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Srmniary 

This work develops the Spectral Element Method (SPEM) ror 

the solution of the two-dimensional elastic wave equation. The 
advantages of SPEM compared to low-order finite elements is 
the high accuracy, and the possibility of using less grid points per 
minimum wavelength. In addition, SI’EM is more flexible than 
conventional linite differences and pseudospcctral methods for 
describing 
between dt .K 

roblems with complex eometries; irregular surfaces 
erent media can be de med with great accuracy and P 

boundary conditions can be easily implemented. The algorithm 
is tested against the analytical solution in a two-dimensional 
homogeneous medium, and numerical sirnulations through a 
steplike surface layer overlying a half space arc computed. 

Jntroduction 

The Spectral Element Method is a high-order finite elcmcnt 
technique and for this reason it is a particular cast of the class 
of discrete numerical techniques for solvin 

?? 
ditrerential 

equations, known as the method of weighted rest uals (MWR). 
Its distinguishing feature is that the computational domain IS 
build up using a tensor product of lligh-order orthogor?al 
functions. In this way, the method combines the characterlstlcs 
of both spectral and linite element rnethods. In particular, 
interface roblems are easily and accuratelv described. With the 
MWR tl!e solution of a problem is cot6puted bv solvmg an 
equivalent variational form i.e., by minimizing a residual with 
respect to a suitable norm. The residual is usually computed as 
the error produced in the direrential equation when a truncated 
expansion is used instead of the exact solution. To this end. a 
set of trial functions and a set of weight functions must be 
defined. The tr-ial functions are used as the basis functions for the 
truncated series expansion of the solution, while the wcig& 
functions are used to ensure that the d,n‘erential equario? ts 
satisfied as closely as possible by the truncated series expansron. 
In the case of finite clement methods, the t:ial functions are build 
up as a sum of functions with local support, and thus they are 
well suited for handling coml)lcx feorncpics (Flughes, 1987). 
Following the Galerkin approach, t le wcrght functions can be 
the same as the trial fwctions and arc. therefore, smooth 
functions which individuallv satisfv the boundary conditions 
The Chebyshev SPEM is 6ased oil the idea of dccomposlng the 
computational domain into rectangular subdomains, and then, 
on each subdomain expressing the solution of the variational 
problem by a truncated expansion of Chcby?hcv orthogonal 

F 
olynomials (Patera, 1984). 
n previous works, Priolo and Seriani (1’101) antI Scriar:i anti 

Priolo (1991) have developed and investrgatcd the rncthod for tl‘lc 
acoustrc wave e uation. They found that the method needs a 
low value ol 2 (h t e number of rid loints per minimum 
wavelength), close to that used !&J Jobal pseudospcctral 
methods, and that the accuracy is hi ‘h and almost unchanged 
even for very ,long propagation &tanccs. The method 
practicallv ehmmates errors due to numerical dispersion. 
common *in low order linite elements. A value of G = 4.5, for 
example, is necessary when using polynomials of order N = 8. 
compared wrth the values of G= 15-30 needed by standard linite 
dilTerence or Iinite element schemes (Marfrlrt, 1984). 

2D Chebyshev Spectral Elenleat Syacc 

In first place, the ap roximating functional spa,c$s must hc 
constructed. To do t us we dccornpocc the f, on rnal 
domain into subdomains. and then, on each 

spatral 
su domain an a 

approximating function is &fined aq ;I trnncatcrl cxpanrron of 
Che$$ev polynomials. IMore specilically. in the case of 
two- rmenslonal problem?, we dccotnposc the original spatial 

--- 

ST3.1 

.lomain I> Into non-overlapping 
where e = I, . . ~2, , 

c uadrilatetal elements fi, , 
and II, is the tota number ofelements. Ilere, 1 

AJe assume that the lcuclidean space R* is rcfcrrcd to an 
:1rthonormal system (0, e,. e,), i.e. x = x,e, f .r,e, = IX,), where x 
c the position vector on R. As approximatmg functions on each 
slemenr. IZ, we chVosc functions belonging to the aP,, @P, 
ipace i.e., polynomrals of degree I A’, 111 x1 and of degree 
5 iv, in x2. ‘I hen. a global approximating function is build up as 
7 qutn of the clemental approxirnating functions. This i7 
:herePore. it corilintrous functron which is a piecewise polynomial 
.lcliricd (iii tjic d<;unrl)osir!on Q. of the original domain Iz. In our 
:ahc. the polyirornial space is constructed by using the 
;:hehpshrv I)rtl~o~onnl polynomials and for simplicity we assume 
IV, = XT -- V , ’ r., the order of the polynomials IS the same in the 
two dlrcctlon> .c, ad 
II. c:~r tip zho\\rl :hat 
rrluarr inlcrbal [ -I. 
iruncatccl eapansron 
polynrm~i;llr ;a4 lollo\ls: 

where 1, - j[<,,j arc the grid values of the lirnction 1, and 
are Lagrnngiai~ interpolants 

wlthin the interval 
outride I Icrc fi,% denotes the F( 
i ctarltls I?lr < or c2. ‘I’hc Lagrangian inter-Jolants are given by 

where I arc the Lhebv~hcv polynonuals antl !: arc the 
<‘hchyyh& Gaury-Lohattcl quadrature poi.its <, = costiri/N) for 

for ” ‘;i;c 
‘A’ 7 he coordinates <,, = {f,,. i2,: of the internal nodes 

drscrrti~atioti of 
[ -l.l]-i; 

the quadrilateral domajn 
--I, I] are ohtamed as Cartesran products of the ,, 

pomt~. III or&r to apple these interpolants and construct the 
~li>~~~~\Ill~~tlll~ lunctlon space, we nccti lo dcfmc the mapping 
A”)(x).x F 0, + ;“I F [ - I, I]” between the potnts 

h, 1 o/‘eacti clcrnent Q. of the dccornpos~tion 

Wltll Ay -- I(_,, .I, :illJ s; 7~~ ;&. --- h, dlmc:irions 01’ the chnent 
I?,. I her:, the global dppr-oxlmating runctlon is formed by the 
sum oi‘ the clcmcntal approhirnating runctions (I) dcfirlcd on 
each clement. 

Two-dimensional Elastic Wave Equation 

I 01 :, \IIslllll!illlcc ]~lq~J”iil111g 11, 3 b0ur1dcd. 1l1/1omo~ctlc<~us 
mccl~u~n. the elastic li&l IS describet! by the clas$rcal 
cldstod~namic~ ecluatiou (c.e. I’llant, 1979). I,et us denote by R 
a don& wth boundar-v [“and Ict us assume that fi is an open, 
i~ouridcd 2nd ~om~ccte~l rcgioil of RI. and that P is a pieccwise 
corltinuou’: curve where boundary conditrons can be ~mposctl. 
i’urthcrmcirc we denote by I the titne variable tIefir@ over 
[1),7] wirh f ,O F R, and.il tt as the pal-tial tlcrivatlve with 
rcqpec t m th: c:triab!c .Y, j!sing the abbrcviatctl subscript 
r;cltntior~ !!I ‘l~.~Jiistic, 1i.r us dclinc the diircrcntial operator D as 
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2 SPEM for elastic wave modeling 

the stress and the strain vectors respectively, and the superscript 
T denotes the transpose of a vector or a matrix. With these 
definitions the equation of motion becomes 

2 

,o $ - DT a(u) = f , 

where U(X,I 
I 

is the displacement field, f(x!r) are the body forces 
per unit vo ume in a, and p is the density. The stress-strain 
relation for a linear elastic and isotropic medium is given by 

CT(u) = c s(u) ( (7) 

where C is the elastic stirness matrix 

C=~1;2%;2P 81 , (8) 

and p and 1 are the Lame constants. The corn 
strain vector E are re:ated to the di.iplacement fiei B 

onents of the 
by 

E(U) = D u (9) 

Equations (6) to (9), with suitable conditions specified on the 
boundaries and prescribed initial condirions for the elastic field, 
describe the pro 
two-dimensiona P, 

agation of compressional and shear waves in a 
mhomogeneous medium. If we look for 

sufficientlyregular solutions u, and no forces are imposed on the 
boundary r, an e uivalent variational formulation of equation 
(6) is to find the so utlon u(x,r) of P 

-$(w, PU)fi + 4W! 4n = (w3 9a 1 

for all functions w(x 
I 

which vanish on the boundary r and 
which together with t leir 
over h. The 

first derivatives, arc 

8 
uantities 

square mtegrat$e 

bilinear forms elined by 
a( -, l )n and (a , * )n arc symmctrlc, 

a@, U)a = s e(w)Tu(U) dc2 = s wTDTC D u & , (12) 
n a 

(W,fjn = J-/. f& (13) 

where equations (7) and (9) have been used. 

SPEM method 

In order to obtain the spectral-elemst \;roximation of 
equation (IO), we decompose 1 rectangular 
non-overlapping elements Q, , and on the decom osition n we 
def~ie the trial functions u(x,f) and the weight unchons w(x) F - 
such that 

n, “6 

;;(X,f) = U &(X14 I G(x) = U $(X), (14) 
e=l c=, 

where ii, and 6. denote the restriction to R of ii and iv, 
respectively. Accordin to the Galerkin approach, the functions 
ii, and W,, take the ollowmg form in the local coordinate F 
system: 

NN 

G,(r) = ~~%(C~‘) Q&T) S( 15) 
i-0 j=O i=OJ=o 

where ii,(@, I) and ti,(@ 
solution and of the we~g h 

are the grid values of the unknown 
t functions, respectively. 

ap roximatin function spaces 14) to solve equation (I ), It 
fol ows that t le two-dim!nsiona P 7 I 

“sin\ the 

equivalent to Iindin 
wave propagatton problem is 

equations are satisfie 8 
u, such that for all w, the following 

m each clement R, : 

where a( -, -)N and (. , .)N are symmetric, bilinear forms 
corn uted accordmg to the definitions (1 l-13) at the clement 
level? Using the previous definition of q( ) (cq (2 ) 
compute the derivative matrix 
discrete differential operator 

L), = dq,\[,)/d{ ,nd ihzi, “t% 

N Dtk4kj 0 
D;) = c 0 D&/k 

k=O Djk& Di&k, 

(17) 

We now apply the ex ansions (IS) to the terms of e uation (16) 
and evaluate the rcsu tmg elemental integrals using t P. B e mapping 
A(*)(x) and the discrete operator (17),_ Requiring that the 
variational equation be satisfied for all w,, the spectral element 
approximation of the original equation finally yields a set of 
linear equations 

Mfi+KU=F, (18) 

with U(0) = ( Uo}, o(O) = {ii) as initial conditions, where the 
unknown vector U contains t h e values of the discrete solution ii 
at all Chebyshev points x@) 

A dot above” a’ 
for i ‘= 0, . . . ( 

i 
N and for all 

e = 0, . . . ) n, variab e denotes dilTerentiation 
with respect to the time In equation (IX), M is the mass 
matrix, K is the stiffness matrix, and F is the force vector 
obtained after a global nodal renumbering and asscmblv of all 
the elemental matrices and force vector contributions. They can 
be computed by using the following expressions: 

K = f) ,(b) and F= (19) 
&I e=l e=l 

where c’ denotes the matrix clement summation or ‘stillness’ 
summation over all the elements, and Ml”, Kc” and P” are,;;; 
elemental matrices and force vector, respectively. 
contributions from nodes which are common to an element pair 
arc summed to enforce the continuit requirement of the solution 
on the clement boundaries. The e emental matrices and force Y 
vector are given by 

K@) = [K$,,] , K$i = s, D;jTC DC d!i-l , (21) 
8 

(22) 

where M$ K$,, and 4) are the nodal submatrices and vector 
rcs 

.P 
ectivee.’ To solve the s 

H 
stern of linear, second-order ODE 

wit 1 constant coefficients (1 ), we must integrate over the time
interval [0, T’J. This may be done by discretizing the time
variable as r, = nAt, 0 <n s NT, where At = T/N,, and N, is 
the total number of time steps. The solution at time 1, , IS 
U,,= .!J(t,). As time integration scheme we use the Newmark 
Constant Average Acceleration scheme , which is a two-step 
implicit al orithm, unconditionally stable and second-ofder 
accurate (I- ughcs, f 1987). The solution at time r,,, is,obtamcd 
by solving the sparse, symmetric system of linear equations 

with the Conju ated Gradient method preconditioned by the 
Incomplete Cho esky Factorization. P 
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SPEM for elastic wave modeling 3 

Numerical results 

In order to check the accuracy of the algorithm, we corn 
P 

are 
analytical and numerical solutions for an tmpulsrve point orce 
acting in an elastic homogeneous medium (e.g., Pilant, 1979). 
The test model is shown in Figure 1, and consists of a square 
domain with side L = 1980 m , and velocities and densit iven 
by VP7 3000 m/s V, = i 800 m/s and p = 2400 lgfrn’ 

???%%%tory given by f(t) = exp[C(t-tJ]f cos[k~t-t,,)] ’ 
A vertical band-limitedfdrce is a plied at omt S’ 

where t+= 0.0818 s , C = 1032, and f = 22 Hz. -fhe cut-od 
frequency of this source is f0 = 50 Hz The domain is 
discretized in straight Chebyshev quadrangles of order N = 8 with 
a value of G=4.8, according to Priolo and Seriani (1991). 
Therefore the model consists of 33x33 elements. the size of the 
elements and the minumum grid distance are 
Ax,,,= 7.5 m , respectively. A time step 

A*= 60 m , and 
At = 0.375 ms is 

chosen, to ensure accuracy. 

Figure 2 displays a snap shot of 1 II 1 at time 0.036 s, where the 
I’- and S-waves can be easily recognized., Figures 3a to 3d 
compare analytical and numerical seismograms recorded at 
stations G, , G., and G, , as shown in Figurc I. The u, 
component at stattons G, and G, are not displayed since they are 
identically zero. The agreement is excellent with a maximum 
error of nearly I% for all the stations. Machine accuracy can 
be achieved by increasing the order of the polynomial. 

particular, Figure 4b, shows that the Rayleigh wavesplits into 

l- two at the step, one ot them reflectedback (RI), and the other 
This wave is partially converted into 
Figures 4d and 4e show the vector 

Conclusions 

curved interfaces, an 

Fig. 1. Comparison between the analytical and numerical solutions for the response of a vertical force in an elastic 
homogeneous medium, (a) recording configuration, (b) snapshot of [u 1 at 0.036 s propagation time (c) 11; 
component at G,, (d) u, camp. at G,, (e) u, camp. at G,, and (f) u, camp. at G,. 
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SPEM for elastic wave modeling 

,r2 = 2300 kg/m3 
V p 2 = 3uw m/s 

V,,Z ’ = 1750 m/s 

(b) 

E 

P 

I 
1R 1 Rl 

(cl 

xknowledgements 

his work was supported in part by the Commission of the 
uropean Communities under pro’ect EOS-1 Exploration 
kiented Seismic Modelling and llnversion) dontract N. 
OUF-0033, as part of the GEOSCIENCE prbject within the 
,amework of the JOULE R & D Programme (Section 3. I. 1 .b). 

Fig. 2. Snapshots of the seismic response of the steplikc surface 
layer model, (a) (u 1 at 0.024 s, (b) lul at 0.036 s, (c) luj at 
0.048 s, (d) u at 0.036 s, and (e) u at 0.048 s. 
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