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We present an iterative algorithm formulated in the space-frequency domain to simulate the prop-
agation of waves in a bounded poro-viscoelastic rock saturated by a two-phase fluid. The Biot-type
model takes into account capillary forces and viscous and mass coupling coefficients between the
fluid phases under variable saturation and pore fluid pressure conditions. The model predicts the
existence of three compressional waves or Type-I, Type-II and Type-III waves and one shear or
S-wave. The Type-III mode is a new mode not present in the classical Biot theory for single-phase
fluids. Our differential and numerical models are stated in the space-frequency domain instead
of the classical integrodifferential formulation in the space-time domain. For each temporal fre-
quency, this formulation leads to a Helmholtz-type boundary value problem which is then solved
independently of the other frequency problems, and the time-domain solution is obtained by an
approximate inverse Fourier transform. The numerical procedure, which is first-order correct in the
spatial discretization, is an iterative nonoverlapping domain decomposition method that employs an
absorbing boundary condition in order to minimize spurious reflections from the artificial bound-
aries. The numerical experiments showing the propagation of waves in a sample of Nivelsteiner
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sandstone indicate that under certain conditions the Type-III wave can be observed at ultrasonic
frequencies.

Keywords: Poroviscoelasticity; finite elements; multiphase fluids; wave propagation.

1. Introduction

The analysis of the variation of the seismic response of reservoir rocks as function of the

properties of the saturant fluids under variable saturation and pressure conditions is an

active area of research in exploration geophysics and reservoir engineering.

According to Biot’s theory,1–3 in a porous solid saturated by a single phase fluid, one

shear or S-wave wave and two compressional waves (fast or Type I and slow or Type II)

can propagate. The slow Biot mode has been detected in the laboratory,4 and has been

simulated, as a wave,5–8 and as a quasi-static mode9 by using numerical modeling.

Models to represent wave propagation in porous rocks with full, partial, multi-

phase, or segregate fluid saturation have been presented by different authors,2,3,10–14

but none of them take into account the pore fluid pressure and the capillary forces to

obtain the coefficients of the constitutive relations and the viscous and mass coupling

coefficients.

In this work, we use a generalized Biot model, which includes the effects of capillary

pressure and the reference (absolute) pressures of the immiscible fluids on the stress–strain

relations.15,16 This model predicts the existence of three compressional waves or Type-I,

Type-II and Type-III waves and one shear or S-wave. In the low frequency range, the

Type-II and Type-III waves are slow diffusion-type waves, since viscous effects dominate.

On the contrary, in the high-frequency range these waves become true propagating waves

since inertial effects dominate, and for certain fluid pressure and saturations ranges both

slow waves have phase velocities and attenuation factors of the same order of magnitude.

These results led us to develop a numerical simulator to study the propagation of these

waves.

Dispersion and attenuation of the different waves depend on several mechanisms, such as

matrix viscoelasticity and viscous coupling between the fluid and the solid matrix. In the low

frequency range, the viscous coupling coefficients are obtained from two-phase Darcy’s law,

and the high-frequency correction factors are defined as generalizations of the corresponding

ones for the single-phase case (e.g. Ref. 17).

Viscoelastic dissipation is included by replacing the real-valued poroelastic coefficients

in the constitutive relations by complex and frequency dependent poro-viscoelastic moduli

satisfying the same relations as in the elastic case.

All these dissipative mechanisms, which are needed to represent the levels of attenuation

observed in rocks,13 are included by using mathematical models formulated in the space-

frequency domain, which is difficult to implement in the space-time domain, where, in

addition, the time history of the system needs to be stored in order to compute the solution

at the current time using time convolutions. A different approach to avoid time convolutions

by introducing memory variables is illustrated in Ref. 18 (see also Ref. 17).
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In the space-frequency domain formulation, each temporal frequency problem can be

solved independently of the other frequencies and then the space-time solution is obtained

by an inverse Fourier transform.19–24

Numerical simulation of waves in porous media is computationally expensive due to the

large number of degrees of freedom needed to calculate wave fields accurately. Use of a

domain decomposition iteration is a convenient approach to overcome this difficulty. The

type of nonoverlapping domain decomposition iteration used in this paper is presented in

Ref. 25 for solving second-order elliptic problems. Nonconforming finite element spaces are

introduced in Ref. 26 for the approximate solution of second order elliptic problems; the

solution of the Helmholtz equation using this nonconforming space is analyzed in Ref. 22.

Gauzellino et al.24 illustrate a parallel implementation of a domain decomposition iteration,

for computing wave fields in 2D and 3D attenuating media, using nonconforming finite

element spaces.

Our numerical procedure is a nonoverlapping domain decomposition iteration employing

the nonconforming rectangular element defined in Ref. 26 to approximate the solid displace-

ment vector. The displacement of the two fluid phases are approximated by using the vector

part of the Raviart–Thomas–Nedelec mixed finite element space of zero order, which is a

conforming space.27,28

The algorithm is used for the simulation of waves in a sample of Nivelsteiner sandstone29

saturated with gas and water, perturbed by a point source at ultrasonic frequencies to

generate the wavefields. We show snapshots and traces (time histories) of the generated

wavefields, where the events associated with the four different types of waves can be clearly

observed.

2. The Model

We consider a porous solid saturated by two immiscible fluids. In this case, we distinguish

a wetting phase and a nonwetting one, which will be denoted with the subscripts (or su-

perscripts) “w” and “n”, respectively. Let x = (x, y, z) and Sn = Sn(x) and Sw = Sw(x)

denote the averaged wetting and nonwetting fluid saturations, respectively, with Srn and

Srw being the corresponding residual saturations, which physical significance is as follows.

Srw is the amount of wetting fluid that will always remain in the pore space even at very

high capillary pressures when the wetting fluid is being displaced by the nonwetting fluid,

i.e. during a drainage regime (Srw is known as connate water in the case of water). On

the other hand, if we are in a process of imbibition, i.e. when the nonwetting fluid is being

displaced by the wetting fluid, we observe that at zero capillary pressure a certain amount

of nonwetting fluid remains; this is the residual saturation of the nonwetting fluid, denoted

by Srn. At Sn < Srn the nonwetting phase ceases to flow.30 We assume that the two fluid

phases completely saturate the porous part of the bulk material so that Sn + Sw = 1. We

further assume that we are in the funicular saturation regime, in which each fluid phase

occupy a continuous network of tortuous (funicular) paths where simultaneous flow of both

fluids is possible, so that Srn < Sn < 1 − Srw.30–32
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Let us = (us
i ), ũ

n = (ũn
i ) and ũw = (ũw

i ), i = 1, 2, 3 denote the time Fourier trans-

forms of the averaged displacement vectors of the solid, nonwetting and wetting phases,

respectively, and let φ = φ(x) denote the matrix effective porosity. Set ul = φ(ũl − us),

ξl = −∇ · ul, l = n, w, and let εij(u
s) and eb = εii(u

s) be the Fourier transforms of the

strain tensor of the solid and its linear invariant, respectively. Also, set u = (us, un, uw).

2.1. Elastic stress-strain relations

Let τij, i, j = 1, 2, 3, Pn and Pw denote the Fourier transforms of the infinitesimal changes in

the stress tensor of the bulk material and the pressures of the wetting and nonwetting fluids,

respectively, with respect to corresponding reference values τ̄ij, P̄n, and P̄w associated with

the initial equilibrium state with corresponding nonwetting fluid saturation S̄n and porosity

φ̄. Recall that Pn and Pw are related through the capillary relation30–32

Pca = Pca(Sn + S̄n) = P̄n + Pn − (P̄w + Pw) = Pca(S̄n) + Pn − Pw ≥ 0 . (2.1)

Based on experimental data and ignoring hysteresis, the function Pca is a positive and

strictly increasing function of the nonwetting fluid saturation.

The stress-strain relations are derived in Ref. 15. With β = Pca(S̄n)/P ′

ca(S̄n), ζ =

P̄w/P
′

ca(S̄n), here we state them in a form that includes the absolute reference pressure of

the fluid phases:

τij(u) = 2Nεij + δij(λceb −B1ξ
n −B2ξ

w) ,

Tn(u) = (S̄n + β + ζ)Pn − (β + ζ)Pw = −B1eb +M1ξ
n +M3ξ

w ,

Tw(u) = (S̄w + ζ)Pw − ζPn = −B2eb +M3ξ
n +M2ξ

w .

(2.2)

The quantities τij , Tn and Tw are the generalized forces of the system.

The coefficient N is the shear modulus of the dry rock (i.e. N = Nm), while λc =

Kc − (2/3)N in 3D and λc = Kc − N in 2D, with Kc being the undrained bulk modulus.

Following Ref. 16 Kc = Kc(x) is computed using the formulae

Kc = Ks(Km + Ξ)/(Ks + Ξ) , Ξ = Kf (Km −Ks)/φ̄(Kf −Ks) ,

Kf = α(γS̄nCn + S̄wCw)−1 , α = 1 + (S̄n + β)(γ − 1) ,

γ = (1 + P ′

ca(S̄n)S̄nS̄wCw)(1 + P ′

ca(S̄n)S̄nS̄wCn)−1 ,

(2.3)

where Km(x), Ks(x), Kn and Kw are the bulk modulus of the empty matrix, the solid

grains and the nonwetting and wetting fluid phases, respectively, with corresponding com-

pressibilities Cl = K−1
l , l = m, s, n, w.

The remaining coefficients can be obtained by using the following relations:

B1 = χKc[(S̄n + β)γ − β + (γ − 1)ζ] , B2 = χKc[(S̄w + (1 − γ)ζ] , (2.4)

M1 = −M3 −B1Cmδ
−1 , M2 = (rB2 + ζ)q−1 , M3 = −M2 −B2Cmδ

−1 , (2.5)

with

χ = [δ + φ̄(Cm − Cc)]{α[δ + φ̄(Cm − Cf )]}−1 , q = φ̄(Cn + 1/P ′

ca(S̄n)S̄nS̄w) ,
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r = (S̄n + β)Cs + (Cc − Cm)[qB2 + (S̄n + β)(1 − CsC
−1
c )] , δ = Cs − Cm .

2.2. Poro-viscoelastic moduli

Besides viscous friction effects, which are described later, in order to model the levels of

attenuation of waves travelling in real rocks we will also assume linear viscoelastic behavior

for the bulk material using the correspondence principle as stated by Biot.1,10,17 Thus we

replace the real elastic moduli by viscoelastic operators in the space-time domain, so that

in the space-frequency domain the elastic moduli in (2.2) become complex and frequency

dependent.

In this work we will make the undrained bulk modulus Kc and the shear modulus N

complex and frequency dependent, while all other coefficients in (2.2) are real. We use the

linear viscoelastic model derived in Ref. 33:

Kc(x, ω) =
Kr

c (x, 0)

RKc(x, ω) − iTKc(x, ω)
, N(x, ω) =

N r(x, 0)

RN (x, ω) − iTN (x, ω)
. (2.6)

The coefficients Kr
c (x, 0) and N r(x, 0) denote the relaxed closed bulk and shear moduli,

respectively. The frequency dependent functions Rl(x) and Tl(x), l = Kc, N , associated

with a continuous spectrum of relaxation times, characterize the viscoelastic behavior and

are given by33,17

Rl(x, ω) = 1 −
1

πQ̂l(x)
ln

1 + ω2T 2
1,l(x)

1 + ω2T 2
2,l(x)

, Tl(x, ω) =
2

πQ̂l(x)
tan−1 ω(T1,l(x) − T2,l(x))

1 + ω2T1,l(x)T2,l(x)
.

The model parameters Q̂l(x), T1,l(x) and T2,l(x) are taken such that the quality factors

Ql(x, ω) = Tl(x)/Rl(x) are approximately equal to Q̂l(x) in the range of frequencies where

the equations are solved. The almost constancy of the quality factor versus frequency makes

this model convenient for geophysical applications.

2.3. The equations of motion for the full frequency range

The equations of motion stated in the space-frequency domain, with ω denoting the angular

frequency, are15:

−ω2(ρus + ρnS̄nu
n + ρwS̄wu

w) −∇ · τ(u) = f s , (2.7)

−ω2(ρnS̄nu
s + gnu

n + gnwu
w) + iωdnu

n − iωdnwu
w + ∇Tn(u) = fn , (2.8)

−ω2(ρwS̄wu
s + gnwu

n + gwu
w) + iωdwu

w − iωdnwu
n + ∇Tw(u) = fw . (2.9)

The coefficients ρn, ρw are, respectively, the mass densities of the nonwetting and wetting

fluids, and ρ denotes the mass density of the bulk material given by ρ = (1− φ̄)ρs+φ̄(S̄nρn+

S̄wρw), where ρs is the mass density of the solid grains.

The mass coupling coefficients gn, gw, gnw represent the inertial effects associated

with dynamic interactions between the three different phases, while the coefficients dn,

dw and dnw include the viscous coupling effects between the solid and fluid phases. It



March 23, 2004 23:23 WSPC/130-JCA 00219

6 J. E. Santos et al.

is known that for single-phase fluids, in the high-frequency range, the viscous and mass

coupling coefficients become frequency dependent.3,34,17 This effect is associated with the

departure of the flow from the laminar Poiseuille type at the pore scale, which occurs

for frequencies greater than some characteristic value. Since we have two immiscible flu-

ids flowing in the pore space and three relative permeability functions, following Ref. 11,

we define three characteristic frequencies of the form ω l
c(S̄n) = S̄lµlφ̄Al/(Gρl), l = n, w,

ωnw
c (S̄n) = φ̄(µnµw)

1

2 (S̄nS̄w)
1

2Krnw/(εAG(ρnρw)
1

2 ). The factor G = G(x) is known as a

structure factor and is related to the tortuosity of the pore space; it can be estimated as

follows35: G(x) = (1/2)[1 + (1/φ̄(x))].

In order to include the frequency dependency, we follow the approach given in Ref. 3

and Ref. 36. Let K(x), Krn(Sm), Krw(Sm) and Krnw(Sn) denote the absolute and rela-

tive permeability functions, respectively and set A(x) = K(x)(KrnKrw −K2
rnw), An(x) =

Krw/A(x), Aw(x) = Krn/A(x). Then we take these coefficients to be of the form:

gl(x, ω) = GρlS̄l/φ̄+ µl(S̄l)
2AlFI(θl)/ω , l = n, w, (2.10)

gnw(x, ω) = εG(ρnρwS̄nS̄w)
1

2 /φ̄+ (µnµw)
1

2 S̄nS̄wKrnwFI(θnw)/(ωA) , (2.11)

dl(x, ω) = µl(S̄l)
2AlFR(θl) , l = n, w , (2.12)

dnw(x, ω) = (µnµw)
1

2 S̄nS̄wKrnwFR(θnw)/A . (2.13)

The constants µn, µw are the fluid viscosities. The coupling permeability term Krnw(Sn)

appears when studying quasistatics and dynamics of flow of two immiscible fluids in de-

formable porous media using homogenization techniques,37,38 where, for the case of plane

slits or cylindrical ducts, explicit expressions for Krnw were obtained. The relative perme-

ability functions must satisfy the relation K(KrnKrw −K2
rnw) > 0, such that the two-phase

Darcy’s law is physically meaningful.

The complex valued frequency dependent function F (θj) = FR(θj) + iFI(θj), j =

n, w, nw is the frequency correction function defined by Biot3 in the high-frequency range:

F (θ) =
1

4

θT (θ)

1 −
2

iθ
T (θ)

, T (θ) =
ber′(θ) + ibei′(θ)

ber(θ) + ibei(θ)
,

with ber(θ) and bei(θ) being the Kelvin functions of the first kind and zero order. The

arguments θj for F (θj), j = n, w, nw in (2.10)–(2.13) are the generalization for two-phase

fluids of the argument given in Refs. 3 and 36 for single-phase fluids:

θl = al
p

√

ωρl/µl , al
p = al

p(x) = 2
√

K(x)KrlA0/φ̄(x) , l = n, w, nw , (2.14)

where A0 denotes the Kozeny–Carman constant.30,39 Taking into account the fact that

FR(θ) → 1 and FI(θ)/ω → 0 as ω → 0 we may regard (2.7)–(2.9) as the general form of the

equations of motion for frequencies ranging from the seismic to the ultrasonic range.

The plane wave analysis performed in Ref. 15 shows that in these type of media, three

different compressional waves (Type I, Type II and Type III) and one shear wave (or S-wave)
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can propagate. The Type-I wave is the analogue of the classical fast P-wave propagating in

elastic or viscoelastic isotropic solids, while the Type-II and Type-III waves are slow waves

strongly attenuated in the low frequency range, corresponding to motions out of phase of

the solid and fluid phases. The characteristics of the particle motions of the three phases

are analyzed in detail in Sec. 4.

If kj, j = I, II, III, S, denote the complex wavenumbers, the phase velocities cj and

attenuation coefficients αj (in dB) are given by12,17:

cj = ω/Re(kj) , αj = 2π8.685889|Im(kj )/Re(kj)| , j = I, II, III, S . (2.15)

3. The Domain Decomposition Iteration

We consider the solution of Eqs. (2.7)–(2.9) in a two-dimensional poro-viscoelastic bounded

domain Ω in the (x, z)-plane. Let us decompose Ω into a nonoverlapping set of subdomains

Ωj such that Ω̄ = ∪J
j=1Ω̄j (here Ω̄ = Ω ∪ ∂Ω denotes the closure of Ω). Set Γj = ∂Ω ∩ ∂Ωj

and Γjk = ∂Ωj ∩ ∂Ωk, and denote by ξj and ξjk the midpoints of Γj and Γjk, respectively.

Also denote by νjk the unit outer normal on Γjk from Ωj to Ωk and by νj the unit outer

normal to Γj . Then we seek the solution of our differential problem over each subdomain Ωj

as follows: for j = 1, . . . , J , find uj(x, z, ω) = (us
j(x, z, ω), un

j (x, z, ω), uw
j (x, z, ω)) such

that, for (x, z) ∈ Ωj,

−ω2(ρus
j + ρnS̄nu

n
j + ρwS̄wu

w
j ) −∇ · τ(uj) = f s , (3.1)

−ω2(ρnS̄nu
s
j + gnu

n
j + gn,wu

w
j ) + iωdnu

n
j − iωdn,wu

w
j + ∇Tn(uj) = fn , (3.2)

−ω2(ρwS̄wu
s
j + gn,wu

n
j + gwu

w
j ) + iωdwu

w
j − iωdn,wu

n
j + ∇Tw(uj) = fw . (3.3)

This differential system needs a set of boundary conditions, taken as follows: at the inte-

rior interfaces Γjk between Ωj and the neighboring subdomains Ωk, we have the natural

consistency conditions

us
j = us

k , un
j · νjk = −un

k · νkj , uw
j · νjk = −uw

k · νkj , (3.4)

τ(uj)νjk = −τ(uk)νkj , Tn(uj) = Tn(uk) , Tw(uj) = Tw(uk) , (x, z) ∈ Γjk . (3.5)

Also, if Ωj has a part Γj of its boundary contained in ∂Ω, we impose the absorbing

boundary condition (see Ref. 40)

(−τ(uj)νj · νj , −τ(uj)νj · χj , Tn, Tw)

= iωB(us
j · νj, u

s
j · χj , u

n
j · νj, u

w
j · νj) , (x, z) ∈ Γj (3.6)

where χj is a unit tangent on Γj so that {νj , χj} form an orthonormal system on Γj and

the symmetric positive definite matrix B is given by40

B = [(M−1E)t]
1

2M = M
1

2D
1

2M
1

2 , (3.7)



March 23, 2004 23:23 WSPC/130-JCA 00219

8 J. E. Santos et al.

where D = M−
1

2 EM−
1

2 and

M =











ρ 0 S̄nρn S̄wρw

0 ρ̂ 0 0

S̄nρn 0 gn gnw

S̄wρw 0 gnw gw











, E =











Kr
c +N r 0 B1 B2

0 N r 0 0

B1 0 M1 M3

B2 0 M3 M2











,

with

ρ̂ = ρ− (gw(ρnS̄n)2 + gn(ρwS̄w)2 − 2gnwρnS̄nρwS̄w)/(gngw − g2
nw) .

In any domain decomposition iteration the objective is to localize the calculations. Thus,

let t = 0, 1, 2, . . . denote the iteration level and let ut
j = (us,t

j , un,t
j , uw,t

j ) be the solution of

(3.1), (3.2), (3.3), (3.4), (3.5) and (3.6) at the t-iteration level, with the variables uk in the

right-hand side of (3.4) and (3.5) replaced by ut−1
k and regarded as data coming from the

previous iteration level t − 1. Furthermore, following the ideas in Refs. 22 and 21, instead

of (3.4)–(3.5) we use an equivalent Robin transmission boundary condition, stated for Ωj

in iterative form as follows:

(τ(ut
j)νjk · νjk, τ(u

t
j)νjk · χjk, −Tn(ut

j), −Tw(ut
j))

+ iωβjk(u
s,t
j · νjk, u

s,t
j · χjk, u

n,t
j · νjk, u

w,t
j · νjk)

= (τ(ut−1
k )νkj · νkj, τ(u

t−1
k )νkj · χkj, −Tn(ut−1

k ), −Tw(ut−1
k ))

−iωβjk(u
s,t−1
k · νkj, u

s,t−1
k · χkj, u

n
k · νkj, u

w,t−1
k · νkj) , (x, z) ∈ Γjk ⊂ ∂Ωj . (3.8)

Here βjk is a positive definite matrix function defined on the interior boundaries Γjk and

χjk is a unit tangent on Γjk so that {νjk, χjk} form an orthonormal system on Γjk. For the

neighboring subdomains Ωk we impose a boundary condition similar to (3.8) exchanging

the roles of ut
j and ut−1

k and with the same parameter βjk.
22,21

First, we define the domain decomposed iterative procedure for the case in which the

domain decomposition partition coincides with the finite element partition N h of Ω into

rectangles Ωj of diameter bounded by h. The changes needed in the procedure to treat the

case of larger subdomains are indicated at the end of the section.

To approximate each component of the solid displacement vector us
j in each Ωj, take a

reference rectangle R̂ = [−1, 1]2 and consider the nonconforming finite element space V(R̂)

constructed as in Ref. 26: the local degrees of freedom will be the values of each component

of us
j at the mid points ξL = (−1, 0), ξB = (0, −1), ξR = (1, 0) and ξT = (0, 1) of the sides

of R̂. Thus set ς(x) = x2 − (5/3)x4 and choose the following local finite element basis:

ϕL(x, z) =
1

4
−

1

2
x−

3

8
(ς(x) − ς(z)) , ϕR(x, z) =

1

4
+

1

2
x−

3

8
(ς(x) − ς(z)) ,

ϕB(x, z) =
1

4
−

1

2
z +

3

8
(ς(x) − ς(z)) , ϕT (x, z) =

1

4
+

1

2
z +

3

8
(ς(x) − ς(z)) .

(3.9)

Then we define V(R̂) = Span{ϕL, ϕR, ϕB , ϕT }.
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To approximate the fluid displacement vectors un
j and uw

j , we choose the vector part

of the Raviart–Thomas–Nedelec space27,28 of zero order defined on R̂ as follows. The four

degrees of freedom associated with each fluid displacement vector are the values of the

normal components at the mid points ξ l, l = L, R, B, T of the faces of R̂. Thus, defining

the local basis ψL(x) = −1 + x, ψR(x) = x, ψB(z) = −1 + z, ψT (z) = z, we have that

W(R̂) = Span{(ψL(x), 0), (ψR(x), 0), (0, ψB(z)), (0, ψT (z))}.

Now, our finite element approximations U l to ul, l = n, w and U s = (U s
1 , U

s
2 ) to

us = (us
1, u

s
2) in the reference element R̂ are represented as follows:

U l = U l,L(ψL(x), 0) + U l,R(ψR(x), 0) + U l,B(0, ψB(z)) + U l,T (0, ψT (z)), l = n, w ,

U s
m = U s,L

m ϕL(x, z) + U s,B
m ϕB(x, z) + U s,R

m ϕR(x, z) + U s,T
m ϕT (x, z), m = 1, 2 ,

(3.10)

By properly scaling the given basis elements we construct the spaces V h
j = V(Ωj) and

Wh
j = W(Ωj) used to represent in (3.10) the approximating functions U s

j , Un
j and Uw

j for

the solid and fluid displacement vectors on each element Ωj.

Following Refs. 26, 22 and 21, for computational convenience, we consider a hy-

bridized form of the above formulation by introducing a set of Lagrange multipliers ηjk =

(ηs,ν
jk , η

s,χ
jk , η

n
jk, η

w
jk) associated with the values of the generalized forces at the mid points

ξjk of Γjk in the following sense: ηs,ν
jk ∼ (τ(Uj)νjk · νjk)(ξjk), η

s,χ
jk ∼ (τ(Uj)νjk · χjk)(ξjk),

ηn
jk ∼ Tn(Uj)(ξjk), η

w
jk ∼ Tw(Uj)(ξjk). The Lagrange multipliers belong to the space of func-

tions defined as follows: Λh = {η: η|Γjk
= ηjk ∈ [P0(Γjk)]

4 = Λh
jk, ∀{j, k}}, where P0(Γjk)

denotes the constant functions on Γjk.

Next, we state a domain decomposition iteration using a variational formulation. For

t = 0, 1, 2, . . . , let U t
j = (U s,t

j , Un,t
j , Uw,t

j ) and ηt
jk be the discrete displacement vectors and

the Lagrange multipliers at the t-iteration level. Let us denote by (·, ·)j the usual complex

inner product in L2(Ωj). Moreover, for Γ = Γj or Γ = Γjk let 〈·, ·〉Γ denote the complex inner

product in L2(Γ), and let 〈〈u, v〉〉Γ denote its approximation by the mid-point quadrature:

〈〈u, v〉〉Γ = (uv)(ξjk)|Γ| where |Γ| is the measure of Γ.

Then, with U t
j = (U s,t

j , Un,t
j , Uw,t

j ) replacing uj in (3.1)–(3.3), (3.6) and (3.8), and

U t−1
k = (U s,t−1

k , Un,t−1
k , Uw,t−1

k ) replacing uk in (3.8), multiply (3.1), (3.2) and (3.3) by

vs ∈ [Vh
j ]2, vn ∈ Wh

j and vw ∈ Wh
j , respectively, and integrate over Ωj, using integration

by parts in the terms (∇· τ(U t
j ), v

s)j, (∇Tn(U t
j ), v

n)j and (∇Tw(U t
j ), v

w)j . Then apply the

boundary conditions (3.6) and (3.8) and approximate the boundary integrals on Γj and

Γjk using the mid-point quadrature rule, using the identification of the generalized forces

at the mid points ξjk with the Lagrange multipliers ηjk. Adding the resulting equations,

we see that the domain decomposition iteration can be stated as follows: given (U 0
j , η

0
jk) ∈

[Vh
j ]2 ×Wh

j ×Wh
j ×Λh

jk for all j, for t = 1, 2, 3, . . . , find (U t
j , η

t
jk) ∈ [Vh

j ]2 ×Wh
j ×Wh

j ×Λh
jk

such that

−ω2(ρU s,t
j + ρnS̄nU

n,t
j + ρwS̄wU

w,t
j , vs)j − ω2(ρnS̄nU

s,t
j + gnU

n,t
j + gn,wU

w,t
j , vn)j

−ω2(ρwS̄wU
s,t
j + gn,wU

n,t
j + gwU

w,t
j , vw)j + iω(dnU

n,t
j , vn)j
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− iω(dn,wU
w,t
j , vn)j + iω(dwU

w,t
j , vw)j − iω(dn,wU

n,t
j , vw)j

+
∑

pq

(τpq(U
t
j ), εpq(v

s))j − (Tn(U t
j ), ∇ · vn)j − (Tw(U t

j ), ∇ · vw)j

+ 〈〈iωB(U s,t
j · νj, U

s,t
j · χj , U

n,t
j · νj , U

w,t
j · νj), (vs · νj, v

s · χj, v
n · νj , v

w · νj)〉〉Γj

+
∑

k

〈〈iωβjk(U s,t
j · νjk, U

s,t
j · χjk, U

n,t
j · νjk,

Uw,t
j · νjk), (vs · νjk, v

s · χjk, v
n · νjk, v

w · νjk)〉〉Γjk

= (f s, vs)j + (fn, vn)j + (fw, vw)j

−
∑

k

〈〈iωβjk(U s,t−1
k · νkj, U

s,t−1
k · χkj, U

n,t−1
k · νkj, U

w,t−1
k · νkj),

(vs · νjk, v
s · χjk, v

n · νjk, v
w · νjk)〉〉Γjk

,

−
∑

k

〈〈(−ηs,ν,t−1
kj , −ηs,χ,t−1

kj , ηn,t−1
kj , ηw,t−1

kj ), (vs · νjk, v
s · χjk, v

n · νjk, v
w · νjk)〉〉Γjk

,

(vs, vn, vw) ∈ [Vh
j ]2 ×Wh

j ×Wh
j × Λh

jk , (3.11)

(ηs,ν,t
jk , ηs,χ,t

jk , −ηn,t
jk , −η

w,t
jk )

= (ηs,ν,t−1
kj , ηs,χ,t−1

kj , −ηn,t−1
kj , −ηw,t−1

kj ) − iωβjk(U
s,t
j · νjk + U s,t−1

k · νkj,

U s,t
j · χjk + U s,t−1

k · χkj, U
n,t
j · νjk + un,t−1

k · νkj, U
w,t
j · νjk + Uw,t−1

k · νkj)(ξjk) . (3.12)

Equation (3.12), used to update the Lagrange multipliers, is obtained directly from (3.8)

evaluated at the mid point ξjk. Equation (3.11) yields a 16×16 linear system of equations for

the degrees of freedom associated with the vector displacements of the three phases on each

subdomain Ωj at the t-iteration level. After solving these systems, the Lagrange multipliers

are updated using (3.12). The iteration (3.11)–(3.12) is a Jacobi-type iteration. A twice

as fast iteration may also be defined by using a red–black type iteration (see Refs. 22

and 21).

The arguments given in Refs. 22 and 21 can be used here to show that the iteration

(3.11)–(3.12) converges and it is first order correct in the spatial discretization. The iteration

parameter matrix βjk is chosen to have the same form of the matrix B in (3.6). The space-

time solution is obtained by solving (3.11)–(3.12) for a finite number of frequencies and an

approximate inverse Fourier transform. See Ref. 20 for an analysis of this procedure.

Finally, let us indicate the changes needed to treat the case of larger subdomains Ωj. For

simplicity let us assume that the finite element partition N h
j associated with each subdomain

Ωj is a subset of the global finite element partition N h of Ω into rectangles of size bounded

by h. Let Ω̄j = ∪
Lj

l=1R̄
l
j be a partition on each Ωj into rectangles Rl

j and denote by ξj
lm
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the midpoint of the common interface between the adjacent rectangles R l
j and Rm

j . The

nonconforming finite element space Vh
j used to approximate each component of the solid

displacement vector and the space Wh
j used to approximate each fluid displacement vector

are: Vh
j = {v ∈ L2(Ωj) : vj

l = v|Rl
j
∈ V(Rl

j), l = 1, . . . , Lj; v
j
l (ξ

j
lm) = vj

m(ξj
lm), ∀{l, m}}

and Wh
j = {v ∈ H(div, Ωj) : vj

l = v|Rl
j
∈ W (Rl

j), l = 1, . . . , Lj} where H(div, Ωj) = {v ∈

[L2(Ωj)]
2 : ∇ · v ∈ L2(Ωj)}. Finally, let us write each common interface Γjk between two

adjacent subdomains Ωj and Ωk as follows: Γjk =
⋃

l,m γl,m
jk , where γl,m

jk denotes any of the

common sides of rectangles Rl
j and Rm

k in the partitions T h
j and T h

k such that γl,m
jk ⊂ Γjk.

Then, we define Λh = {η: η|Γjk
= ηjk ∈ Πl,m [P0(γ

l,m
jk )]4 = Λh

jk, ∀{j, k}}.

With this new definitions of the spaces Vh
j , Wh

j and Λh, the definition of the iterative

procedure in (3.11)–(3.12) remains unchanged.

4. Numerical Experiments

We use the iterative procedure (3.11)–(3.12) to simulate the propagation of waves in a sam-

ple of Nivelsteiner sandstone, a friable sandstone mainly composed of quartz with small per-

centages of rock fragments and potash-feldspar.29 Its material properties, taken from Ref. 8,

are φ = 0.33, K = 5000 mD, ρs = 2.65 gr/cm3, grain bulk modulus Ks = 36 GPa, frame

bulk modulus Km = 6.21 GPa and frame shear modulus, N = 4.55 GPa. The pore space

is assumed to be filled by 90% water (as the wetting phase) and 10% of hydrocarbon gas.

Their properties are: ρw = 1 gr/cm3, µw = 0.01 Poise, Kw = 2.223 GPa, ρn = 0.1 gr/cm3,

µn = 0.00015 Poise, Kn = 0.022 GPa. The reference fluid pressure P̄w is taken 30 MPa,

corresponding to the hydrostatic pressure at a burial depth of about 3 Km.

The relative permeability functions Krn(Sn) and Krw(Sn) and the capillary pressure

function Pca(Sn) and needed to describe our system are taken to be41:

Krn(Sn) = (1 − (1 − Sn)/(1 − Srn))2 , Krw(Sn) = ([1 − Sn − Srw]/(1 − Srw))2 ,

Pca(Sn) = A(1/(Sn + Srw − 1)2 − S2
rn/[Sn(1 − Srn − Srw)]2) .

(4.1)

These relations are based on laboratory experiments performed on different porous rocks

during imbibition and drainage processes (neglecting hysteresis effects). In the numeri-

cal experiment, we chose Srw = Srn = 0.05, and A = 30 kPa. The resulting cap-

illary pressure at S̄n = 0.1 is about 3.4 kPa. In the absence of proper experimental

data, the coupling permeability function Krnw(Sn) used in this work is assumed to be

Krnw(Sn) =
√

εKrn(Sn)Krw(Sn). The parameter ε in (2.11) and the equation above is

equal to 0.1, as in Ref. 15.

The viscoelastic parameters describing the dissipative behavior of the saturated sand-

stone are Q̂l = 30, 20, for l = Kc, N , respectively, T1,l = 10 ms−1, T1,l = 109 ms−1, for

l = Kc, N .

According to the equations given in Sec. 2, the three characteristic frequencies at this

saturation state are approximately ωn
c = 197 kHz, ωw

c = 41 kHz and ωnw
c = 83 kHz. The val-

ues of the phase velocities and attenuation coefficients at the central frequency f0 = 500 kHz
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Table 1. Phase velocities and attenuation factors at 500 kHz for gas
saturation 10%.

Poro-elastic Poro-viscoelastic

Wave cj (Km/s) αj (db) cj (Km/s) αj (db)

Type I P 2.54540280 0.10571459 2.52993880 1.2232244
Type II P 0.27500635 1.36782290 0.27498727 1.3839098
Type III P 0.41792553 2.48654420 0.41790992 2.4968665
Shear 1.53234320 0.12485457 1.52128970 1.4605364

are given in Table 1 for S̄n = 0.1. We compare the values corresponding to the poroelastic

and the poro-viscoelastic formulations. The computations include poro-viscoelasticity and

frequency dependent mass coupling and viscous drag coefficients, as described in Secs. 2.2

and 2.3. The value of the Kozeny–Carman constant A0 in (2.14) is equal to 5.39

Figures 1 and 2 show the phase velocities and attenuation coefficients for the three com-

pressional waves and the shear wave versus nonwetting saturation, at the central frequency

of the source. Notice in Fig. 2(b) the change in behavior of the attenuation coefficients of

the two slow modes, indicating that for high nonwetting saturation values only the new

Type-III wave can be observed.

In the following numerical experiments, we show snapshots and traces of the particle

velocity fields in the solid, the free-gas and the water phase. Our aim is to simulate a labo-

ratory experiment of generation and propagation of body waves at ultrasonic frequencies.

The domain for the 2D numerical simulation is a square of side length 6 cm with a

uniform partition N h of Ω into squares of side length h = 1/Nx, with Nx = Nz = 640.
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Fig. 1. Behavior of the Type-I P and shear waves versus nonwetting saturation at the central frequency
ω = 500 kHz; (a) phase velocities; (b) attenuation coefficients.
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Fig. 2. Behavior of the Type-II and Type-III P-waves versus nonwetting saturation at the central frequency
ω = 500 kHz; (a) phase velocities; (b) attenuation coefficients.

The source function (f s, fn, fw) is a point source located at (xs, ys) = (3 cm, 3 cm)

and applied to the solid matrix (dilatational and shear perturbations), and to the fluid

phases (dilatational perturbations). More specifically, if δxs,zs denotes the Dirac distribution

at (xs, ys), and we define the distribution ε12δxs,zs by the rule ε12δxs,zs = (∂δxs ,zs/∂z,

∂δxs,zs/∂x), then

f s(x, z, ω) = ∇δxs,zsg(ω) + 2ε12δxs,zsg(ω) ,

fn(x, z, ω) = fw(x, z, ω) = ∇δxs,zsg(ω) .

Here, g(ω) is the Fourier transform of the waveform g(t) = −2ξ(t − t0)e
−ξ(t−t0)2 , with

f0 = 500 kHz denoting the source central (dominant) frequency and ξ = 8 f 2
0 , t0 = 1.25/f0.

The spectrum of g(ω) is negligible for frequencies ω above ω∗ = 2π 1000 kHz. Thus, the

iterative procedure (3.11)–(3.12) is used to compute U s(x, z, ω), Un(x, z, ω), Uw(x, z, ω)

at 90 temporal frequencies ωm in the interval (0, ω∗) with ωm = m∆ω and ∆ω = ω∗/90.

The solution U s(x, z, t), Un(x, z, t), Uw(x, z, t) at the discrete times t = tl = l∆t, l =

1, 2, . . . , L, is obtained by using the discrete time Fourier transform. Here, L = T/∆t and T

is the maximum simulation time, equal to 0.08 ms in all the experiments. We emphasize that

the choice of the time step ∆t is not restricted by any Courant–Friedrichs–Lewy stability

condition as in explicit algorithms formulated in the space-time domain. In fact, for any

time tl we truncate the integral in the inverse Fourier transform for ω > ω∗ and compute

the truncated integral using the mid-point quadrature rule. The error introduced by this

approximation is proportional to (h+ (∆ω)2) (see Ref. 20).

Figure 3 shows snapshots of the vertical component of the particle velocity at t =

0.018 ms for the solid skeleton and the vertical components of the relative particle velocity

of the nonwetting and wetting phases, denoted by V s(x, z, t), V n(x, z, t) and V w(x, z, t),
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(a) (b)

(c)

Fig. 3. Snapshots of the vertical particle velocity at t = 0.018 ms. The snapshots correspond to the
(a) solid skeleton; (b) gas phase and (c) water phase. The relative amplitude relation between the snap-
shots is 1/211/30, respectively.

respectively. The relative amplitude relation between the snapshots in Figs. 3, 4 and 5 is

1/211/30, which indicates that the two slow modes are much stronger in the fluid phases.

In the solid phase, we observe four wavefronts, associated with the fast P-wave, the S-wave

and the two slow waves, labeled P1, S, P2 and P3. The Type I-wave front is hitting the
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Fig. 4. Snapshot of the vertical component of the particle velocity of the solid phase at (a) t = 0.03 ms and
(b) t = 0.42 ms.
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Fig. 5. Trace of the vertical component of the particle velocity of the solid phase V s
z at two receivers located

at x = 3 cm, z = 4 cm and x = 3 cm, z = 5 cm.
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boundary and leaving the domain without generating artificial reflections, indicating that

the absorbing boundary condition (3.6) is performing quite well for simulation purposes.

Figure 4 shows snapshots of the vertical component of the particle velocity of the solid

phase at (a) t = 0.03 ms and (b) t = 0.042 ms, respectively. Since at the latter time,

the Type-I and S-wavefronts left the domain, only the two wavefronts associated with the

Type-II and Type-III compressional modes can be observed. Notice that the wavefront

associated with the fastest of the two slow waves, i.e. the Type-III wave, is much more

attenuated compared to the Type-II wavefront. This effect is more noticeable in the snapshot

at t = 0.042 msec. The snapshots for the nonwetting and wetting phases look quite similar

to those of the solid-phase in Fig. 4 and for brevity we do not include them here.

The attenuation curves in Fig. 2(b) show that for nonwetting saturation values above

0.23, we have the opposite situation, i.e. the fastest Type-III wavefront is less attenuated

than the Type-II wavefront. This effect was observed numerically.

In order to observe this decay effect in the two slow wavefronts, Fig. 5 displays traces of

the vertical component of the particle-velocity of the solid phase at two receivers located at

x = 3 cm, z = 4 cm and x = 3 cm, z = 5 cm, respectively. The amplitudes are normalized

to the maximum value of the trace at the receiver located at x = 3 cm, z = 4, and then

both traces are clipped with the same maximum cutoff to better observe the arrivals of

the different waves. It can be seen that the Type-III arrival at the receiver at x = 3 cm,

z = 5 cm is more attenuated than the Type-II arrival in the same receiver.

Figure 6 shows a trace of the vertical component of the total particle velocity V s,T
z =

V s
z +S̄nV

n+S̄wV
w at a receiver located at x = 4 cm, z = 3.5 cm, with normalized amplitude,

where the four arrivals associated with the four different modes can clearly be observed.

Figures 7, 8 and 9 are essential to understand the motion of the three phases corre-

sponding to the two slow modes. These figures show traces of the divergence of the solid

and the absolute nonwetting and wetting particle velocities Ṽ l
z = (1/φ)V l

z +V s
z, l = n, w at

the receiver location x = 4 cm, z = 3.5 cm in the following manner. Figures 7 and 8 show

the solid phase versus the nonwetting and wetting phases, respectively, where the traces

are first normalized to the maximum value of the corresponding fluid phases, and then, the

solid-phase trace is scaled by factors of 282 and 40. Similarly, Fig. 9 shows the wetting and

nonwetting fluid divergences, where first both traces are normalized to the maximum value

of the nonwetting phase, and then, the wetting-phase trace is scaled by a factor of 3.5. The

scaling in Figs. 7, 8 and 9 is used to better observe the particle motion in the two slow

modes. After analyzing Figs. 7, 8 and 9, we conclude the following:

1) For the slower of the two slow compressional waves, the solid moves in opposite phase

with both fluid phases and the two fluid phases move in phase. Thus, this Type II wave

is the analogue of the slow P-wave for single-phase fluids.

2) With regard to the faster of the two slow compressional waves, referred to as Type-III

wave, the solid moves in phase with the nonwetting phase and in opposite phase with

the wetting phase, and the two fluid phases move in opposite phase. This is a new mode

absent in rocks saturated by single-phase fluids.
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Fig. 6. Trace of the vertical component of the total particle velocity V T
z = V s

z +SnV n +SwV w at a receiver
located at x = 4 cm, z = 3.5 cm. The amplitudes are normalized.
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Fig. 7. Traces of the divergence of the particle velocity of the solid and nonwetting fluid phases at a receiver
located at x = 4 cm, z = 3.5 cm.



March 23, 2004 23:23 WSPC/130-JCA 00219

18 J. E. Santos et al.

0.02 0.03 0.04 0.05

Time (ms)

-1

-0.5

0

0.5

1 solid phase
non-wetting phase

Type III
Type II

0.02 0.03 0.04 0.05

Time (ms)

-1

-0.5

0

0.5

1 solid phase
wetting phase

Type III Type II

0.02 0.03 0.04 0.05

Time (ms)

-1

-0.5

0

0.5

1 wetting phase
non-wetting phase

Type III
Type II

Fig. 8. Traces of the divergence of the particle velocity of the solid and wetting fluid phases at a receiver
located at x = 4 cm, z = 3.5 cm.
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Fig. 9. Traces of the divergence of the particle velocity of the wetting and nonwetting fluid phases at a
receiver located at x = 4 cm, z = 3.5 cm.

5. Conclusions

We have presented a model to describe wave propagation in a poro-viscoelastic medium

saturated with a two-phase fluid. The model includes capillary forces and mass and viscous
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coupling coefficients in the equations of motion, as well as frequency dependent correction

factors in the high-frequency range. We also developed a domain decomposition iteration

that allow us to compute approximate solutions. This new procedure is formulated in the

space-frequency domain, allowing for the simultaneous and independent solution of the

equations at a finite number of frequencies. The space-time solution is obtained by using an

inverse Fourier transform. The algorithm is first-order accurate in the spatial discretization

and does not require any smoothness assumption or small variability on the coefficients

of the differential model. Under the assumption that the model accurately describes the

physics involved, a second slow mode (referred to as Type III) has been observed for the

first time. This result constitutes a significant departure from the single-phase fluid case.

The experiments use a clay-free sandstone saturated with gas and water, a reference fluid

pressure P̄w = 30 MPa and gas saturation of 10%, corresponding to a capillary pressure

value of 3.4 kPa. At these conditions, the Type-III wave at 500 kHz has a phase velocity of

418 m/s.

The detection and analysis of this new wave mode in real situations may provide in-

formation about the nature, saturation and pressure regime of the saturant fluids. Future

research involves the use of the numerical simulator to determine the conditions under which

the new wave can be detected in laboratory experiments and the analysis of these waves in

partially-saturated zones within hydrocarbon reservoirs.
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16. J. E. Santos, J. Douglas Jr. and J. Corberó, Static and dynamic behaviour of a porous solid

saturated by a two-phase fluid, J. Acoust. Soc. Am. 87 (1990b) 1428.
17. J. M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and

Porous Media (Pergamon Press, Amsterdam, 2001).
18. J. M. Carcione, Constitutive model and wave equations for linear, viscoelastic, anisotropic media,

Geophysics 60 (1995) 537.
19. J. Douglas Jr., J. E. Santos and D. Sheen, Approximation of scalar waves in the space-frequency

domain, Math. Models Methods Appl. Sci. 4 (1994) 509.
20. J. Douglas Jr., J. E. Santos, D. Sheen and L. Bennethum, Frequency domain treatment of

one-dimensional scalar waves, Math. Models Methods Appl. Sci. 3 (1993) 171.
21. T. Ha, J. E. Santos and D. Sheen, Nonconforming finite element methods for the simulation of

waves in viscoelastic solids, Comp. Methods in Appl. Mech. Eng. 191 (2002) 5647.
22. J. Douglas Jr., J. E. Santos and D. Sheen, Nonconforming Galerkin methods for the Helmholtz

equation, Numer. Methods Partial Diff. Eqs. 17 (2001) 475.
23. C. L. Ravazzoli, J. Douglas Jr., J. E. Santos and D. Sheen, On the solution of the equations of

motion for nearly elastic solids in the frequency domain, in Anales de la 4a. Reunión de Trabajo

en Procesamiento de la Información y Control, RPIC ’91, November 18–22, Buenos Aires, 1991,
pp. 231–235. Also, Technical Report # 164, Center for Applied Mathematics, Purdue University,
(W. Lafayette, Indiana, 47907, 1991).

24. P. M. Gauzellino, J. E. Santos and D. Sheen, Frequency domain wave propagation modeling in
exploration seismology, J. Comput. Acoust. 9 (2001) 941.

25. J. Douglas Jr., P. L. Paes Leme, J. E. Roberts and J. Wang, A parallel iterative procedure
applicable to the approximate solution of second order partial differential equations by mixed
finite element methods, Numer. Math. 65 (1993) 95.

26. J. Douglas Jr., J. E. Santos, D. Sheen and X. Ye, Nonconforming Galerkin methods based on
quadrilateral elements for second order elliptic problems, RAIRO Math. Modeling and Numer.

Analysis (M2AN) 33 (1999) 747.
27. P. A. Raviart and J. M. Thomas, Mixed finite element method for 2nd order elliptic problems,

Mathematical Aspects of the Finite Element Methods, Lecture Notes of Mathematics, Vol. 606
(Springer, 1975).

28. J. C. Nedelec, Mixed finite elements in R3, Numer. Math. 35 (1980) 315.
29. O. Kelder and D. Smeulders, Observation of the Biot slow wave in water-saturated Nivelsteiner

sandstone, Geophysics 62 (1997) 1794.
30. J. Bear, Dynamics of Fluids in Porous Media (Dover Publications, New York, 1972).
31. D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation (Elsevier, 1977).
32. A. E. Scheidegger, The Physics of Flow Through Porous Media (University of Toronto, Toronto,

1974).



March 23, 2004 23:23 WSPC/130-JCA 00219

Simulation of Waves in Poro-Viscoelastic Rocks Saturated by Immiscible Fluids 21

33. H. P. Liu and D. L. Anderson and H. Kanamori, Velocity dispersion due to anelasticity; impli-
cations for seismology and mantle composition, Geophys. J. R. Astr. Soc. l47 (1976) 41.

34. D. L. Johnston, J. Koplik and R. Dashen, Theory of dynamic permeability and tortuosity in
fluid-saturated porous media, J. Fluid Mechanics 176 (1987) 379.

35. J. G. Berryman, Confirmation of Biot’s theory, Appl. Phys. Lett. 37 (1980) 382.
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