJðf Þþ1

l¼1

MðxÞ~�ðuÞ; ~�ðvÞð ÞRðlÞ

¼
XJðf Þþ1

l¼1

MRðxÞ~�ðuÞ; ~�ðvÞð ÞRðlÞ

þ i MIðxÞ~�ðuÞ; ~�ðvÞð ÞRðlÞ ; ð36Þ

where MðxÞ ¼MRðxÞ þ iMIðxÞ is a complex matrix given by

MðxÞ ¼
kðxÞ þ 2lðxÞ kðxÞ 0

kðxÞ kðxÞ þ 2lðxÞ 0
0 0 4lðxÞ

0B@
1CA: ð37Þ

and

~�ðuÞ ¼
�11ðuÞ
�33ðuÞ
�13ðuÞ

0B@
1CA:

It will be assumed that the real part MRðxÞ is positive definite since
in the elastic limit it is associated with the strain energy density.
Furthermore, the imaginary parts MIðxÞ are assumed to be positive
definite because of the restriction imposed on our system by the
first and second laws of thermodynamics. See [19] and the appendix
in [20] for a proof of the validity of these assumptions.

Furthermore, note that

Kðu;uÞ ¼ �x2 qu;uð Þ þ
XJðf Þþ1

l¼1

MR~�ðuÞ; ~�ðuÞð ÞRðlÞ þ
XJðf Þ
l¼1

aðlÞR ½u�3; ½u�3
D E

Cðf ;lÞ

þ bðlÞR ½u�1; ½u�1
D E

Cðf ;lÞ
þ i

XJðf Þþ1

l¼1

MI~�ðuÞ; ~�ðuÞð ÞRðlÞ

24
þx

XJðf Þ
l¼1

aðlÞI ½u�3; ½u�3
D E

Cðf ;lÞ
þ bðlÞI ½u�1; ½u�1
D E

Cðf ;lÞ

35
� ReðKðu;uÞÞ þ iImðKðu;uÞÞ: ð38Þ

Thus, since the matrices MR and MI are positive definite and the
stiffnesses coefficients aðlÞR ;a

ðlÞ
I ; b

ðlÞ
R and bðlÞI are positive, for each fre-

quency x we may associate ReðKðu;uÞÞ and ImðKðu;uÞÞ with the
Fourier transform of the strain energy of our fractured viscoelastic
medium evaluated at that frequency. The imaginary part
ImðKðu;uÞÞ takes into account the energy losses due to both the vis-
coelastic character of the material and the dissipative effect of the
fractures.

Next, multiply equation (3) by v 2 W33ðXÞ, use integration by
parts and apply the boundary conditions (12), (13) and (18)–(20)
to obtain the following variational formulation associated with
the coefficient p33ðxÞ: find uð33Þ 2 W33ðXÞ such that:

Kðuð33Þ; vÞ ¼ � DP;v � mh iCT ; 8v 2 W33ðXÞ: ð39Þ

Proceeding similarly, we obtain the following weak formulations for
the other pIJ ’s coefficients:

For p11: find uð11Þ 2 W11ðXÞ such that:

Kðuð11Þ; vÞ ¼ � DP;v � mh iCR ; 8v 2 W11ðXÞ: ð40Þ

For p13: find uð13Þ 2 W13ðXÞ such that:

Kðuð13Þ; vÞ ¼ � DP;v � mh iCR[CT ; 8v 2 W13ðXÞ: ð41Þ

For p55: find uð55Þ 2 W55ðXÞ such that:

Kðuð55Þ; vÞ ¼ � g;vh iCnCB ; 8v 2 W55ðXÞ: ð42Þ

For p66: find uð66Þ 2 W66ðXÞ such that:

Kðuð66Þ; vÞ ¼ � g;vh iC2nCB
2
; 8v 2 W66ðXÞ: ð43Þ

The above formulated boundary-value problems (BVP’s) are associ-
ated with non-coercive second-order elliptic operators having
boundary data in L2ðXÞ, and their solutions are discontinuous across
the fractures Cðf ;lÞ; l ¼ 1; . . . ; Jðf Þ. Consequently, their solutions will
be assumed to belong locally to ½H3=2�2, i.e., we will assume that
uðtÞ 2 ½H3=2ðRðtÞ�2; t ¼ 1; . . . ; Jðf Þ þ 1 [21]. This maximal regularity will
be used to analyze the well-posedeness of our BVP’s and to derive
our error estimates.

To analyze the uniqueness of the solution of (39), set DP ¼ 0 and
choose v ¼ uð33Þ in (39) to obtain the equation

�x2 quð33Þ;uð33Þ� �
þ
XJðf Þþ1

l¼1

MR~�ðuð33ÞÞ; ~�ðuð33ÞÞ
� �

RðlÞ þ i
XJðf Þþ1

l¼1

MI~�ðuð33ÞÞ;
�

~�ðuð33ÞÞ
�

RðlÞ þ
XJðf Þ
l¼1

ðaðlÞR þ ixaðlÞI Þ½uð33Þ�3; ½uð33Þ�3
D E

Cðf ;lÞ

h
þ ðbðlÞR þ ixbðlÞI Þ½uð33Þ�1; ½uð33Þ�1
D E

Cðf ;lÞ

i
¼ 0: ð44Þ
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Taking the imaginary part in (44) and using that MI is positive def-
inite and that aI > 0; bI > 0 we conclude that

�11ðuð33ÞÞ ¼ 0; in L2ðRðlÞÞ; ð45Þ
�33ðuð33ÞÞ ¼ 0; in L2ðRðlÞÞ; ð46Þ
�13ðuð33ÞÞ ¼ 0; in L2ðRðlÞÞ: ð47Þ

�11ðuð33ÞÞ ¼ @uð13Þ
1 ðx1; x3Þ
@x1

¼ 0; �33ðuð3ÞÞ ¼
@uð13Þ

3 ðx1; x3Þ
@x3

¼ 0; a:e: in RðlÞ;

so that

uð33Þ
1 ðx1; x3Þ ¼ f ðlÞðx3Þ; uð33Þ

3 ðx1; x3Þ

¼ gðlÞðx1Þ a:e: in L2ðRðlÞÞ: ð48Þ

Thus from (47) and (48) have

2�13ðuð13ÞÞ ¼ @f ðlÞðx3Þ
@x3

þ @gðlÞðx1Þ
@x1

¼ 0; a:e: in RðlÞ; ð49Þ

which in turn implies

@f ðlÞðx3Þ
@x3

¼ � @gðlÞðx1Þ
@x1

¼ CðlÞ ¼ constant a:e: in RðlÞ: ð50Þ

Hence,

gðlÞðx1Þ ¼ �CðlÞx1 þ AðlÞ; f ðlÞðx3Þ

¼ CðlÞx3 þ BðlÞ; a:e: in RðlÞ: ð51Þ

Next, by the Sobolev embedding theorem [18]

H3=2ðRðlÞÞ ! C0ðRðlÞÞ; ð52Þ

so that uð33Þ
1 ;uð33Þ

3 are uniformly continuous functions on RðlÞ. Conse-
quently (48) holds for all ðx1; x3Þ 2 RðlÞ as uniformly continuous
functions, and uð33Þ

1 ;uð33Þ
3 have unique extensions to @RðlÞ. Hence,

uð33Þ
1 ðx1; x3Þ ¼ f ðlÞðx3Þ; uð33Þ

3 ðx1; x3Þ ¼ gðlÞðx1Þ 8 ðx1; x3Þ 2 RðlÞ:

ð53Þ

On the other hand, the boundary condition (20) tells us that the
normal components of the traces of uð33Þ vanish on CB [ CL, so that

uð33Þ
1 ð0; x3Þ ¼ 0; uð33Þ

3 ðx1;0Þ ¼ 0: ð54Þ

Thus (53) and (54) imply that

uð33Þ
1 ðx1; x3Þ ¼ uð33Þ

3 ðx1; x3Þ ¼ 0: ð55Þ

and we have uniqueness for the solution of (39). Uniqueness for the
solution of (40) and (41) follows with the same argument.

Let us turn to analyze the uniqueness of the solution of (42). Set
g ¼ 0 choose v ¼ uð55Þ in (42). Choosing the imaginary part in the
resulting equation, we obtain

~�ðuð55ÞÞ ¼ 0; in L2ðRðlÞÞ: ð56Þ

Next, recall Korn’s second inequality [22]:X
l;m¼1;3

k�lmðvÞk2
RðlÞ þ kvk

2
0 P C1kvk2

1;RðlÞ ; 8 v 2 ½H1ðRðlÞÞ�2; ð57Þ

and that for any v 2 ½H1ðRðlÞÞ�2 vanishing on a subset of positive
measure of @RðlÞ, using (57) it can be shown that [23]

kjvkj ¼
X

s;t¼1;3

k�stðvÞk2
0;RðlÞ

 !1=2

ð58Þ

defines a norm for v equivalent to the H1-norm. Thus, for some po-
sitive constants C2;C3,

C2kvk1;RðlÞ 6 kjvkj 6 C3kvk1RðlÞ ; 8v 2 W55ðXÞ: ð59Þ

Consequently, (56) and (59) imply that

kuð55Þk1;RðlÞ ¼ 0 ð60Þ

and we have uniqueness for the solution of (42).

5. The finite element method

Let T hðXÞ be a non-overlapping partition of X into rectangles Xj

of diameter bounded by h such that X ¼ [J
j¼1Xj. We will assume

the Xj’s are such that their horizontal sides either have empty
intersection with the fractures or they coincide with one of the
fractures.

Let

Xf ¼ [If

j¼1Xj

where If is the number of Xj’s having one top or bottom side
contained in some fracture Cðf ;lÞ for some l in the range 1 6 l 6 Jðf Þ.

Set

XNf ¼ X nXf ¼ [INf

j¼1Xj

where INf is the number of all Xj’s such that @Xj \ Cf ;l ¼ ;8l.
Let

N h
j ¼ P1;1ðXjÞ 	 P1;1ðXjÞ

be two copies of the bilinear polynomials on Xj.
Denote by Cjk ¼ @Xj \ @Xk the common side of two adjacent

rectangles Xj and Xk and set

Wh;Nf
33 ðX

Nf Þ ¼ fv : vjXj
2 N h

j ; v is continuous across Cjk for all Xj

� XNf ;Xk � XNf ; v � m ¼ 0 on C n CTg

and

Wh;f
33 ðX

f Þ ¼ fv : v jXj
2 N h

j ; for all Xj � Xf ; v � m ¼ 0 on C n CTg:

To determine p33 we will employ the following finite element space:

Wh
33ðXÞ ¼ W

h;Nf
33 ðX

Nf Þ [Wh;f
33 ðX

f Þ: ð61Þ

Similarly, for p11 and p13 we define

Wh;Nf
11 ðX

Nf Þ ¼ fv : vjXj
2 N h

j ; v is continuous across Cjk for all Xj

� XNf ;Xk � XNf ; v � m ¼ 0 on C n CRg;

Wh;f
11 ðX

f Þ ¼ fv : v jXj
2 N h

j ; 8 Xj � Xf ; v � m ¼ 0 on C n CRg;

Wh;Nf
13 ðX

Nf Þ ¼ fv : vjXj
2 N h

j ; v is continuous across Cjk for all Xj

� XNf ;Xk � XNf ; v � m ¼ 0 on CL [ CBg:

Wh;f
13 ðX

f Þ ¼ fv : v jXj
2 N h

j ; for all Xj � Xf ; v � m ¼ 0 on CL [ CBg:

Then to determine p11 we will employ the space

Wh
11ðXÞ ¼ W

h;Nf
11 ðX

Nf Þ [Wh;f
11 ðX

f Þ: ð62Þ

while for p13 we will use

Wh
13ðXÞ ¼ W

h;Nf
13 ðX

Nf Þ [Wh;f
13 ðX

f Þ: ð63Þ

Next, for the coefficient p55 let us introduce the sets
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Wh;Nf
55 ðX

Nf Þ ¼ fv : v jXj
2 N h

j ;v is continuous across Cjk for all Xj

� XNf ;Xk � XNf v ¼ 0 on CBg;

Wh;f
55 ðX

f Þ ¼ fv : vjXj
2 N h

j ; for all Xj � Xf ;v ¼ 0 on CBg:

To determine p55 we will employ the space

Wh
55ðXÞ ¼ W

h;Nf
55 ðX

Nf Þ [Wh;f
55 ðX

f Þ: ð64Þ

Finally, for p66 we define

Xf
2 ¼ [

I2;f
j¼1X2;j

where I2;f is the number of rectangles X2;jj of the partition of X2 hav-
ing one top or bottom side contained in some fracture Cðf ;lÞ2 for some
l in the range 1 6 l 6 Jðf Þ2 and set

XNf
2 ¼ X2 nXf

2[
INf 2
j¼1X2;j

where INf 2 is the number of all X2;j’s such that @X2;j \ Cf ;l
2 ¼ ;8l. Then

we define

Wh;Nf
66 ðX

Nf
2 Þ ¼ fv : v jX2;j

2 N h
j ;v is continuous across Cjk for all

X2;j � XNf 2;X2;k � XNf
2 ; v ¼ 0 on CB

2g;

Wh;f
66 ðX

f
2Þ ¼ fv : vjXj

2 N h
j ; for all X2;j � Xf

2; v ¼ 0 on CB
2g;

and to determine p66 we use the space

Wh
66ðX2Þ ¼ W

h;Nf
66 ðX

Nf
2 Þ [W

h;f
66 ðX

f
2Þ: ð65Þ

The finite element procedures to determine the pIJ ’s are:
For p33ðxÞ: find uðh;33Þ 2 Wh

33ðXÞ such that

Kðuðh;33Þ; vÞ ¼ � DP;v � mh iCT ; 8v 2 Wh
33ðXÞ: ð66Þ

For p11ðxÞ: find uðh;11Þ 2 Wh
11ðXÞ such that

Kðuðh;11Þ; vÞ ¼ � DP;v � mh iCR ; 8v 2 Wh
11ðXÞ: ð67Þ

For p13ðxÞ: find uðh;13Þ 2 Wh
13ðXÞ such that

Kðuðh;13Þ; vÞ ¼ � DP;v � mh iCR[CT ; 8v 2 Wh
13ðXÞ: ð68Þ

For p55ðxÞ: find uðh;55Þ 2 Wh
55ðXÞ such that

Kðuðh;55Þ; vÞ ¼ � g;v � mh iCnCB ; 8v 2 Wh
55ðXÞ ð69Þ

For p66ðxÞ: find uðh;66Þ 2 Wh
66ðX2Þ such that

Kðuðh;66Þ; vÞ ¼ � g;v � mh iC2nCB
2
; 8v 2 Wh

66ðX2Þ: ð70Þ

Uniqueness for the finite element procedures (66)–(70) can be
shown with the same argument than for the continuous case. Exis-
tence follows from finite dimensionality.

Let us analyze the error associated with the procedure (66). As
usual we will employ the approximating properties of the interpo-
lant of the solution uð33Þ of (39). Let Ph;33 be the local bilinear inter-
polant of uð33Þ defined on the union of all rectangles
RðlÞ; l ¼ 1; . . . ; Jðf Þ þ 1. It is known that Ph;33 satisfies the approxi-
mating properties

ku�Ph;33uk0 þ h
Xl¼Jðf Þþ1

l¼1

ku�Ph;33uk1;RðlÞ 6 Chskuks; 1 < s

6 3=2: ð71Þ

Next we demonstrate the apriori error estimates stated in the fol-
lowing theorem.

Theorem 1. Let uð33Þ and uðh;33Þ be the solutions of (39) and (66),
respectively. Assume that the matrices MRðxÞ and MIðxÞ are positive

definite. Also assume that the coefficients aðlÞR ;a
ðlÞ
I ; b

ðlÞ
R and

bðlÞI ; l ¼ 1; . . . ; Jðf Þ are positive. Then for sufficiently small h > 0 the
following error estimate holds:

kuð33Þ � uðh;33Þk0 þ h1=2
Xl¼Jðf Þþ1

l¼1

kuð33Þ � uðh;33Þk2
1;RðlÞ

0@ 1A1=2

þ h1=2
XJðf Þ
l¼1

X
j;k

uð33Þ � uðh;33Þ
 �
3; uð33Þ � uðh;33Þ
 �

3

� 	
Cðf ;lÞ

jk

�0@
þ uð33Þ � uðh;33Þ
 �

1; uð33Þ � uðh;33Þ
 �
1

� 	
Cðf ;lÞ

jk


�1=2

6 C33ðxÞh
XJðf Þþ1

l¼1

kuð33Þk3=2;RðlÞ : ð72Þ

Proof. Set

eð33Þ ¼ uð33Þ � uðh;33Þ

Subtract (66) from (39) to get the error equation

Kðeð33Þ;vÞ ¼ 0; 8v 2 Wh
33ðXÞ: ð73Þ

Choose v ¼ eð33Þ þPh;33uð33Þ � uð33Þ in (73), take the imaginary part
in the resulting equation to get

Xl¼Jðf Þþ1

l¼1

MIðxÞ~�ðeð33ÞÞ; e�ðeð33ÞÞ
� �

RðlÞ

þx
XJðf Þ
l¼1

X
j;k

aðlÞI ½eð33Þ�3; ½eð33Þ�3
D E

Cðf ;lÞ
jk

þ bðlÞI ½eð33Þ�1; ½eð33Þ�1
D E

Cðf ;lÞ
jk

" #
¼ Im Kðeð33Þ; eð33ÞÞ

� �
¼ Im Kðeð33Þ;uð33Þ �Ph;33uð33ÞÞ

� �
6 Kðeð33Þ;uð33Þ �Ph;33uð33Þ� ��� �� 6 x2 qeð33Þ;uð33Þ �Ph;33uð33Þ� ��� ��
þ

Xl¼Jðf Þþ1

l¼1

MðxÞ~�ðeð33ÞÞ; ~�ðuð33Þ �Ph;33uð33ÞÞ
� �

RðlÞ

������
������

þ
XJðf Þ
l¼1

X
j;k

aðlÞ½eð33Þ�3; ½uð33Þ �Ph;33uð33Þ�3
� 	
������

þ bðlÞ½eð33Þ�1; ½uð33Þ �Ph;33uð33Þ�1
D E

Cðf ;lÞ
jk

#����� � jT1j þ jT2j þ jT3j:

ð74Þ

Let L
ðAÞ and L
ðAÞ denote the minimum and maximum eigenvalues
of the positive definite matrix A, and set

LR;
 ¼ L
ðMRÞ; LI;
 ¼ L
ðMIÞ; LR;
 ¼ L
ðMRÞ; LI;
 ¼ L
ðMIÞ:

Also let

an;
 ¼ minf16l6Jðf Þþ1ga
ðlÞ
n bn;
 ¼minf16l6Jðf Þþ1gb

ðlÞ
n

an;
 ¼ maxf16l6Jðf Þþ1ga
ðlÞ
n ; bn;
 ¼ maxf16l6Jðf Þþ1gb

ðlÞ
n n ¼ R; I:

Then using that MR and MI are positive definite, from (74) and (57)
we conclude that

C1LI;


2

XJðf Þþ1

l¼1

keð33Þk2
1;RðlÞ

þmin aI;
;bI;

� �

x
XJðf Þ
l¼1

X
j;k

½eð33Þ�3; ½eð33Þ�3
� 	

þ ½eð33Þ�1; ½eð33Þ�1
� 	

Cðf ;lÞ
jk

� 


6
LI;


2
keð33Þk2

0;X þ jT1j þ jT2j þ jT3j:

ð75Þ
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Let us bound the last three terms in the right hand side of (75). First,
if q
 denotes the maximum value of the coefficient q, using the
approximating properties (71) the term T1 can be bounded as
follows:

jT1j 6 x2q
keð33Þk0kuð33Þ �Ph;33uð33Þk0

6 x2q
keð33Þk0h3=2
XJðf Þþ1

l¼1

kuð33Þk3=2;RðlÞ

6 C3ðxÞkeð33Þk2
0 þ C4h3

XJðf Þþ1

l¼1

kuð33Þk2
3=2;RðlÞ : ð76Þ

Next, using again (71), for d small to be selected later,

jT2j 6 2 max LR;
; LI;

� �XJðf Þþ1

l¼1

keð33Þk2
1;RðlÞ ku

ð33Þ �Ph;33uð33Þk1;RðlÞ

6 C5ðdÞh
XJðf Þþ1

l¼1

kuð33Þk2
3=2;RðlÞ þ d

XJðf Þþ1

l¼1

keð33Þk2
1;RðlÞ : ð77Þ

Next, note that

½eð33Þ�3; ½uð33Þ �Ph;33uð33Þ�3
� 	

Cðf ;lÞ
jk

���� ����
6 d̂x ½eð33Þ�3; ½eð33Þ�3

� 	
Cðf ;lÞ

jk

þ C6ðd;xÞ kuð33Þ
3 �Ph;33uð33Þ

3 k0;Cðf ;lÞ
jk
þ kuð33Þ

3 �Ph;33uð33Þ
3 k0;Cðf ;lþ1Þ

jk

� �
6 d̂x ½eð33Þ�3; ½eð33Þ�3

� 	
Cðf ;lÞ

jk

þ C7ðd;xÞ kuð33Þ
3 �Ph;33uð33Þ

3 k1;RðlÞ þ ku
ð33Þ
3 �Ph;33uð33Þ

3 k1;Rðlþ1Þ

� �
6 d̂x ½eð33Þ�3; ½eð33Þ�3

� 	
Cðf ;lÞ

jk

þ C8ðd̂;xÞh kuð33Þk2
3=2;RðlÞ þ ku

ð33Þk2
3=2;Rðlþ1Þ

� �
:

ð78Þ

Thus, proceeding similarly with the term ½eð33Þ�1; ½uð33Þ�
�

Ph;33uð33Þ�1iCðf ;lÞ
jk

in T3 we conclude that

jT3j 6 dx
XJðf Þ
l¼1

X
j;k

bðlÞI ½eð33Þ�3; ½eð33Þ�3
D E

Cðf ;lÞ
jk

þ aðlÞI ½eð33Þ�1; ½eð33Þ�1
D E

Cðf ;lÞ
jk

" #

þmax jaðlÞj; jbðlÞj
� �

C8ðd;xÞh
XJðf Þþ1

l¼1

kuð33Þk2
3=2;RðlÞ :

ð79Þ

Next, use the bounds (76), (77) and (79) in (75) to see that for an
appropriate choice of d the following inequality holds:

XJðf Þþ1

l¼1

keð33Þk2
1;RðlÞ

þ
XJðf Þ
l¼1

X
j;k

½eð33Þ�3; ½eð33Þ�3
� 	

Cðf ;lÞ
jk
þ ½eð33Þ�1; ½eð33Þ�1
� 	

Cðf ;lÞ
jk

� 


6 C9ðxÞ keð33Þk0;X þ h
XJðf Þþ1

l¼1

kuð33Þk2
3=2;RðlÞ

0@ 1A: ð80Þ

To estimate the term keð33Þk0;X in the right-hand side of (80) we will
employ a duality argument. Let us consider the solution w of the fol-
lowing (adjoint) problem:

x2qwðx;xÞ�r�r
ðwÞ¼eð33Þ; X

rð
;tÞÞmt;tþ1¼rð
;tþ1ÞÞmt;tþ1ðx1;x3Þ2Cðf ;tÞ;

t¼1; � � � ;Jðf Þ;

rð
;tÞÞmt;tþ1 �mt;tþ1;rð
;tÞÞmt;tþ1 �vt;tþ1

� �T

¼D
ðxÞ ½w� �mt;tþ1; ½w� �vt;tþ1

� �T
;ðx1;x3Þ2Cðf ;tÞ;

t¼1; � � � ;Jðf Þ

rð
;tÞÞmt;tþ1 �mt;tþ1¼0; CT

rð
;tÞÞmt;tþ1 �vt;tþ1¼0; C;

w �m¼0;CnCT : ð81Þ

Here r
 is defined as in (1) but using the complex conjugates of the
coefficients pjklm.

It will be assumed that the solution of problem (81) satisfies the
regularity assumption

XJðf Þþ1

l¼1

kwk3=2;RðlÞ 6 C10keð33Þk0;X: ð82Þ

Testing (81) against v 2 W33ðXÞ we have that

Kðv ;wÞ ¼ ðv ; eð33ÞÞ; v 2 W13ðXÞ: ð83Þ

Choose v ¼ eð33Þ in (83) and use (73) to get

(a)

(b)

Fig. 2. P-wave phase velocity (a) and dissipation factor (b) as a function of
frequency in the direction parallel (squares) and normal (diamonds) to the
fractures. The solid lines indicate the theoretical values.
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keð33Þk2
0 ¼ Kðeð33Þ;wÞ ¼ Kðeð33Þ;w�Ph;33wÞ ¼ �x2 qeð33Þ;w�Ph;33w

� �
þ
XJðf Þþ1

l¼1

MðxÞ~�ðeð33ÞÞ; ~�ðwÞ �Ph;33wÞ
� �

RðlÞ

þ
XJðf Þ
l¼1

X
j;k

"
x aðlÞ½eð33Þ�3; ½w�Ph;33w�3
� 	

þx

*
bðlÞ½eð33Þ�1; ½w�Ph;33w�1

+
Cðf ;lÞ

jk

375 ð84Þ

Next, applying in thee right-hand side of (84) the arguments used to
bound the terms T1; T2 and T3 in (74) we get the inequality

keð33Þk2
0 6 x2q
h3=2keð33Þk2

0 þ C11

Xl¼Jðf Þþ1

l¼1

h1=2keð33Þk0keð33Þk2
1;RðlÞ ; ð85Þ

so that for h sufficiently small

keð33Þk0 6 C12h1=2
XJðf Þþ1

l¼1

keð33Þk1;RðlÞ : ð86Þ

Thus, using (86) in (80) we see that for h small,

XJðf Þþ1

l¼1

keð33Þk2
1;RðlÞ

þ
XJðf Þ
l¼1

X
j;k

½eð33Þ�3; ½eð33Þ�3
� 	

Cðf ;lÞ
jk
þ ½eð33Þ�1; ½eð33Þ�1
� 	

Cðf ;lÞ
jk

� 


6 C13h
Xl¼Jðf Þþ1

l¼1

kuð33Þk2
3=2;RðlÞ : ð87Þ

Finally, using (87) in (86) we see that

keð33Þk0 6 C14h
Xl¼Jðf Þþ1

l¼1

kuð33Þk2
3=2;RðlÞ

0@ 1A1=2

: ð88Þ

(a)

(b)

Fig. 3. Phase velocities (a) and dissipation factors (b) as a function of frequency of
the quasi-shear vertically polarized wave (qSV-wave, circles) and horizontally
polarized (SH-wave, diamonds). The solid lines indicate the theoretical values.
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Fig. 4. A 1D restriction of the ternary fractal used to assign values to LjN ¼ ReðZ�1
N Þ.
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Collecting the estimates in (87) and (88) we conclude the validity of
the estimate in (72). This completes the proof. h

Remark. An identical argument shows the validity of the error
estimate given in Theorem 1 for the solution of the problems
(67) and (68).

To analyze the error associated with (69) we use a similar
argument to that used to estimate the error associated to the
approximate solution of uð33Þ and the fact that the solution uð55Þ

vanishes on a subset of positive measure of C. The analysis is
performed in the following theorem.

Theorem 2. Let uð55Þ and uðh;55Þ be the solutions of (42) and (69),
respectively. Assume that the matrices MRðxÞ and MIðxÞ are positive
definite and that the coefficients aðlÞR ;a

ðlÞ
I ; b

ðlÞ
R and bðlÞI ; l ¼ 1; . . . ; Jðf Þ are

positive. Then for sufficiently small h > 0 the following error estimate
holds:

kuð33Þ � uðh;33Þk0 þ h1=2
Xl¼Jðf Þþ1

l¼1

kuð33Þ � uðh;33Þk2
1;RðlÞ

0@ 1A1=2

þ h1=2
XJðf Þ
l¼1

X
j;k

½uð33Þ � uðh;33Þ�3; ½uð33Þ � uðh;33Þ�3
� 	

Cðf ;lÞ
jk

�0@
þ ½uð33Þ � uðh;33Þ�1; ½uð33Þ � uðh;33Þ�1
� 	

Cðf ;lÞ
jk


�1=2

6 C33ðxÞh
XJðf Þþ1

l¼1

kuð33Þk3=2;RðlÞ : ð89Þ
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Fig. 5. Phase velocities as a function of frequency in the direction parallel (‘11’) and normal (‘33’) to the fractures for variable periodic, fractal and uniform ZN ; ZT .
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Fig. 6. Phase velocities as a function of frequency of the quasi-shear vertically polarized wave (qSV-wave, label ‘55’) for variable periodic, fractal and uniform ZN ; ZT .
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Proof. Let Ph;55 be the local bilinear interpolant of uð55Þ defined on
the union of all rectangles RðlÞ; l ¼ 1; . . . ; Jðf Þ þ 1. Then Ph;55 satisfies
the approximating properties

ku�Ph;55uk0 þ h
Xl¼Jðf Þþ1

l¼1

ku�Ph;55uk1;RðlÞ 6 Chskuks; 1 < s

6 3=2: ð90Þ

Set

eð55Þ ¼ uð55Þ � uðh;55Þ;

subtract (69) from (42) to get the error equation

Kðeð55Þ;vÞ ¼ 0; 8v 2 Wh
55ðXÞ: ð91Þ

Choose v ¼ eð55Þ þPh;55uð55Þ � uð55Þ in (91), take the imaginary part
in the resulting equation, use that MI is positive definite, that aðlÞI

and bðlÞI , l ¼ 1; . . . ; Jðf Þ are positive and the fact that kj � kjRðlÞ defines
a norm for eð55Þ equivalent to the H1ðRðlÞÞ-norm (see (59)) to get
the inequality

C2LI;


2

XJðf Þþ1

l¼1

keð55Þk2
1;RðlÞ þmin aI;
;bI;


� �

	x
XJðf Þ
l¼1

X
j;k

½eð55Þ�3; ½eð55Þ�3
� 	

Cðf ;lÞ
jk
þ ½eð55Þ�1; ½eð55Þ�1
� 	

Cðf ;lÞ
jk

� 


6 x2 qeð55Þ;uð55Þ �Ph;55uð55Þ� ��� ��
þ

Xl¼Jðf Þþ1

l¼1

MðxÞ~�ðeð55ÞÞ; ~�ðuð55Þ �Ph;55uð55ÞÞ
� �

RðlÞ

������
������

þ
XJðf Þ
l¼1

X
j;k

aðlÞ½eð55Þ�3; ½uð55Þ �Ph;55uð55Þ�3
� 	
������

þ bðlÞ½eð55Þ�1; ½uð55Þ �Ph;55uð55Þ�1
D E

Cðf ;lÞ
jk

#����� � jT4j þ jT5j þ jT6j:

ð92Þ

The term T4 can be bounded as

jT4j 6 x2q
keð55Þk0kuð55Þ �Ph;55uð55Þk0

6 x2q
keð55Þk0;h3=2

XJðf Þþ1

l¼1

kuð55Þk3=2;RðlÞ

6 d
XJðf Þþ1

l¼1

keð55Þk2
1;RðlÞ þ C4h3

XJðf Þþ1

l¼1

kuð55Þk2
3=2;RðlÞ : ð93Þ

Also, the terms T5 and T6 can be bounded as the terms T2 and T3 in
the proof of Theorem 1 above (cf. (77) and (79)), so that from (92)
and (93) we get the estimateXJðf Þþ1

l¼1

keð55Þk2
1;RðlÞ

þ
XJðf Þ
l¼1

X
j;k

½eð55Þ�3; ½eð55Þ�3
� 	

Cðf ;lÞ
jk
þ ½eð55Þ�1; ½eð55Þ�1
� 	

Cðf ;lÞ
jk

� 


6 C15ðxÞh
XJðf Þþ1

l¼1

kuð55Þk2
3=2;RðlÞ : ð94Þ

To estimate keð55Þk0 we solve again an adjoint problem replacing
eð33Þ by eð55Þ in (81). A repetition of the argument yields the estimate

keð55Þk0 6 C16h1=2
XJðf Þþ1

l¼1

keð55Þk1;RðlÞ ; ð95Þ

and using (94) in (95) we conclude that

keð55Þk0 6 C17h
XJðf Þþ1

l¼1

kuð55Þk3=2;RðlÞ

0@ 1A1=2

: ð96Þ

The validity of Theorem 2 follows from the estimates (94) and (96).
This completes the proof. h

6. Numerical results

We developed a proprietary set of codes written in fortran lan-
guage to implement the finite-element procedures defined and
analyzed above. All the numerical tests were run in the SUN work-
stations at the Department of Mathematics of Purdue University.
The discrete boundary value problems to determine the complex
stiffnesses pIJ as a function of frequency and the associated phase
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Fig. 7. Dissipation factor as a function of frequency in the direction parallel (‘11’) and normal (‘33’) to the fractures for variable periodic, fractal and uniform ZN ; ZT .
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velocities and dissipation coefficients were solved for 30 frequen-
cies in the selected frequency ranges. The associated linear systems
of equations were solved using a public domain sparse matrix sol-
ver package. This approach yields directly the frequency dependent
phase velocities and dissipation coefficients, instead of solving dy-
namic wave propagation problems in the space–time domain and
then using Fourier transforms to obtain the desired frequency do-
main characterization at the macroscale.

The mesh has a size of 60	 60 square elements and represents
a square fractured sample of side length 6 cm. The solution of each
one of the linear problems associated with the determination of
the complex stiffnesses pIJ for a single frequency requires only a
few seconds of CPU time in the SUN workstations employed. We
consider 29 equally spaced fractures, so the fracture spacing is L
= 2 mm. The properties are taken from Chichinina et al. [5] and cor-
respond to experiments on wet fractures (see their Table 1). We
consider a background medium defined by k = 10 GPa, l =
3.9 GPa and q = 2300 kg/m3. The fractures have the parameters
La = (34 + i 24.9) GPa and Lb = (15.5 + i 11.24) GPa. The frequency

of the signal is f0 = 50 Hz, at which the long-wavelength approxi-
mation is satisfied, since the wavelengths for P and S-waves are
about 48 m and 26 m, respectively.

Let us consider, for instance, the normal complex stiffness of the
fracture, La. The normal stiffness and viscosity introduced in Eq.
(17) can be obtained as j = 34 GPa/L and g = 24.9 GPa/(2 pf0L).
In this manner, a measurement at a given frequency allows us to
establish the general frequency dependence in the form of Eq. (17).

The expressions of the wave velocities and quality factors of the
different modes are given in Appendix A. Fig. 2 shows the P-wave
phase velocity (a) and dissipation factor (b) as function of fre-
quency in the direction parallel (squares and solid lines) and nor-
mal (diamonds and solid lines) to the fractures. The solid lines
indicate the theoretical values, while symbols indicate the finite
element solution. It can be observed a perfect fit of the finite ele-
ment solution to the theoretical values in the whole frequency
range displayed.

Fig. 3 shows the phase velocities (a) and dissipation factors (b)
of the quasi-shear vertically polarized wave (qSV-wave, see nota-
tion in the appendix) and the horizontally polarized (SH-wave).
Again a perfect match between the theoretical and numerical val-
ues is observed.

Next we present a collection of simulations for cases in which
no analytical solutions are available. In the following examples
we employ a mesh of 60 	60 squares elements on a square sample
of 15 cm side length and 29 equally spaced fractures, so that the
fracture distance is L ¼ 0.5 cm.

In the first example we consider two cases of variable complex
compliances embedded in a uniform background with properties
taken from Chichinina et al. [5] that were used in the previous
experiment. In the first case the compliances change periodically
taking the values ZN; ZT and 2ZN;2ZT where ZN and ZT have the val-
ues of the previous experiment (wet fractures), while in the second
case we use a collection of compliances obtained as 1D restrictions
of 2D ternary fractals with 100 % variations of the values of ZN and
ZT used in the previous experiment. The 2D fractals have fractal
dimension 2.2 and correlation length 0.3 in a scale of 10. Fig. 4 dis-
plays one representative set of values assigned to ReðZ�1

N Þ ¼ LjN .
Figs. 5 and 6 display the phase velocities as a function of fre-

quency for these two cases, compared with those of the analytical
case for uniform ZN; ZT , while Figs. 7 and 8 show the corresponding
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Fig. 9. Shear modulus of the fractal shale-limestone composite. Binary fractal of
fractal dimension 2.2 and correlation length 0.06 in a scale of 10.
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140 J.E. Santos et al. / Comput. Methods Appl. Mech. Engrg. 247–248 (2012) 130–145



Author's personal copy

dissipation factors. As expected, in the variable periodic case an in-
crease in fracture compliances is associated with lower phase
velocities and higher attenuation for qP waves parallel (labeled
‘11’) and normal (labeled ‘33’) to the fracture plane and qSV waves
(labeled ‘55’) as compared with the analytical uniform ZN; ZT case.
The ‘33’ and ‘55’ waves are the ones having the larger differences
with respect to the analytical case. On the other hand, for the fractal
ZN; ZT case, phase velocities show intermediate values between the
analytical and variable periodic cases, with the ‘33’ and ‘55’’ waves
showing the larger differences with respect to the analytical curves.
An interesting effect is that in the fractal case the attenuation peaks
for all the waves shift to low frequencies, with larger differences
with respect to the analytical curves of the ‘11’ and ‘33’ waves.

The last example considers the case in which the background is
a fractal binary mixture of shale and limestone. The complex com-
pliances ZN ; ZT are those of the first experiment (wet fractures). The
properties of limestone and shale, taken from [15] as follows: lime-
stone has k = 30 GPa, l = 25 GPa and q = 2700 kg/m3, while shale
has k = 6.28 GPa, l = 1.7 GPa and q = 2300 kg/m3. The examples
consider 10%, 50% and 90% shale content in the composites.
Fig. 9 shows the shear modulus of the highly heterogeneous sam-
ple for the case of 50% shale. The coefficients k and q have a similar
(correlated) spatial fractal distribution. The fractal dimension is 2.2
and the correlation length is 0.06 (in a scale of 10).

Figs. 10–12 display the phase velocities for the ‘11’, ‘33’ and ‘55’
waves for the case of 50% shale content, while Figs. 13–15 show
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Fig. 11. Phase velocities as a function of frequency in the direction normal to the fractures when the background is (1) a fractal binary mixture of shale and limestone with
50% shale fraction, (2) uniform chosen as the average of the Hashin–Shtrikman lower and upper bounds of the bulk and shear modulus (H-S label), (3) uniform chosen as the
arithmetic averages of the heterogeneous background coefficients.
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Fig. 10. Phase velocities as a function of frequency in the direction parallel to the fractures when the background is (1) a fractal binary mixture of shale and limestone with
50% shale fraction, (2) uniform chosen as the average of the Hashin–Shtrikman lower and upper bounds of the bulk and shear modulus (H-S label), (3) uniform chosen as the
arithmetic averages of the heterogeneous background coefficients.
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the corresponding dissipation factors. For reference, these plots also
show the curves corresponding to uniform backgrounds constructed
using the average of the Hashin–Shtrikman lower and upper bounds
of the bulk and shear modulus (curves labeled H-S) and the arithme-
tic averages of the heterogeneous background coefficients.

It can be observed that the phase velocities for the fractal back-
ground case are always lower than the H–S and arithmetic average
cases, with the ‘11’ waves being the more affected by the presence
of the background heterogeneities. On the other hand, for the ‘11’
waves, the attenuation is much stronger for the fractal background
case than for the H–S and arithmetic-average cases. For the ‘33’ and
‘55’ waves, the attenuation is highest for the arithmetic-average

case, while Figs. 14 and 15 display curves for fractal and uniform
H–S backgrounds showing smaller and almost coincident attenua-
tion up to a peak at about 50 Hz; after 50 Hz the attenuation for the
H–S average case decays faster than that of the fractal case.

Finally, Figs. 16 and 17 display the phase velocities and dissipa-
tion factors for the ’11’ waves for 10%, 50% and 90% of shale content
in the fractal composite. Phase velocities show the expected
decrease with decrease in shale content, while dissipation factors
exhibit a shift in the attenuation peak as the shale content in-
creases, with maximum attenuation at the intermediate shale con-
tent of 50% shale. For brevity, we do not include the corresponding
figures for the ‘33’ and ‘55’ waves.
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Fig. 13. Dissipation coefficient as a function of frequency in the direction parallel to the fractures when the background is (1) a fractal binary mixture of shale and limestone
with 50% shale fraction, (2) uniform chosen as the average of the Hashin–Shtrikman lower and upper bounds of the bulk and shear modulus (H–S label), (3) uniform chosen as
the arithmetic averages of the heterogeneous background coefficients.
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Fig. 12. Phase velocities as a function of frequency for quasi-shear vertically polarized wave (qSV-wave) when the background is (1) a fractal binary mixture of shale and
limestone with 50% shale fraction, (2) uniform chosen as the average of the Hashin–Shtrikman lower and upper bounds of the bulk and shear modulus (H-S label), (3) uniform
chosen as the arithmetic averages of the heterogeneous background coefficients.

142 J.E. Santos et al. / Comput. Methods Appl. Mech. Engrg. 247–248 (2012) 130–145



Author's personal copy

7. Conclusions

Schoenberg’s theory predicts that an homogeneous background
containing a set of horizontal parallel fractures behaves like a
transversely isotropic medium at long wavelengths. We presented
a collection of novel numerical quasi-static harmonic experiments
to test and validate the theory. The proposed experiments are
based on a finite-element solution of the equation of motion for
viscoelastic solids in the space-frequency domain to simulate com-
pressibility and shear tests. The fracture behavior is modeled as
discontinuities in the displacement and velocity fields and continu-
ity of stresses at the fracture interfaces, i.e., the fractures are repre-
sented as a set of internal boundaries in our domain.

We have presented a priori error estimates which are opti-
mal for the regularity of the solution, i.e., we have error on
the order of h in the L2-norm and on the order of h1=2 both in
the interior broken energy norm and in the L2-norm on the
set of fractures.

For the case of a dense set of equal fractures embedded in an
isotropic viscoelastic background, the numerical results show a
perfect match with the theoretical values. The advantage of the
present methodology is that it can be applied to more general
cases for which there are no analytical solutions. To illustrate
the capability of the presented methodology to treat more realis-
tic scenarios, we have analyzed the cases of highly heterogeneous
backgrounds and variable fracture compliances, for which no
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Fig. 15. Dissipation coefficient as a function of frequency for quasi-shear vertically polarized wave (qSV-wave) when the background is (1) a fractal binary mixture of shale
and limestone with 50% shale fraction, (2) uniform chosen as the average of the Hashin–Shtrikman lower and upper bounds of the bulk and shear modulus (H–S label), (3)
uniform chosen as the arithmetic averages of the heterogeneous background coefficients.
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Fig. 14. Dissipation coefficient as a function of frequency in the direction normal to the fractures when the background is (1) a fractal binary mixture of shale and limestone
with 50% shale fraction, (2) uniform chosen as the average of the Hashin–Shtrikman lower and upper bounds of the bulk and shear modulus (H–S label), (3) uniform chosen as
the arithmetic averages of the heterogeneous background coefficients.
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equivalent TIV media are available. In both cases, it is concluded
that the presence of heterogeneities induce strong changes in the
values of the complex stiffnesses of the corresponding effective
TIV media. For heterogeneous backgrounds, phase velocities and
quality factors for waves parallel to the fracture plane and qSV
waves are the ones showing strong departures with respect to
the two types of averaged uniform backgrounds used as refer-
ence. For variable periodic and fractal complex compliances,
phase velocities and dissipation factors of waves parallel and nor-
mal to the fracture plane and qSV waves are sensitive to the pres-
ence of heterogeneities, with larger differences for waves normal
to the fracture plane and qSV waves. Also, in the fractal case

attenuation peaks for all waves analyzed shift to lower
frequencies.
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Appendix A. Wave velocities and quality factors

The complex velocities are required to calculate wave velocities
and quality factors of the fractured medium. They are given by [3]
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Fig. 17. Dissipation coefficient as a function of frequency in the direction parallel to the fractures when the background is a fractal binary mixture of shale and limestone with
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101 100
Frequency (Hz)

1000

2000

3000

4000

5000

V
el

oc
ity

 (
m

/s
)

10 % shale

50 % shale

90 % shale

Fig. 16. Phase velocities as a function of frequency in the direction parallel to the fractures when the background is a fractal binary mixture of shale and limestone with 10%,
50% and 90% shale fraction.

144 J.E. Santos et al. / Comput. Methods Appl. Mech. Engrg. 247–248 (2012) 130–145



Author's personal copy

vqP ¼ ð2qÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11l2

1 þ p33l2
3 þ p55 þ A

q
vqSV ¼ ð2qÞ�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11l21 þ p33l2

3 þ p55 � A
q

vSH ¼ q�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p66l2

1 þ p55l2
3

q
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðp11 � p55Þl

2
1 þ ðp55 � p33Þl

2
3�

2 þ 4½ðp13 þ p55Þl1l3�2
q

;

ðA:1Þ

where l1 ¼ sin h and l3 ¼ cos h are the directions cosines, h is the
propagation angle between the wavenumber vector and the sym-
metry axis, and the three velocities correspond to the qP, qS and
SH waves, respectively. The phase velocity is given by

vp ¼ Re
1
v

� �� 
�1

; ðA:2Þ

where v represents either vqP;vqSV or vSH.
The quality factors are given by

Q ¼ Reðv2Þ
Imðv2Þ : ðA:3Þ
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