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Summary

This work develops the Spectral Element Method (SPEM) [or
the solution of the two-dimensional clastic wave equation. The
advantages of SPEM compared to low-order finitc elements is
the high accuracy, and the possibility of using less grid points per
minimum wavelength. In addition, SPEM is more flexible than
conventional [inite differences and pseudospectral methods for
describing problems with complex geometries; irregular surfaces
between different media can be defined with great accuracy and
boundary conditions can be easily implemented. The algorithm
is tested against the analytical solution in a two-dimensional
homogeneous medium, and numerical simulations through a
steplike surface layer overlying a half spacc are computed.

Introduction

The Spectral Element Method is a high-order fimite element
technique and for this reason it is a particular casc ol the class
of discrete numerical techniques [or solving differential
equations, known as the method of weighted residuals (MWR).
Its distinguishing feature is that the computational domain is
build up using a tensor product of high-order orthogonal
functions. In this way, the method combines the characternstics
of both spectral and [inite element methods. In particular,
interface problems are easily and accurately described. With the
MWR, the solution of a problem is computed by solving an
equivalent variational form lLe., by minimizing a residual with
respect to a suitable norm. The residual is usually computed as
the error produced in the differential cquation when a truncated
expansion is used instead of the exact solution. To this cnd. a
set of trial (unctions and a set of weight functions must be
defined. The trial (unctions are used as the basis functions [or the
truncated series expansion of the solution, while the weight
functions are used to ensure that the d.(Terential equation is
satisfied as closely as possible by the truncated series expansion.
In the case of [inite element methods, the trial functions are build
up as a sum of [unctions with local support, and thus they are
well suited for handling complex geometries (Flughes, {987).
Following the Galerkin approach, the weight functions can be
the same as the trial [unctions and arc, therefore, smooth
functions which individually satisfy the boundary conditions.
The Chebyshev SPEM is based on the idea of decomposing the
computational domain into rectangular subdomains, and then,
on each subdomain expressing the solution of the variational
problem by a truncated expansion of Chebyshev orthogonal

olynomials (Patera, 1984). o

n previous works, Priolo and Seriani (1991) and Scnani and
Priolo (1991) have developed and investigated the method for the
acoustic wave equation. They found that the method necds a
low value of (thc number of grid points per minimum
wavelength), close to that used by gﬁobal pseudospectral
methods, and that the accuracy is high and almost unchanged
even for very long propagation distances. — The method
practically eliminates errors due to iumerical dispersion,
common in low order finite elements. A valuc of G=4.5, for
example, is necessary when using polynomials of order N=8,
compared with the values of G=15-30 needed by standard finite
difference or [inite element schemes (Marfurt, [984).

2D Chebyshev Spectral Element Space

In first place, the approximating functional spaces must be
constructed. To do this we decompose the original spatial
domain into subdomains, and then, on ecach subdomain an
approximating function is defined as a truncated cxpansion of
Chebyshev polynomials. More specifically, in the case of
two-dimensional problems, we decompose the original spatial

domain 2 into non-overlapping quadrilateral elements €,
where ¢ = |, .. 1, and n, is the total number of elements. Icre,
we assume that the Euclidean space R? is referred to an
orthonormal system (0, e, e;), i.e. X=xe, + e, = {x,}, where X
is the position vector on £2."As approximating (unctions on each
element £2,. we choose [unctions belonging to the P, ®P,
space ie., polynomials of degree <A, inx and of egreé
< N, in x;. Then, a global approximating [unction is build up as
a sum of the clemental approximating [unctions. This is,
therefore. a continuous function which is a piccewisc polynomial

defined on the decomposition € of the original domain €2. In our
case, the polynomial space is constructed by using the
Chebyshev orthogonal polynomials and [or simplicity we assume
N, = N.= N e, the order of the polynomials 1s the same in the
two directions x; and x,.

It can be shown that a {unction f{€) =,/ﬁf,, £, defined on the
square interval [ 1, 17> [ =1, 1], can be approximated by a
truncated expansion  using a tensor product of Chebyshev
polynomials as [ollows:
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where J = fl€) are the grid values of the [unction f, and
w({)e P, are Lagrangian interpolants satisfying the rclation
) == 5, within the interval [ —1,1] and identically zero
outside. [lere &, denotes the Kronccker-delta symbol and

£ stands for £ or &, 'The Lagrangian intersolants are given by
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where [, are the Chebyshev  polynomials and ( are the
Chebyshev Gauss-Lobatta quadrature poiats (= cos(m'/N) for
i=0,...N. The coordinates &, = {&,, £,} of the internal nodcs
for the discretization  of  the quadrilateral  domain
[ 1,17 % ~1, 1] are obtained as Cartesian progucts of the £,
pownts. [ order te apply these interpolants and construct the
approximaung {unction space, we need (o deline the mapping
ARy xeQ ~Eme[ -1 1] between the points
xela, a,]x[h, b ] ol cach clement Q, of the decomposition

Q in the physical space and the Jocal element coordinate system
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with A==, — 4, and  A;=b,,, — b, dimensions of the clement

Q.. Then, the global approximating function is formed by the
sum of the elemental approximating functions (1) defincd on
each clement.

Two-dimensional Elastic Wave Equation

I'or a disturbance propagating in a bounded, inhomogeneous
medivim,  the elastic " field 1s described by the classical
clastodynamic equation {c.g. Pilant, 1979). Let us denote by 2
a domain with boundary ["and lot us assune that Q2 is an open,
hounded and connected region of R and that ™ is a pieccwise
continuous curve where boundary conditions can be imposed.

Furthermare, we denote by ¢ the timne variable defined over
[0,7] with 7>0e R, and &.u as the partial derivative with
respect to the variable x, . Using the abbreviated subscript
notation of acoustic, let us deline the differential operator D as

1285




Downloaded 12/25/13 to 93.44.42.87. Redistribution subject to SEG license or copyright; see Terms of Use at http:/library.seg.org/

SPEM for elastic wave modeling

8, 0
D=0 3,] |, C
62 aI

T T
and o= {o, T, o1} £={g L€, 261) (5)
the stress and the strain vectors respectively, and the superscript
T denotes the transposc of a vector or a matrix. With these
definitions the equation of motion becomes

T
p— —Doou) =1 |, (6

ar )
where u(x,? is the displacement field, f(x,f} are the body forces

per unit volume in £, and p is the density. The stress-strain
relation for a linear elastic and isotropic medium is given by

o(u) = Ce(u) , (M
where C is the elastic stiffness matrix

A+2u 2 0
C=| A A+ 0} , (8)
0 0 u

and p and A are the Lame constants. The components of the
stratn vector € are related to the displacement field by

gu = Du . )

Equations (6) to (9), with suitable conditions specified on the
boundaries and prescribed initial conditions for the elastic field,
describe the prolpagation of compressional and shear waves in a
two-dimensional inhomogeneous medium. If we look for
sufficiently regular solutions u, and no forces are imposed on the
boundary [, an equivalent variational [ormulation of equation
(6) is to find the s&ution u(x,n of
2

%(w,pu)ﬂ +oawu)g = W0y (10)

for all functions w(x) which vanish on the boundary [' and
which, together with their first derivatives, are square integrable

over {). The quantities a(+,+)y and {+,:), are symmetric,

bilinear forms defined by “ e

(w, pu)gy = J. pw «udQ (11)
Q

a(w,u)g = J e(w) o(w) dQ = J wD'CDudl , (12)
Q Q :

W) = J. wo.[dQ . (13)
Q

where equations (7) and (9) have been used.

SPEM method

In order to obtain the spectral-element approximation of
equation  (10), we decompose £) into rectangular
non-overlapping elements €, , and on the decomposition £ we
define the trial [unctions u(x,!) and the weight functions w(x)
such that

n, Ny

i) = Jamo, = v, (14)

e=1 e=1

where u, and w, denote the restriction to £ of u and w,
respectively. According to the Galerkin approach, the functions
u, and w, take the following form in the local coordinate
system:
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where u{(f, 1) and w,() are the grid values of the unknown
solution and of the weight functions, respectively. Using the
approximating function spaces 514) to solve equation (ID), it
follows that the two-dimensional wave propagation problem is
equivalent to finding u, such that for all w, the following

equations are satisfied in each clement Q, :
o . o~
F(we, PUy + alW, Uy = (Wefolw (16)
!

where a(e,+)y and (+,+), are symmetric, bilinear forms
computed according to the definitions (1I-13) at the element
level. Using the previous definition of <p,(§) (eq. (2)), we can
compute the derivative matrix D, = do{(()/d{ and then, the
discrete differential operator

v | Dudy 0
DS;) = 0 Dy b . (17)
k=0| Dy Dydy

We now apply the exi)ansions (15) to the terms of equation (16)
and evaluate the resulting elemental integrals using the mapping
A“(x) and the discrete operator (17).. Requiring that the
variational equation be satisfied for all w,, the spectral element
approximation of the original equation f‘mal[y yields a set of
linear equations

MU+ KU=F, (18)

with U(0) = {U,}, U(0)={U,} as initial conditions, where the
unknown vector U contains the values of the discrete solution u
at all Chebyshev points x{, for ij=0,..,N and for all
e=0,..,n. A dot above a variable denotes dillerentiation
with respect to the time. In equation (18), M is the mass
matrix, K is the stiffness matrix, and F is the force vector
obtained after a global nodal renumbering and assembly ol all
the elemental matrices and force vector contributions. They can
be computed by using the following expressions:

fl' n, LR
-y M9 =) 'k® WG
M—ZM K ZK andFZ:ﬂ , (19)
o= e= =

where L' denotes the matrix element summation or 'stiflness’
summation over all the elements, and M®, K@ and F* are the
elemental matrices and force vector, respectively. The
contributions from nodes which are common to an element pair
are summed to enforce the continuity requirement of the solution
on the element boundaries. The elemental matrices and force
vector are given by

MO = M) Ml = 0 s dnd . GO
Qi
KO - [k], K = f p{"c b 40 | @1
Q,
= {, K - J ¢ 1dQ (22)
Q,
where Mg, , K4, and F} are the nodal submatrices and vector
res ectivel"if. To solve the sgstem of lincar, second-order ODE
with constant coefficients (18), we must integrate over the time

interval [0, T]. This may be done by discretizing the time
variable as t,=nAt, 0<n< N;, where Ar=TIN,, and N, is
the total number of time steps. The solution at time I, , is
U= U(r). As time integration scheme we use the Newmark
Constant Average Acceleration scheme , which is a two-step
implicit algorithm, unconditionally stable and second-order
accurate (Hughes, 1987). The solution at time ¢,,, is obtained
by solving the sparse, symmetric system of linear equations

2 2 . 2
<M + AT’ K)U,,H = -A4’— Fo + M(U,, + AU, + A—;- U,.>(23]

with the Conjugated Gradient method preconditioned by the
[ncomplete Cholesky [Factorization.
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Numerical results

In order to check the accuracy of the algorithm, we compare
analytical and numerical solutions for an impulsive point force
acting in an elastic homogeneous medium (e.g., Pilant, 1979).
The test model is shown n Figure 1, and consists of a square
domain with side L = 1980 m , and velocities and density given
by V,= 3000m/s ., V,= I800m/s , and p = 2400 kg/m* ,
res ecplvelK: A vertical ll;anf%-;imited ffgt(c is afplied[al omt]S,
with time-history given t) = ex t-t, )1 | cos| 2rf{t-t)) J ,
where t,= 0.0818's , C =y 1032, ang [ = 2)2 Hz. The cut)-off
frequency of this source is f; = 50 Hz . The domain is
discretized in straight Chebyshev quadrangles of order N= 8 with
a value of G=4.8, according to Priolo and Seriani {1991).
Therefore the model consists of 33x33 elements; the size of the
elements and the minumum grid distance are As= 60 m , and
Ax,= 7.5m , respectively. A time step At = 0.375ms is
chosen, to ensure accuracy.

Figure 2 displays a snap shot of [u] at time 0.036 s, where the
P- and S-waves can be easily recognized., Figures 3a to 3d
compare analytical and numerical scismograms recorded at
stations G, , G,, and G; , as shown in Figure 1. The y,
component at stations G, and G, are not displayed since they are
identically zero. The agreement is excellent with a maximum
error of nearly 1% for all the stations. Machine accuracy can
be achieved by increasing the order of the polynomial.

A more realistic example is displayed in Figures 4a to 4d. The
model consists of a surface layer' with a steplike structure
overlying a half-space. Free boundary conditions are imposed
at the surface. The geometry and physical properties are shown
in Figure 4a. A vertical point source, ingicated by a star, is
applied at the surface. Fig. 4a to 4c show snapshots of [u] at
propagation times 0.024 s, 0.036 s, and 0.04; s, respectively,
where the direct P- and S-waves can be easily identified. More
interesting are the near-surface phenomena, which can:be seen
in Figures 4b and dc in the form of Rayleigh waves (R). In

particular, Tigure 4b, shows that the Rayleigh wave splits into

two at the step, one ot them reflected back (R1), and the other
travelling downwards (1{2%. This wave is partially converted into
an § wave (R2S in fig 4c). Figures 4d and 4e show the vector
field u in a zone around the step at times 0.036 s and 0.048 s,
respectively. The vector representation enhances the
comprehension of the particle motion: compressional waves (P),
shear waves (§), and the retrograde motion of the interface waves
can be easily identified. In garticular, Figure 4e shows a S-wave
ront (S) travelling through the surface layer, followed by a
pseudo-Stoneley wave (pSt) propagating along the solid-solid
interface with a retrograde motion. The velocity of this interface
wave lies between the velocity of the layer and th Rayleigh wave
velocity of the half space.

Conclusions

The algorithm is highly accurate as shown by the comparison of
the analytical and numerical solutions in a homogeneous elastic
medium. In fact, by using Chebychev polynomials of order eight,
the maximum error is less than one percent. However, machine
accuracy can be reached by increasing the order of the
polynomial. The model with surface topography shows that the
modeling correctly describes the wave phenomena, in particular
the RayFeigh waves interacting with the corner, and the Stoneley
wave at the solid-solid interface. Waves in this the of structure
are naturally simulated by the SPEM algorithm but require
special treatments with other direct metlods since the corner
generates instabilities. The main drawback of the methad at the
present stage is that it is not highly efficient in terms of storage
and computer time. However, these disadvantages can be solved,
for instance, by computing the solution element by element.
Additional improvements involve the generalization of the
method to curved quadrangular elements in order to model
curved interfaces, amé1 its extension to the three-dimensional case.
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Fig. I. Comparison between the analytical and numerical solutions for the response of a vertical force in an elastic
homogencous medium, (a) recording configuration, (b) snapshot of |u| at 0.036 s propagation time, (c) u,
component at G,, (d) y, comp. at G, (¢} u; comp. at G,, and (f) u, comp. at G,.
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Fig. 2. Snapshots of the seismic response of the steplike surface
layer model, (a) {u| at 0.024 s, (b) {u] at 0.036 s, (c) |u] at
@ 0.048 5, (d) u at 0.036 s, and (e) u at 0.048 s.
References
Hughes, T., 1987, "The finite element method”, Prentice-Hall,
New Jersey. o
Marfurt, KJ., 1984, “Accuracy of Finite-Differcnce and

1288




