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A fractured medium behaves as an anisotropic medium when the wavelength is much larger than the dis-
tance between fractures. These are modeled as boundary discontinuities in the displacement and particle
velocity. When the set of fractures is plane, the theory predicts that the equivalent medium is transversely
isotropic and viscoelastic (TIV). We present a novel procedure to determine the complex and frequency-
dependent stiffness components. The methodology amounts to perform numerical compressibility and
shear harmonic tests on a representative sample of the medium. These tests are described by a collection
of elliptic boundary-value problems formulated in the space-frequency domain, which are solved with a
Galerkin finite-element procedure. The examples illustrate the implementation of the tests to determine
the set of stiffnesses and the associated phase velocities and quality factors.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Wave propagation through fractures is an important subject in
seismology, exploration geophysics and mining (e.g. Schoenberg
and Douma [1]). Modeling fractures requires an interface model
for describing their dynamic response. Here, we consider that the
stress components are proportional to the displacement and veloc-
ity discontinuities through the specific stiffnesses and viscosities,
respectively. Displacement discontinuities conserve energy while
velocity discontinuities generate energy loss at the interface. The
specific viscosity accounts for the presence of a viscous liquid un-
der saturated conditions, which introduces a viscous coupling be-
tween the two surfaces of the fracture [2-4].

A dense set of parallel plane fractures can be modeled as a TIV
medium if the dominant wavelength of the traveling waves is
much larger than the distance between the fractures. Chichinina
et al. [5] described anisotropic attenuation in a TI medium using
Schoenberg’s linear-slip model with complex-valued normal and
tangential fracture stiffnesses. Carcione et al. [6] generalized this
theory by extending the orthorhombic model given in Schoenberg
and Helbig [7] to the anelastic monoclinic case. The medium con-
sists of sets of vertical fractures embedded in a TI background med-
ium (generally horizontal fine layering) to form a long-wavelength
equivalent monoclinic medium. There are a few papers presenting
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numerical approaches to determine effective media corresponding
to fractured rocks. Grechka and Kachanov [8,9] perform 3D static
finite-element simulations, summing up the individual contribu-
tions of the fractures and ignoring their interactions. An analysis
of the non-interaction approximation and differential schemes to
predict effective elastic properties of fractured media is presented
in [10]. On the other hand, Saenger et al. [11] present a finite-
difference procedure to solve the viscoelastic wave equation in
the space-time domain. They apply a Heaviside source function
and drive the system to the static limit, which yields the desired
static stiffnesses coefficients. Besides, Saenger et al. [12] perform
numerical simulations in 2D and 3D media saturated with fluids
to analyze Biot’s predictions in the high and low frequency limits
of poroelasticity. An analysis on the effects of fracture
heterogeneity, orientation and size on seismic signatures can be
found in [13].

To test and validate Schoenberg’s theory in [16], we present a
novel finite element approach to determine the complex stiffness
coefficients of the TIV equivalent medium [14]. The methodology
consists of applying time-harmonic oscillatory tests at a finite
number of frequencies. Each test is performed by using the
viscoelastic wave equation of motion expressed in the space-fre-
quency domain, with appropriate boundary conditions, and
solved with a finite-element method (FEM). These tests can be
regarded as an upscaling method to obtain the effect of the fine
layering scale on the macroscale. Finally, we employ the finite
element simulators to determine equivalent TIV effective media
in more realistic scenarios for which no analytical solutions are
available.
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2. The stress-strain relations

Let us consider a viscoelastic background medium and its
description in the frequency domain. The medium has a set of
parallel (horizontal) fractures which are described by appropriate
boundary conditions (see below). Let X = (x1,x2,x3) and u(x) =
(u1,u,,us3) denote the time Fourier transform of the displacement
vector of the viscoelastic medium. Let o; and e;;(u) denote the stress
and strain tensors of the medium. The stress—strain relations of a
general anisotropic medium, including attenuation, are

1/0u Oouy
1

2 (8xm + ax,) M
where the coefficients pj,, are complex and frequency dependent
[3].

When the background medium is isotropic and viscoelastic, the
stress—strain relation is
Oj(U) = A0V - U + 2 ey (u), (2)

where Jj is the Kroenecker delta and 4 and u are the complex Lamé
constants.
Let p = p(x) be the mass density. The equation of motion is

Oji(U) = Djgmeim (L),  €m(U) =

@ pu(x,w) + V- a(ux,m)) =0, (3)

where o is the angular frequency, ¢ is given by (1) for a general
medium and by (2) in the isotropic and viscoelastic case.

Let us consider x; and x3 as the horizontal and vertical coordi-
nates, respectively. If a dense set of parallel fractures is present,
Schoenberg and Douma [1] have shown that the medium behaves
as a TIV medium with a vertical x3-axis of symmetry at long wave-
lengths. Denoting by t; the stress tensor of the equivalent TIV
medium at the macroscale, the corresponding stress—strain rela-
tions, stated in the space-frequency domain, are [15,3]

T11(U) = Pry€11(U) + Pr2€22(U) + Pr3€33(U), (4)
T22(U) = P12€11(U) + P11 €22(U) + Pr3€33(U), (3)
T33(U) = P13€11(U) + Pr3€a2(U) + P33€33(U), (6)
T23(U) = 2pss€a3(U), (7)
T13(U) = 2pss€13(U), (8)
T12(U) = 2Pgg€ra(U). 9

Schoenberg’s theory predicts that if the background medium is
homogeneous, the stiffnesses p;’s in (4)-(9) are given by [16,6]

P =Dy =E—7*Znen,  pip == 72Znen Pys = Jcn, (10)
P33 =Ecn, Pss = Her,  Pes = U

where

cv=(1+EZy)" and cr=(1+puZy)™, (11)

Zy and Zy are the normal and tangential complex compliances of the
fractures (see below) and E = 2 + 2u. The theory assumes that dis-
tance between fractures is much smaller than the wavelength of the
signal and that the boundary condition is the same for all the frac-
tures. Moreover, we assume that the fracture distance is constant,
i.e., there is periodicity. On the other hand, the numerical solver
may consider an inhomogeneous background medium, unequal
fracture distances and dissimilar boundary conditions at the frac-
tures surfaces.

Remark. The €;'s are strain components at the macroscale.

The py are the complex and frequency-dependent Voigt stiff-
nesses to be determined numerically with the harmonic experi-
ments and compared to those given in Eq. (10). In the next section,
we present a numerical procedure to determine the coefficients in
(4)-(9) and the corresponding phase velocities and quality factors.

We will show that for this purpose it is sufficient to perform a
collection of oscillatory tests on representative 2D samples of the
viscoelastic material.

3. Determination of the stiffness components

In order to determine the coefficients in (4)-(9) we proceed as
follows. We solve (3) in the 2D case on a reference square
Q = (0, H)? with boundary T in the (x;,x3)-plane.

Set ' =TtuTrurfur?, where

L:{(xhxg)el"-x]:O}. I* = {(x1,%3) € T : x; = H},
I = {(x1,%3) € T : x3 = 0}, ={(x1,x3) € I' : X3 = H}.

Denote by v the unit outer normal on I" and let y be a unit tangent
on I so that {v, x} is an orthonormal system on TI".

Let us assume that we have a set of J¥) horizontal fractures
¥ 1=1,...,J¥ each one of length L in our domain Q. This set
of fractures divides our domain in a collection of nonoverlapping
rectangles RV, I=1,....F +1, so that

_ JD+1p0)
— URY.

Consider a fracture I'"* and the two rectangles R” and R“*" having
as a common side I, Let v;,,1,%,,,, be the unit outer normal and
a unit tangent (oriented counterclockwise) on T from R® to
R“Y, such that {v,..1, (.., } are an orthonormal system on o,

The boundary conditions at each one of the fractures I'V*" are
the stress continuity and the condition that stress components be
proportional to the displacement and velocity discontinuities
through specific stiffnesses and viscosities, respectively. More pre-
cisely, if u® = u|p» denotes the restriction of u; to RY, we will im-
pose the conditions

=MV (x1,x3) el =1, J9, (12)
T

o )Veein

(a(u“))vt,m Vi1, (U)o ‘xt,m)
T

=D(@) ([u] - Veess 0] L) (xrx) €T, e=1,0 0. (13)

where T indicates the transpose, [u] denotes the jump at VY of dis-
placement vector u, i.e.,

[U] ( t+1 )l 7o
and
a0
DY () — < ) /),m) (14)
where
o (x1,x3, ) = ol (x1,%3) + iwal” (x4, %3) (15)

BO(x1,x3, ) = BY (%1, %3) + iwp” (x1,%3), t=1,....J9,

are the complex (scalar) stiffnesses (per unit length, i.e., stress/
length) associated with the fractures. It will be assumed that
ol ol Y and B are strictly positive. These stiffnesses and the

compliances in Eq. (10) and (11) are related as
1Z0a® =1 and LZPpY =1, (16)

where L is the average spacing between the fractures.

Let us omit the superscript (t) for simplicity in the following.
The components (10) can be obtained by assuming a periodic med-
ium composed of two layers, where one of the layers has the Lamé
constants 4 and yu (the background medium) and the other, repre-
senting the fracture, is very thin with Lamé constants y; = pLg
= p/Zr and Er = J¢ + 24 = pLo. = p/Zy, where p < 1 is the volume
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proportion of fractures, and L is the fracture spacing (constant). The
displacement discontinuities (boundary conditions) associated
with the fractures are [u]; = LZyo33 and [u]; = LZrg43 along the x5
- and x;-directions, respectively (see Schoenberg [16], Egs. (21)-
(23).

According to Eq. (16), the imaginary parts of Z{’ and Z{"’ are neg-
ative, since o, 0", ¥ and p\" are defined strictly positive.

The compliances Z (Zy or Z7) are complex and frequency-depen-
dent and can be expressed as [4,6]

77" = L(x + ion), (17)

where x is a specific stiffness and # is a specific viscosity, having
dimensions of stiffness and viscosity per unit length, respectively.
It follows how to obtain the stiffness components.
(i) To determine p53, we solve (3) in Q using the fracture bound-
ary conditions (12) and (13) and the following boundary
conditions:

o)v-v=—AP, (x;,x3) eI, (18)
ouyv-y=0, (x1,x3)el, (19)
u-v=0, (x,x3)elrurture (20)

In this experiment €1 (i) = €2,(u) = 0 and from (6) we see that this
experiment determines p;; as follows.

Denoting by V the original volume of the sample, its (complex)
oscillatory volume change, AV (w), we note that
M — L7 (21)

v P33(®)
valid in the quasistatic case.

After solving (3) with the boundary conditions (12) and (13)
and (18)—(20), the vertical displacements us(x,H,w) on I'" allow
us to obtain an average vertical displacement u (w) suffered by
the boundary I'". Then, for each frequency w, the volume change
produced by the compressibility test can be approximated by
AV(w) ~ Huj" (w), which enable us to compute ps;(w) by using
the relation (21).

(ii) To determine p,;, we solve (3) in Q using (12) and (13) plus
the following boundary conditions

o)v-v=—AP, (x,x3) e TI*, (22)
ouyv-y=0, (x1,x3)el, (23)
u-v=0, (x,x3)elrurtur’. (24)

In this experiment €33 (u) = €;(u) = 0 and from (4) we see that this
experiment determines p,, as indicated for p;; measuring the oscil-
latory volume change.

(iii) To determine pss, let us consider the solution of (3) in Q
with the fracture boundary conditions (12) and (13) added to the
following boundary conditions

—owyv=g, (X,x)elTuTtur®, (25)
u=0, (x,x3)€el?’ (26)
where

(0,AG),  (x1,x3) e T,
g=1 (0,-AG), (x1,x3) eT*¥,

(=AG,0), (x1,x3) el

The change in shape of the rock sample allows to recover ps;(w) by
using the relation

AG

tg(0(@) =570 @7)

where 0(w) is the departure angle between the original positions of
the lateral boundaries and those after applying the shear stresses
(see for example, [17]).

Measuring the horizontal displacements u;(x;, H, ) at the top
boundary I'", we obtain an average horizontal displacement
5" () suffered by the boundary T”. This average value allows us
to approximate the change in shape by tg(6(w)) ~ u5" (w)/H, which
from (27) let us estimate ps5(w).

(iv) The stiffness pgg is associated with shear waves traveling
in the (x1,x;)-plane. We consider a fractured horizontal slab in
the x,-direction and an homogeneous sample Q, = (O,H)2 in the
(x1,%;)-plane, with boundary T, = 5 UuT5 UTS UT?, where

5= {(x1,x) €T :x, =0}, Th={(x,x)el:x =H},
B ={(x1,x2) €eT:x =0}, T"={(x,x2) e :x, =H}.

We then consider the solution of (3) in Q, using the conditions (12)
and (13) added to the following boundary conditions

—oy=g (n.x)elburiurs, (28)
u=0, (x,%)el}, (29)
where

(07 AG)7 (xlvxz) S rg«
g = (07 _AG)7 (X]7X2) S Fg’

(—AG,0), (x1,X) €T,

Thus, we proceed as indicated for ps5(m).

The calculation of pgg requires an alternative treatment due to
the fact that the sample is finite along the fracture planes which
do not remain parallel after the deformation. In this case, we set
to zero the displacement perpendicular to those planes. This con-
straint has no effect on the calculation since this component is
uncoupled from the motion related to pgg.

(v) To determine p,; we solve (3) in Q using (12) and (13) with
the additional boundary conditions

ou)v-v=—AP, (x1,x3) e TFUTT, (30)
ou)yv-x=0, (x1,x3)eTl, (31)
u-v=0, (x,x)elurs (32)

Thus, in this experiment €,; = 0, and from (4) and (6) we get

AP
(a) Y (b)

AG AG
(c) == (d)
Y *AGAG¢ Ao

Fig. 1. Harmonic tests performed to obtain (a) ps;, (b) py; (c) pss and (d) pgg The
orientation of the horizontal fractures and the directions of the applied stresses on
the boundaries are indicated. The thick black lines indicate zero normal displace-
ments in (a) and (b) and zero displacements in (c) and (d) as in (20), (24), (26) and
(29).
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T11 = P11€11 + D136€33, (33)
T33 = P13€11 + P33€33,

where €;; and €33 are the (macroscopic) strain components at the
right lateral side and top side of the sample, respectively. Then from
(33) and the fact that 717 = 733 = —AP (c.f. (30)) we obtain p,5(w) as

:p116ﬂ 7p33633' (34)

(0]
pis(w) P

Figs. 1(a)-(d) illustrate the experiments needed to compute the
stiffnesses components.

4. The variational formulation

To state a variational formulation for the boundary-value prob-
lems defined in the previous section we need to introduce some
notation. For X ¢ R? with boundary X, let (-,-), and (-,-),, denote
the complex L?(X) and [*(8X) inner products for scalar, vector, or
matrix valued functions. Also, for s € R, || - ||, x will denote the usual
norm for the Sobolev space H*(X) [18]. In addition, if X = Q or
X =T, the subscript X may be omitted such that (-,-) = (-,-)q or
() ={, ) Also, let us introduce the following closed subspaces
of [H'(Q))* and [H'(Q,))*:

Win(Q) = {v € [IX(Q) : ] € H'(RV)P, v
=0onPuT"uT},

Wa3(Q) = {v € [IX(Q)) : vlgo € [H'(RY)P,
=0onMurturty,

Wis(Q) = {v e [[*Q) : v|gw € H'R")?, v-v=0o0n T uT?},

Wss(Q) = {v € [[*(Q)] : v|go € H'(R")]?, v=0o0n T?},

Wes(Qa) = {v € [L*(Q2)]*:: vgo € H'(R")]’, v=0on I3}

Set
Au,v) = Z O'st ), Est(V))go
+ Z[ s, (913 + (B0, [2:) | (35)
Note that the term Z,:l Y si13(0se(U), € (v))zo in (35) can be
written in the form
1941 1941 3 }
S (Oaw) (@) = > (M(@)EW), ()
=1 st=13 =1
J041 } 3
= > (Mg(@)é(u), €(v))gn
=1
+i(My(w)€(u), €(v))gn, (36)
where M(w) = Mg(w) + iM;(w) is a complex matrix given by
A) + 2u(w) () 0
M(w) = M) M) + 2u(w) 0 . (37)
0 0 4u(w)
and
€11 (u)
€(u) = | €s(u)

It will be assumed that the real part Mg(w) is positive definite since

in the elastic limit it is associated with the strain energy density.

Furthermore, the imaginary parts M;(w) are assumed to be positive

definite because of the restriction imposed on our system by the

first and second laws of thermodynamics. See [19] and the appendix

in [20] for a proof of the validity of these assumptions.
Furthermore, note that

JES Jn

o (pu,u)+ 3 (MRé(u), €@ + D (ol ),

=1 =1
JD+1

> (MiE(u), €(u))gn

=1

Au,u) =

+ (ARl [l ), +i

][fJ
+wz<°‘§” [uls, [u}3>r<ﬁ'> + <ﬁ§l> [, [uh>r(ﬁ’l
[

= Re(A(u,u)) +ilm(A(u, u)). (38)

Thus, since the matrices MR and M; are positive definite and the
stiffnesses coefficients o, o’, B and B are positive, for each fre-
quency @ we may associate Re(A(u,u)) and Im(A(u,u)) with the
Fourier transform of the strain energy of our fractured viscoelastic
medium evaluated at that frequency. The imaginary part
Im(A(u, u)) takes into account the energy losses due to both the vis-
coelastic character of the material and the dissipative effect of the
fractures.

Next, multiply equation (3) by v € Ws3(Q), use integration by
parts and apply the boundary conditions (12), (13) and (18)-(20)
to obtain the following variational formulation associated with
the coefficient p;;(m): find u®® € W33(Q) such that:

AU v) = —(AP,v V)1, Vv EWp(Q). (39)

Proceeding similarly, we obtain the following weak formulations for
the other pj’s coefficients:
For p,;: find u™ € Wy, (Q) such that:

AU ) = —(AP, v - Vipr, YU eWn(Q). (40)
For p,5: find u™® € Wy3(Q) such that:
AU, v) = —(AP, v - Vo pr, VU € Wi3(Q). (41)
For pss: find u® € Wss(Q) such that:
AU, v) = —(g, V)ns, Vv € Wss(Q). (42)
For pgg: find u®® € Weg(Q) such that:
Au® ) = —(g, Vs, YV € Wes(Q). (43)

The above formulated boundary-value problems (BVP’s) are associ-
ated with non-coercive second-order elliptic operators having
boundary data in L*(Q), and their solutions are discontinuous across
the fractures T'V?, 1=1,....JY. Consequently, their solutions will
be assumed to belong locally to [H*?]%, i.e., we will assume that
u® e [H*RY?, t=1,...,J¥ +1[21]. This maximal regularity will
be used to analyze the well-posedeness of our BVP’s and to derive
our error estimates.

To analyze the uniqueness of the solution of (39), set AP = 0 and
choose v = u®? in (39) to obtain the equation

1941 JD41

3 (MRe (), &™)y +13 (M),
=1

=1

W2 (pu(33>, u<33)) +

j(f)
é(u(33)))km +Z[<(OCR ‘Hwal )[u® }37[u(33)]3>1—(f.lj
=1
() + i, w0, ] =0 (44



134 J.E. Santos et al./ Comput. Methods Appl. Mech. Engrg. 247-248 (2012) 130-145

Taking the imaginary part in (44) and using that M; is positive def-
inite and that o; > 0, , > 0 we conclude that

en®) =0, in L*R"), (45)
€3(u®) =0, in L*R"), (46)
esw®) =0, in L*RY). (47)
o™ (x1,x3) oul (x,x3)
33)y _ Y% > _ By =273 LAAEYA
e (u=) —x 0, €3(u") %,
=0, ae. inRY,
so that
uf )(tha) FOxs),  uS?(x1,x3)
g¥(x;) ae. in L*R"). (48)
Thus from (47) and (48) have
I (x3)  0g"(x) ; I
(13) _ [0)
2€13(u™) = oy 8x1 0, ae in RY, (49)
which in turn implies
U ()
OF(Xs) 98 *1) _ 0 _ constant ae. in RO. (50)
0X3 0X1
Hence,
ghx) = —Clx + AV, f(1)(x3)
=C%;+BY ae. in RY, (51)

Next, by the Sobolev embedding theorem [18]
H2(RY) — C'RY), (52)
so that u?®, u$®® are uniformly continuous functions on R". Conse-
quently (48) holds for all (x;,x3) € R® as uniformly continuous
functions, and u*¥,u$® have unique extensions to R". Hence,
=fO(x3), =g"(x1) ¥V (x1,x3) €RY.
(33)
On the other hand, the boundary condition (20) tells us that the
normal components of the traces of u®3 vanish on I'® UT", so that

u? (x1,x3) u$? (x1,x3)

(0,x3) =0, uS¥(x,0)=0. (54)
Thus (53) and (54) imply that
U (x1,x3) = u? (x1,%3) = 0. (55)

and we have uniqueness for the solution of (39). Uniqueness for the
solution of (40) and (41) follows with the same argument.

Let us turn to analyze the uniqueness of the solution of (42). Set
g = 0 choose v = u®® in (42). Choosing the imaginary part in the
resulting equation, we obtain

Eu®) =0, in L*RY). (56)

Next, recall Korn’s second inequality [22]:

Z ”Elm

Im=13

igo + 1215 = Cillollgo, ¥V veH'RD),  (57)

and that for any v € [H'(R")]* vanishing on a subset of positive
measure of OR", using (57) it can be shown that [23]

1/2
Il = <Z ll€se(v IIORa) (58)
st=13

defines a norm for » equivalent to the H'-norm. Thus, for some po-
sitive constants C,, Cs,

Gllvlgo <2l < Gl 2lggn, VO € Wss(Q). (59)
Consequently, (56) and (59) imply that
[u® | g =0 (60)

and we have uniqueness for the solution of (42).

5. The finite element method

Let 7"(Q) be a non-overlapping partition of Qinto rectangles €
of diameter bounded by h such that Q = U’ ;. We will assume
the Q;’s are such that their horizontal 51des e1ther have empty
intersection with the fractures or they coincide with one of the
fractures.

Let

Ir
S}f = Uj:l Qj

where [; is the number of Qs having one top or bottom side
contained in some fracture I'Y" for some I in the range 1 < I g]m.
Set

Qv =0\ =u"Q

where Iy; is the number of all ©;'s such that 9Q; N ¥ = gvi.
Let

NI =P11(Q) x Py (%)

be two copies of the bilinear polynomials on ;.
Denote by I'jx = 9Q; N 9Q, the common side of two adjacent
rectangles Q; and Q; and set

WE(@QY) = {v: ]y, € N}, v is continuous across T for all
co¥ o cQ¥v.v=00nT\I"}

and

WH (@) = {v: v]g e N], forall @ c @, v-v=00nT\T"}.

To determine p;; we will employ the following finite element space:

h Nf

Wi (Q) = Wiy’ (QY) U WA (). (61)

Similarly, for p,; and p,; we define
wit @) =
cQv o cQ¥ v.v=00nT\T*}

{v: v\Q € /\/ v is continuous across I'j for all €

WHE@) ={v: vl €N}, VO cQ v v=00nT\T¥},

Wi (@QY) = {v: v]o, € N}, v is continuous across T for all

cQ¥ o cQ¥ v.v=0onT uUT?}.

WH(@) ={v: v]g eNj, forall @ c @, w-v=0onT" uT’}.

Then to determine p,; we will employ the space

WH(Q) = Wi

@) uWi (). (62)
while for p;; we will use

h.N;

Wi (Q) = Wiy (%) uWi (). (63)

Next, for the coefficient ps; let us introduce the sets
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WEN @YY = {v: Vg, € /\/1’77 v is continuous across I'j for all Q;

cO¥ 0,cO¥ v=0onT?Y,

W (@) = {v: v]o €N, forall @ c @, v =0o0n T*}.
To determine ps; we will employ the space

hN
Whs(Q) = Wss'
Finally, for pgg we define
Q) = UM

where I is the number of rectangles Q, ;j of the partition of Q, hav-
ing one top or bottom side contained in some fracture l"g ) for some
l'in the range 1 << J? and set

Q) = 0, \ UMy

S @) unk@). (64)

where Iy, is the number of all Q,;’s such that 9Q,; N F’;” = (PVI. Then
we define

WEN QY = (v Vg, € N7, v is continuous across I' for all
Q) c QY2 0, c QY v=0o0nT%},

WL (@) = {v: v]g € N7, for all Q) c @), v =0on I3},

and to determine pgs we use the space

N

Wis(Q2) = Wee (Q)") UWEL (). (65)

The finite element procedures to determine the p;’s are:
For psy;(w): find u®33) € Wh,(Q) such that

AU vy = —(AP,v - V)1, Vv e Wh(Q). (66)
For p;;(w): find u®™'M € Wi, (Q) such that
AUt ) = (AP, v - V), YveWh(Q). (67)
For p,3(o): find u®™» € Wi, (Q) such that
AU v) = —(AP, v - V) rr, YV € Wi5(Q). (68)
For pss(w): find u®39 e Wi, (Q) such that
AU, v) = —(g,v- V)5, VU € Wis(Q) (69)

For pgg(): find u®® ¢ Wi (Q,) such that

At )= (g, v- Vi, Yve WhS(Qy). (70)
Uniqueness for the finite element procedures (66)-(70) can be
shown with the same argument than for the continuous case. Exis-
tence follows from finite dimensionality.

Let us analyze the error associated with the procedure (66). As
usual we will employ the approximating properties of the interpo-
lant of the solution u®® of (39). Let Iy 33 be the local bilinear inter-
polant of u®3 defined on the union of all rectangles
RV 1=1,....J¥ +1. It is known that I, 33 satisfies the approxi-
mating properties

1= +1
1 —Ms3@llg+h > 1@ =T33l g0

=1
<3/2. (71)

<ol 1<s

Next we demonstrate the apriori error estimates stated in the fol-
lowing theorem.

Theorem 1. Let u®3) and u"33) pe the solutions of (39) and (66),
respectively. Assume that the matrices Mg(w) and M;(w) are positive

definite. Also assume that

BV 1=1,....J9 are positive. Then for sufficiently small h> 0 the
following error estimate holds:
12
h 33) H] 20 )

"
(33) _ 1 (h33) 1/2 L (33)
(|u Nlo +h Z [ut
u(h.33)]3, [u(33) _ U(h'33)}3>r<f»n

LR (%Z {< [u<33) ,

the coefficients o, o’ B and

=1 jk

1/2
+< [u<33) _ u(h.33)]17 [u(33) _ u(h33)}1>r(ﬁ“D
jk
1941
< Caz(w hz [u® H3/2,R(“~ (72)
Proof. Set
o33 — 1y33) _ y(h33)

Subtract (66) from (39) to get the error equation
AE®) ) =0, YveW,(Q. (73)

Choose v = e®® +I;,33u®3 — uB3 in (73), take the imaginary part
in the resulting equation to get

1=/ 41

7 (Mi()Ee®), €(e®))

=1
Jh
co3S | (o1

33 ) 33 33
€%15) py + (B el >1l>rw}
=1 jk jk jk

=Im(A(e®, e<33>)) = lm(A( e ¥
< |(A(e(33)

— I, 33u(33)))
N[ < | (pe) u — Myz3u)|

1=/ 41
+| D (M(w)€(e), € — Ty 33uY))
=1
JO
(D[ W~ M)
=1 jk

+<[§“>[e<33)]1, [t — Hh.33u(33)]1>1—0»‘>:| ' = [T1| +|T2| + T5).
Jk

(74)

Let L,(A) and L"(A) denote the minimum and maximum eigenvalues
of the positive definite matrix A, and set

Lg, =L.(Mg), L. =L M), L[*=L"M), L["=LM).
Also let
. 1 I
On e = mln{1<1g0>+1)°‘r(1) Br. = mln{1<l<4<f)+1}ﬁ§1)
F_ ) H_ D,
oM = MaX g,y s B =max, o, Byn =R,1.

Then using that My and M; are positive definite, from (74) and (57)
we conclude that

CL;.
5 Zn G2 o
(f)
i .., )03 (€ e

=1 jk

(1€, 1%,
J

Ly,
<5 1% g0 + ITi| + [Ta| + [Ts|.
(75)
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Let us bound the last three terms in the right hand side of (75). First,
if p* denotes the maximum value of the coefficient p, using the
approximating properties (71) the term T; can be bounded as
follows:

IT1] < @?p*(|e®[lo[[u® — My 33u® g

3/2Jm+1
< @ p' [ Jgh™* D (U35 00
1=1

JD 41
< C3()[e®V g + Cah™ > 1OV 5 o (76)
=1

Next, using again (71), for 6 small to be selected later,

1941

IT2| < 2max(LR* L’*)ZHe”H]RmHu” — My 33|, o

1941 1941

hZHu” 13, 2.0 +6Z 11 o (77)

Next, note that

(e8], [u®?

L5, 6o

- l'[h‘33 u(33)}3 >r%.1)
J

< dm([e®

33 33 33 33
+Co(6, ) <\|u§ D= DS g o+ 45— 55 >||O.r_(£_,4>)
Ji Jl
< 60([e®)5, (6]
+ Co(6,0) (|1us™

< ()a)<[ 31,5, e

Hh33u3 HIR”+”u3 Hh33u3 ||1R<l+”)
]3>rj@[”

+ Cs(& w)h(”uea)”g/m(h + ||u(33)||§/2_R(H1))‘

(78)
Thus, proceeding similarly with the term ([e®¥];,[u®¥—
I, 33uC¥), )rw in T3 we conclude that
ITsl < 5wZZ {<ﬁ: %05 %) gy + (€% ), }
=1 jk jk

1941

+ max (|oc(’)\, |ﬁ(’>\)Cs(5, Y [u |3, 50
=
(79)

Next, use the bounds (76), (77) and (79) in (75) to see that for an
appropriate choice of é the following inequality holds:

J9+

> 133 g0
=1
Jh
+ ZZ |:<[e(33)}3’ [6(33)}3>r}£.1) + <[e(33

=1 jk

)]17 [663)}1 >rj§£~‘>
JD+1

2
< Co(@) | 1€ log +h D Nu 5 550 |- (80)
=1

To estimate the term [|e®¥ ||, in the right-hand side of (80) we will
employ a duality argument. Let us consider the solution v of the fol-
lowing (adjoint) problem:

@’ pyY(X,0) = V-0 (y) =, Q
) Veerr =0 )i (1,x5) €TV,
t:17"'7j(f)7

T
(0(*'f>)vt,r+1 Va1, 0 ) e -xt,m)

=0 (@) () Ve 9] 2y ) - 0,%5) €15

0<*I))Vt‘t+1 Vi1 =0, r’
Nt Lo =0, T,
y-v=0T\T". (81)

Here ¢~ is defined as in (1) but using the complex conjugates of the
coefficients pj,.

It will be assumed that the solution of problem (81) satisfies the
regularity assumption

7941

Z kug/z,R(’) <
=1

Testing (81) against v € Ws3(Q) we have that

Aw,y) = (v,e?),  veWi(Q). (83)
Choose v =¥ in (83) and use (73) to get

Colle®llo - (82)

(@)
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1000/Q

100 +
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Fig. 2. P-wave phase velocity (a) and dissipation factor (b) as a function of
frequency in the direction parallel (squares) and normal (diamonds) to the
fractures. The solid lines indicate the theoretical values.
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33,2 33 33 2 33
(a) 1350 - 1e®V]lg = A, y) = A(® ¢ — My 339) = — (pe( - M 331)
| © ¢ Numerical
. j(f)Jr]
19257 Analytical + Z (M(w)é(e), e(p) — Mp339)) g
_ =1
1300 I
] I)7,(33
1275 3D {w(ac“[d 3, [ — Mhasyls)
@ ] =1 jk
S
< 1250
= | )
3 +w</}<’[e<33)]1, W - Hh,33l//h> (84)
o 12254 (.
> ] Oy
1200 Next, applying in thee right-hand side of (84) the arguments used to
1175 bound the terms Ty, T, and T5 in (74) we get the inequality
000000000020 1
2 “1,3/2 2 1/2 2
80 4 €% < @?p h e+ Cuu S~ B g€}, (85)
1 10 100 =1
Frequency (Hz)
so that for h sufficiently small
(b) 120 -
10 ] 0 ¢ Numerical 1/2](fl+1
E 33 33
{ —— Analytical 1e%V]lp < Cizh Z e )HLRU)- (86)
100 - 1=1
90 . .
50 Thus, using (86) in (80) we see that for h small,
70 194 X
] 33
g 60 ZHe( )Hl,R“’
=3 ] 1=1
‘9 50 ](f)
40 4 33 33 33 33
. + ZZ {<[e< 5, [€%]5)pon + (€], %] 1) o
301 =1 jk e I
20—- =)D 41 .
104 < C13h Z Hu(33)H3/21R(1J- (87)
0] 1=1
1 T '1'0 T ”160 T Finally, using (87) in (86) we see that
Frequency (Hz)
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Fig. 4. A 1D restriction of the ternary fractal used to assign values to Liy = Re(Zy').
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Collecting the estimates in (87) and (88) we conclude the validity of
the estimate in (72). This completes the proof. O

Remark. An identical argument shows the validity of the error
estimate given in Theorem 1 for the solution of the problems
(67) and (68).

To analyze the error associated with (69) we use a similar
argument to that used to estimate the error associated to the
approximate solution of u®? and the fact that the solution u®>>
vanishes on a subset of positive measure of I'. The analysis is
performed in the following theorem.

Theorem 2. Let u®> and u>% be the solutions of (42) and (69),
respectively. Assume that the matrices Mg(w) and M, (w) are positive
definite and that the coefficients ocg), oc;l), /)’;QD and [3,“), I=1,....J9 are

3000 T T T
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positive. Then for sufficiently small h > 0 the following error estimate
holds:
1/2

=911
ul = a2 4 RE S u
=1

N
LR ZZ [<[u(33) B u(h.33)]37 e — u(h.33)]3>r%“
i J

-1 jk

12
+ (B — uh3), e — k) >r@£”>})
Ji
JD+1

< Gs3(w)h Z [u® ll3 /280 (89)
=1
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|
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Fig. 5. Phase velocities as a function of frequency in the direction parallel (‘11’) and normal (‘33’) to the fractures for variable periodic, fractal and uniform Zy, Zr.
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Fig. 6. Phase velocities as a function of frequency of the quasi-shear vertically polarized wave (qSV-wave, label ‘55’) for variable periodic, fractal and uniform Zy,Zr.
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Fig. 7. Dissipation factor as a function of frequency in the direction parallel (‘11’) and normal (‘33’) to the fractures for variable periodic, fractal and uniform Zy,Zr.

Proof. Let I, 55 be the local bilinear interpolant of u®>> defined on
the union of all rectangles R, 1 =1,... J¥ + 1. Then I, 55 satisfies
the approximating properties

1=/ 41

1 —Mss@llog+h > 1@ —Thssplly g0 < CH[l@fl, 1<

=1

< 3/2. (90)
Set
e(SS) — u(SS) _ u(h,SS)

)

subtract (69) from (42) to get the error equation
A€ ) =0, YveW(Q). (91)

Choose v = e + I, 55u®> — u® in (91), take the imaginary part
in the resulting equation, use that M; is positive definite, that oc}”
and [3,“). 1=1,...,J¥ are positive and the fact that ||| - ||z defines
a norm for e equivalent to the H'(R")-norm (see (59)) to get
the inequality

CZLI ](f)+1 2
2 = Z ”6(55) H]‘R(D + min ((xl.*? [))L*)
I=1

Jh

< @33 () g + (€59 g

I=1 jk

< |w2 (pe(55)7 uss _ Hh.ssu(ss)ﬂ

1= 41
D7 (M(w)€E®), €U — My s5u®))
=1

Jh

+ 122D e, s — My 55u); )

I=1 jk

+</3(l) [e>];, [u® — "h.ssu(ss)]1>ra.z)] = [Ta| + |Ts| + |Te|-

Jjk

(92)

The term T4 can be bounded as

ITal < @?p*[|€lp|[u® — My 55u™ g

1941
< @?p e gz D Ul 500
Oh 3/2.R

=1

D41 3]“41
<O (e g0 + Cal® > [ul3 1200 (93)
=1 =1
Also, the terms T5 and T can be bounded as the terms T, and T3 in
the proof of Theorem 1 above (cf. (77) and (79)), so that from (92)
and (93) we get the estimate

1941

2
Z He(55) Hl,R“’
=1
](f)
3D {Qe(ss)bv €] oo + (1], (€] ) oo
=1 jk i I
JD+1

< Cis(@)h " [u|f3 5 g (94)
1=1

To estimate ||e¥||, we solve again an adjoint problem replacing
€33 by e®> in (81). A repetition of the argument yields the estimate
JD+1
1e62lg < Ci6h™* > 1€}y 4oy, (95)
=1

and using (94) in (95) we conclude that

1041 1/2

1€l < Ci7h Z HU(SS)H3/2,R<’> : (96)
1=

The validity of Theorem 2 follows from the estimates (94) and (96).
This completes the proof. O

6. Numerical results

We developed a proprietary set of codes written in fortran lan-
guage to implement the finite-element procedures defined and
analyzed above. All the numerical tests were run in the SUN work-
stations at the Department of Mathematics of Purdue University.
The discrete boundary value problems to determine the complex
stiffnesses p;, as a function of frequency and the associated phase
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Fig. 8. Dissipation factor as a function of frequency of the quasi-shear vertically polarized wave (qSV-wave, label ‘55’) for variable periodic, fractal and uniform Zy, Z.
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Fig. 9. Shear modulus of the fractal shale-limestone composite. Binary fractal of
fractal dimension 2.2 and correlation length 0.06 in a scale of 10.

velocities and dissipation coefficients were solved for 30 frequen-
cies in the selected frequency ranges. The associated linear systems
of equations were solved using a public domain sparse matrix sol-
ver package. This approach yields directly the frequency dependent
phase velocities and dissipation coefficients, instead of solving dy-
namic wave propagation problems in the space-time domain and
then using Fourier transforms to obtain the desired frequency do-
main characterization at the macroscale.

The mesh has a size of 60 x 60 square elements and represents
a square fractured sample of side length 6 cm. The solution of each
one of the linear problems associated with the determination of
the complex stiffnesses p; for a single frequency requires only a
few seconds of CPU time in the SUN workstations employed. We
consider 29 equally spaced fractures, so the fracture spacing is L
=2 mm. The properties are taken from Chichinina et al. [5] and cor-
respond to experiments on wet fractures (see their Table 1). We
consider a background medium defined by 1 = 10 GPa, u =
3.9 GPa and p = 2300 kg/m>. The fractures have the parameters
Lo = (34 +1i24.9)GPa and LB = (15.5 + i 11.24) GPa. The frequency

of the signal is fo = 50 Hz, at which the long-wavelength approxi-
mation is satisfied, since the wavelengths for P and S-waves are
about 48 m and 26 m, respectively.

Let us consider, for instance, the normal complex stiffness of the
fracture, Lo.. The normal stiffness and viscosity introduced in Eq.
(17) can be obtained as x = 34 GPa/L and n = 24.9 GPa/(2 mf,L).
In this manner, a measurement at a given frequency allows us to
establish the general frequency dependence in the form of Eq. (17).

The expressions of the wave velocities and quality factors of the
different modes are given in Appendix A. Fig. 2 shows the P-wave
phase velocity (a) and dissipation factor (b) as function of fre-
quency in the direction parallel (squares and solid lines) and nor-
mal (diamonds and solid lines) to the fractures. The solid lines
indicate the theoretical values, while symbols indicate the finite
element solution. It can be observed a perfect fit of the finite ele-
ment solution to the theoretical values in the whole frequency
range displayed.

Fig. 3 shows the phase velocities (a) and dissipation factors (b)
of the quasi-shear vertically polarized wave (qSV-wave, see nota-
tion in the appendix) and the horizontally polarized (SH-wave).
Again a perfect match between the theoretical and numerical val-
ues is observed.

Next we present a collection of simulations for cases in which
no analytical solutions are available. In the following examples
we employ a mesh of 60 x60 squares elements on a square sample
of 15 cm side length and 29 equally spaced fractures, so that the
fracture distance is L = 0.5 cm.

In the first example we consider two cases of variable complex
compliances embedded in a uniform background with properties
taken from Chichinina et al. [5] that were used in the previous
experiment. In the first case the compliances change periodically
taking the values Zy, Zr and 2Zy,2Z7 where Zy and Zr have the val-
ues of the previous experiment (wet fractures), while in the second
case we use a collection of compliances obtained as 1D restrictions
of 2D ternary fractals with 100 % variations of the values of Zy and
Zr used in the previous experiment. The 2D fractals have fractal
dimension 2.2 and correlation length 0.3 in a scale of 10. Fig. 4 dis-
plays one representative set of values assigned to Re(Zy') = Lky.

Figs. 5 and 6 display the phase velocities as a function of fre-
quency for these two cases, compared with those of the analytical
case for uniform Zy, Zy, while Figs. 7 and 8 show the corresponding
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Fig. 10. Phase velocities as a function of frequency in the direction parallel to the fractures when the background is (1) a fractal binary mixture of shale and limestone with
50% shale fraction, (2) uniform chosen as the average of the Hashin-Shtrikman lower and upper bounds of the bulk and shear modulus (H-S label), (3) uniform chosen as the
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Fig. 11. Phase velocities as a function of frequency in the direction normal to the fractures when the background is (1) a fractal binary mixture of shale and limestone with
50% shale fraction, (2) uniform chosen as the average of the Hashin-Shtrikman lower and upper bounds of the bulk and shear modulus (H-S label), (3) uniform chosen as the

arithmetic averages of the heterogeneous background coefficients.

dissipation factors. As expected, in the variable periodic case an in-
crease in fracture compliances is associated with lower phase
velocities and higher attenuation for qP waves parallel (labeled
‘11’) and normal (labeled ‘33’) to the fracture plane and qSV waves
(labeled ‘55’) as compared with the analytical uniform Zy, Z; case.
The ‘33" and ‘55’ waves are the ones having the larger differences
with respect to the analytical case. On the other hand, for the fractal
Zn,Zr case, phase velocities show intermediate values between the
analytical and variable periodic cases, with the ‘33’ and ‘55" waves
showing the larger differences with respect to the analytical curves.
An interesting effect is that in the fractal case the attenuation peaks
for all the waves shift to low frequencies, with larger differences
with respect to the analytical curves of the ‘11’ and ‘33’ waves.

The last example considers the case in which the background is
a fractal binary mixture of shale and limestone. The complex com-
pliances Zy, Zr are those of the first experiment (wet fractures). The
properties of limestone and shale, taken from [15] as follows: lime-
stone has / = 30 GPa, u = 25 GPa and p = 2700 kg/m>, while shale
has 4 = 6.28 GPa, pt = 1.7 GPa and p = 2300 kg/m>. The examples
consider 10%, 50% and 90% shale content in the composites.
Fig. 9 shows the shear modulus of the highly heterogeneous sam-
ple for the case of 50% shale. The coefficients 2 and p have a similar
(correlated) spatial fractal distribution. The fractal dimension is 2.2
and the correlation length is 0.06 (in a scale of 10).

Figs. 10-12 display the phase velocities for the ‘11, ‘33’ and ‘55’
waves for the case of 50% shale content, while Figs. 13-15 show
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Fig. 12. Phase velocities as a function of frequency for quasi-shear vertically polarized wave (qSV-wave) when the background is (1) a fractal binary mixture of shale and
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Fig. 13. Dissipation coefficient as a function of frequency in the direction parallel to the fractures when the background is (1) a fractal binary mixture of shale and limestone
with 50% shale fraction, (2) uniform chosen as the average of the Hashin-Shtrikman lower and upper bounds of the bulk and shear modulus (H-S label), (3) uniform chosen as

the arithmetic averages of the heterogeneous background coefficients.

the corresponding dissipation factors. For reference, these plots also
show the curves corresponding to uniform backgrounds constructed
using the average of the Hashin-Shtrikman lower and upper bounds
of the bulk and shear modulus (curves labeled H-S) and the arithme-
tic averages of the heterogeneous background coefficients.

It can be observed that the phase velocities for the fractal back-
ground case are always lower than the H-S and arithmetic average
cases, with the ‘11" waves being the more affected by the presence
of the background heterogeneities. On the other hand, for the ‘11’
waves, the attenuation is much stronger for the fractal background
case than for the H-S and arithmetic-average cases. For the ‘33’ and
‘55’ waves, the attenuation is highest for the arithmetic-average

case, while Figs. 14 and 15 display curves for fractal and uniform
H-S backgrounds showing smaller and almost coincident attenua-
tion up to a peak at about 50 Hz; after 50 Hz the attenuation for the
H-S average case decays faster than that of the fractal case.

Finally, Figs. 16 and 17 display the phase velocities and dissipa-
tion factors for the 11’ waves for 10%, 50% and 90% of shale content
in the fractal composite. Phase velocities show the expected
decrease with decrease in shale content, while dissipation factors
exhibit a shift in the attenuation peak as the shale content in-
creases, with maximum attenuation at the intermediate shale con-
tent of 50% shale. For brevity, we do not include the corresponding
figures for the ‘33’ and ‘55’ waves.
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Fig. 14. Dissipation coefficient as a function of frequency in the direction normal to the fractures when the background is (1) a fractal binary mixture of shale and limestone
with 50% shale fraction, (2) uniform chosen as the average of the Hashin-Shtrikman lower and upper bounds of the bulk and shear modulus (H-S label), (3) uniform chosen as

the arithmetic averages of the heterogeneous background coefficients.
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Fig. 15. Dissipation coefficient as a function of frequency for quasi-shear vertically polarized wave (qSV-wave) when the background is (1) a fractal binary mixture of shale
and limestone with 50% shale fraction, (2) uniform chosen as the average of the Hashin-Shtrikman lower and upper bounds of the bulk and shear modulus (H-S label), (3)
uniform chosen as the arithmetic averages of the heterogeneous background coefficients.

7. Conclusions

Schoenberg’s theory predicts that an homogeneous background
containing a set of horizontal parallel fractures behaves like a
transversely isotropic medium at long wavelengths. We presented
a collection of novel numerical quasi-static harmonic experiments
to test and validate the theory. The proposed experiments are
based on a finite-element solution of the equation of motion for
viscoelastic solids in the space-frequency domain to simulate com-
pressibility and shear tests. The fracture behavior is modeled as
discontinuities in the displacement and velocity fields and continu-
ity of stresses at the fracture interfaces, i.e., the fractures are repre-
sented as a set of internal boundaries in our domain.

We have presented a priori error estimates which are opti-
mal for the regularity of the solution, i.e., we have error on
the order of h in the I>-norm and on the order of h'/? both in
the interior broken energy norm and in the L*-norm on the
set of fractures.

For the case of a dense set of equal fractures embedded in an
isotropic viscoelastic background, the numerical results show a
perfect match with the theoretical values. The advantage of the
present methodology is that it can be applied to more general
cases for which there are no analytical solutions. To illustrate
the capability of the presented methodology to treat more realis-
tic scenarios, we have analyzed the cases of highly heterogeneous
backgrounds and variable fracture compliances, for which no
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Fig. 16. Phase velocities as a function of frequency in the direction parallel to the fractures when the background is a fractal binary mixture of shale and limestone with 10%,

50% and 90% shale fraction.
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Fig. 17. Dissipation coefficient as a function of frequency in the direction parallel to the fractures when the background is a fractal binary mixture of shale and limestone with

10%, 50% and 90% shale fraction.

equivalent TIV media are available. In both cases, it is concluded
that the presence of heterogeneities induce strong changes in the
values of the complex stiffnesses of the corresponding effective
TIV media. For heterogeneous backgrounds, phase velocities and
quality factors for waves parallel to the fracture plane and qSV
waves are the ones showing strong departures with respect to
the two types of averaged uniform backgrounds used as refer-
ence. For variable periodic and fractal complex compliances,
phase velocities and dissipation factors of waves parallel and nor-
mal to the fracture plane and qSV waves are sensitive to the pres-
ence of heterogeneities, with larger differences for waves normal
to the fracture plane and qSV waves. Also, in the fractal case

attenuation peaks for all
frequencies.

waves analyzed shift to lower
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Appendix A. Wave velocities and quality factors

The complex velocities are required to calculate wave velocities
and quality factors of the fractured medium. They are given by [3]
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vgp = (2p) " \/pnﬁ + Pyl + Pss + A
vesv = (2p) " \/Pnlf + P33l + pss — A

vsi = p~'\/pesl; + Pssls

A=\/(Pry — Pss)EE + (pss — P33BT + 4[(py3 + sl P,

where [; =sin0 and l; = cos0 are the directions cosines, 0 is the
propagation angle between the wavenumber vector and the sym-
metry axis, and the three velocities correspond to the gqP, qS and
SH waves, respectively. The phase velocity is given by

Up = {Re (%)} 71, (A.2)

where v represents either vgp, Uqsy OT Ush.
The quality factors are given by

(A1)

_ Re(2?)
Q= W (A3)
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