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S U M M A R Y
Shale reservoir formations are porous rocks of low permeability composed of fluid-saturated
illite–smectite and kerogen layers, which behave as viscoelastic transversely isotropic (VTI)
media at long wavelengths, that is, much larger than the average layer thickness. Seismic
waves travelling across these heterogeneous materials induce wave-induced fluid flow (WIFF)
and Biot slow waves generating energy loss (mesoscopic loss) and velocity dispersion. When
these formations are saturated by two-phase fluids, the presence of capillary forces—interfacial
tension—and interaction between the two fluids as they move within the pore space need to be
taken into account. This can be achieved using a Biot model of a poroelastic solid saturated
by a two-phase fluid that includes capillary pressure and relative permeability functions and
supports the existence of two slow waves. An upscaling finite-element method is used to
analyse the WIFF, which determines an effective VTI medium predicting higher attenuation
and (Q) anisotropy than the classical single-phase (single fluid) models.

Key words: Numerical approximations and analysis; Numerical modelling; Numerical
solutions; Computational seismology; Seismic anisotropy; Seismic attenuation.

1 I N T RO D U C T I O N

The purpose of this work is to analyse the anisotropy in seismic
attenuation of shale reservoir rocks as a function of fluid saturation
and spatial distribution of organic matter (oil and kerogen) in the
rock matrix. Most shale reservoir rocks are laminated media (with
typical thickness of mm) of very low permeability composed of
illite–smectite layers and organic matter in the form of oil, gas and
kerogen. For seismic wavelengths much larger than the thickness
of the layers, these laminated materials behave as homogeneous
viscoelastic transversely isotropic (VTI) media.

Biot (1956a,b; 1962) developed a theory to describe wave prop-
agation in a poroelastic solid saturated by a single-phase fluid (a
single-phase Biot medium—SPBM). The theory predicts the exis-
tence of two compressional waves (one of them slow), and one shear
wave. The fast P wave has solid and fluid motions in phase, and the
slow Biot P wave has out-of-phase motion, causing strong energy
losses. The existence of the second slow wave was confirmed by
Plona (1980). Most recently, Bouzidi & Schmitt (2009) presented
experiments where the slow P2 wave was observed at a wide range
of incident angles.

However, Biot’s theory does not take into account the presence
of capillary forces and interference effects between the two flu-

ids as they move within the pore space. A generalization of Biot’s
theory to the case when a poroelastic medium is saturated by a
two-phase fluid (a two-phase Biot medium—2PBM) was presented
in Santos et al. (1990a,b) and Ravazzoli et al. (2003). The 2PBM
model includes effects of capillary and relative permeability func-
tions defined in terms of the two-phase Darcy’s law (Scheidegger
1974; Peaceman 1977). The model predicts the existence of one fast
wave, two slow compressional waves and one shear wave. Capillary
forces are responsible for the existence of one additional slow wave,
while relative permeability functions induce energy losses due to
interferences between the two-phase fluids as they move within the
pores. The work by Müller & Sahay (2011) presents an extension
of Biot’s theory for single-phase fluids predicting the existence of
a second slow shear wave.

Among others, Dutta & Odé (1979), Mochizuki (1982), Berry-
man et al. (1988) and Toksöz et al. (1976) tackled the analysis
of the quasi-static and dynamic behaviour of porous rocks with
partial, miscible or segregated fluid saturation. None of the above
approaches incorporate the capillary forces. Using a homogeniza-
tion approach, Auriault (1989) included a description of capillary
effects at the pore scale obtaining a two-phase Darcy law.

One significant cause of attenuation in layered fluid-saturated
poroelastic media is wave-induced fluid flow (WIFF), by which the
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fast compressional (P) and shear (S) waves are converted to slow
(diffusive) Biot waves as they travel across regions with hetero-
geneities in the fluid and petrophysical properties of the medium.
We refer to this mechanism as mesoscopic loss envisioning the
length scale of the heterogeneities to be larger than the grain sizes
but much smaller than the wavelength of the pulse. For instance, if
the matrix porosity varies significantly from point to point, diffu-
sion of pore fluid between different regions constitutes a mechanism
that can be important at seismic frequencies. Pride et al. (2004)
have demonstrated the importance of the mesoscopic effects in the
context of exploration geophysics as being the dominant P-wave
attenuation mechanism in reservoir rocks at seismic frequencies.

A review of the different theories and authors, who have con-
tributed to the understanding of this mechanism, can be found, for
instance, in Carcione & Picotti (2006), Müller et al. (2010) and
Carcione (2014). In this work, the analysis of the WIFF takes into
account the presence of two slow waves and the additional energy
losses present in the case of two-phase fluids.

For an analysis of anisotropy in stratified media, we mention the
early work by Carcione et al. (1991), whereas Carcione et al. (2011)
treated the specific case of source rocks without energy loss. Gelin-
sky & Shapiro (1997) obtained the relaxed and unrelaxed stiffnesses
of a poroviscoelastic medium equivalent to a finely layered SPBM.
Assuming that the layers are homogeneous and flow is perpendic-
ular to the layering plane, Krzikalla & Müller (2011) obtained the
five complex and frequency-dependent stiffnesses of a VTI medium
equivalent to a layered SPBM.

Qi et al. (2014) studied the effects of capillarity on attenuation
and dispersion in isotropic patchy-saturated rocks and found that
the capillary action leads to an additional stiffening and thereby
to higher phase velocities, with weakening diffusion process and
attenuation.

The work in Santos & Carcione (2015) uses the SPBM model to
define a set of five harmonic compressibility and shear experiments
for determining the stiffness coefficients and the corresponding en-
ergy velocities and dissipation factors of a long-wave equivalent VTI
medium to a densely fractured fluid-saturated poroelastic medium.
The numerical experiments are formulated as boundary value prob-
lems (BVP) in the space–frequency domain that are solved using the
finite-element (FE) method. See also Santos & Gauzellino (2017)
for a detailed description of the use of the FE method in the context
of numerical rock physics and upscaling.

2 T H E M O D E L D E S C R I B I N G A
P O RO E L A S T I C M E D I U M S AT U R AT E D
B Y A T W O - P H A S E F LU I D

In a porous solid saturated by a two-phase fluid exist wetting and
non-wetting phases denoted with the subscripts (or superscripts) ‘w’
and ‘n’, respectively, while ‘s’ will indicate the solid phase. Let Sl

and Srl be the saturation and residual saturation of the l-phase, l = n,
w, so that Srn < Sn < 1—Srw. Besides, we assume full saturation of
the pore space, Sw + Sn = 1 (Scheidegger 1974; Peaceman 1977).
In the shale reservoir model studied in this work, gas is always the
non-wetting phase (see Fig. 1).

The relative particle fluid displacements are

ul = φ (̃ul − us), ξ l = −∇ · ul, l = n, w,

where us = (us
i ), ũl = (̃ul

i ) � = n, w, i = 1, 2, 3 are the time
Fourier transforms of the displacement vectors of the solid and
fluid phases and φ is the matrix effective porosity.

Figure 1. Schematic model of the Vaca Muerta formation.

Define εij(us) and es = εii(us) as the Fourier transforms of the
strain tensor of the solid and its linear invariant, respectively, and
set u = (us, un, uw). Let τ = τi j and ε = εi j , i, j = 1, 2, 3 denote the
time Fourier transforms of the stress and strain tensors, respectively.
Also, let Pl denote the time Fourier transform of the infinitesimal
change in the pressure of the l-fluid phase, taken with respect to the
reference value P̄ l l = n, w. This reference value is associated with
the initial equilibrium state having non-wetting fluid saturation S̄n

and porosity φ̄. Pn and Pw are related through the capillary relation
(Scheidegger 1974; Peaceman 1977):

Pca = Pca(Sn + S̄n) = P̄n + Pn − (P̄w + Pw)

= Pca(S̄n) + Pn − Pw ≥ 0. (1)

The stress–strain relations of a 2PBM are (Santos et al. 1990a;
Ravazzoli et al. 2003)

τi j (u) = 2N εi j + δi j (λu es − B1 ξ n − B2 ξw), (2)

Tn(u) = (
S̄n + β + ζ

)
Pn − (β + ζ ) Pw

= −B1 es + M1 ξ n + M3 ξw, (3)

Tw(u) = (
S̄w + ζ

)
Pw − ζ Pn = −B2 es + M3 ξ n + M2 ξw, (4)

where

β = Pca(Sn)

P ′
ca(S̄n)

, ζ = Pw

P ′
ca(S̄n)

. (5)

The coefficient N is the shear modulus of the dry rock. The determi-
nation of the other coefficients in eqs (2)–(4) is explained in Santos
et al. (1990a), Ravazzoli et al. (2003) and Santos & Gauzellino
(2017).

The governing equations for a 2PBM in the diffusive range of
frequencies are

∂τi j

∂x j
= 0, (6)

iω (S̄n)2 ηn

κKrn(S̄n)
un

j − iω dnw uw
j + ∂Tn

∂x j
= 0, (7)

iω (S̄w)2 ηw

κKrw(S̄w)
uw

j − iω dnw un
j + ∂Tw

∂x j
= 0, j = 1, 2, 3.

(8)

The cross dissipative coefficient dnw is taken to be

dnw(S̄n, S̄w) = ε

(
(S̄n)2 ηn

κKrn(S̄n)

)(
(S̄w)2 ηw

κKrw(S̄w)

)
. (9)
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In eqs (7) and (8), ηn, ηw are the fluid viscosities and κ , Krn(Sn),
Krw(Sw) are the absolute and relative permeabilities, respectively. In
this work, the following relative permeability and capillary pressure
functions are used (Ravazzoli et al. 2003):

Krn(Sn) = (1 − (1 − Sn)/(1 − Srn))2 ,

Krw(Sn) = ([1 − Sn − Srw] / (1 − Srw))2 ,

Pca(Sn) = A
(
1/(Sn + Srw − 1)2 − S2

rn/[Sn(1 − Srn − Srw)]2
)
,

(10)

where A is the capillary pressure amplitude, chosen to be 30 kPa.

3 T H E E Q U I VA L E N T V I S C O E L A S T I C
T R A N S V E R S E LY I S O T RO P I C M E D I U M

As shown in Krzikalla & Müller (2011), a fluid-saturated poroelastic
solid with a set of horizontal layers behaves as a VTI medium with
vertical symmetry axis at long wavelengths.

Denoted by σi j (̃us) and ei j (̃us) the stress and strain tensor com-
ponents of the equivalent VTI medium, where ũs denotes the solid
displacement vector at the macroscale. The corresponding stress–
strain relations, stated in the space–frequency domain and assuming
a closed system are (Carcione, 2014)

σ11(̃us) = p11 e11(̃us) + p12 e22(̃us) + p13 e33(̃us), (11)

σ22(̃us) = p12 e11(̃us) + p11 e22(̃us) + p13 e33(̃us), (12)

σ33(̃us) = p13 e11(̃us) + p13 e22(̃us) + p33 e33(̃us), (13)

σ23(̃us) = 2 p55 e23(̃us), (14)

σ13(̃us) = 2 p55 e13(̃us), (15)

σ12(̃us) = 2 p66 e12(̃us). (16)

In a VTI medium p12 = p11 − 2p66, so that only five independent
stiffness, that is, p11, p33, p13, p55 and p66 need to be considered.

Santos & Carcione (2015) have shown that the stiffnesses pIJ in
eqs (11)–(16) can be determined using five time-harmonic exper-
iments. Next, we present the generalization of those experiments
using the 2PBM to determine a VTI medium long-wave equivalent
to a fine layered poroelastic solid saturated by a two-phase fluid.

Denoting by x1 and x3 the horizontal and vertical coordinates, we
will solve eqs (6)–(8) in the 2-D case on a reference square � = (0,
L)2 with boundary � in the (x1, x3)-plane. Set � = �L∪�B∪�R∪�T,
where �L, �R, �B and �T denote the left, right, bottom and top
boundaries of �, respectively. Denote by ν the unit outer normal
on � and let χ be a unit tangent on � oriented counterclockwise so
that {ν, χ} is an orthonormal system on �. To determine the five
independent stiffness coefficients, we solve eqs (6)–(8) in � with
the boundary conditions:

un · ν = 0, uw · ν = (x1, x3) ∈ �, (17)

that is, no fluids enter or leave the sample, and additional boundary
conditions for each pIJ.

To determine p33, we impose the boundary conditions:

τ (u)ν · ν = −�P, (x1, x3) ∈ �T , (18)

τ (u)ν · χ = 0, (x1, x3) ∈ �, (19)

us · ν = 0, (x1, x3) ∈ � \ �T . (20)

Using the relation

�V (ω)

V
= − �P

p33(ω)
, (21)

where V is the original volume of the sample, p33(ω) can be de-
termined from eq. (21) measuring the complex volume change
�V (ω) ≈ Lu(33,T)

s,3 (ω), where u(33,T)
s,3 (ω) is the average of the ver-

tical component of the solid phase at the boundary �T.
To determine p11, the following boundary conditions are used:

τ (u)ν · ν = −�P, (x1, x3) ∈ �R, (22)

τ (u)ν · χ = 0, (x1, x3) ∈ �, (23)

us · ν = 0, (x1, x3) ∈ � \ �R. (24)

Thus, this experiment determines p11 as indicated for p33, measuring
the oscillatory volume change.

To determine p13, we apply the boundary conditions:

τ (u)ν · ν = −�P, (x1, x3) ∈ �R ∪ �T, (25)

τ (u)ν · χ = 0, (x1, x3) ∈ �, (26)

us · ν = 0, (x1, x3) ∈ �L ∪ �B. (27)

From eqs (11) and (13), we get

σ11 = p11ε11 + p13ε33 σ33 = p13ε11 + p33ε33,

with ε11 and ε33 being the (macroscale) strain components at �L

and �T, respectively. Since σ 11 = σ 33 = −�P (cf. eq. 25) we obtain
p13(ω) as

p13(ω) = p11ε11 − p33ε33

ε11 − ε33
. (28)

The stiffness p55 is determined by imposing the boundary condi-
tions:

− τ (u)ν = g, (x1, x3) ∈ �T ∪ �L ∪ �R, (29)

us = 0, (x1, x3) ∈ �B, (30)

where

g =
⎧⎨
⎩

(0, �G), (x1, x3) ∈ �L,

0, −�G), (x1, x3) ∈ �R,

−�G, 0), (x1, x3) ∈ �T.

The change in shape of the rock sample allows to obtain p55(ω)
using the relation

tg(βω) = �G

p55(ω)
, (31)
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Table 1. Material properties.

Property Illite/smectite Kerogen Water Oil Gas

Ks (GPa) 28.4 7 2.25 0.57 0.022
Km (GPa) 18 4.3 – – –
μm (GPa) 12.5 1.3 – – –
ρs (g cm−3) 2.7 1.4 1 0.7 0.078
φ (per cent) 10 10 – – –
η (cP) – – 1 10 0.015
κ (ndarcy) 200 200 – – –
Sw (per cent) 99 0 – – –
So (per cent) 0 90 – – –
Sg (per cent) 1 10 – – –
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Figure 2. Polar representation of the energy velocities of the qP and qSV
waves for the FE 2PBM and analytical SPBM models at 50 Hz. The medium
consists of a sequence of nine water–gas saturated illite–smectite layers
and one oil–gas saturated kerogen layer (relation 9–1). The results of the
analytical model are obtained as effective single-phase fluids.
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Figure 3. Polar representation of the dissipation factors of the qP waves for
the FE 2PBM and analytical SPBM models at 50 Hz. The medium consists
of a sequence of nine water–gas saturated illite–smectite layers and one oil–
gas saturated kerogen layer. The results of the analytical model are obtained
as effective single-phase fluids.
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Figure 4. Polar representation of the dissipation factors of the qSV waves for
the FE 2PBM and analytical SPBM models at 50 Hz. The medium consists
of a sequence of nine water–gas saturated illite–smectite layers and one oil–
gas saturated kerogen layer. The results of the analytical model are obtained
as effective single-phase fluids.
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Figure 5. Polar representation of the energy velocities of the SH waves for
the FE 2PBM and analytical SPBM models at 50 Hz. The medium consists
of a sequence of nine water–gas saturated illite–smectite layers and one oil–
gas saturated kerogen layer. The results of the analytical model are obtained
as effective single-phase fluids.
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Figure 6. Velocity of waves parallel (‘11’ waves) and normal (‘33’ waves) to the layering plane as a function of frequency. The medium consists of a sequence
of nine water–gas saturated illite–smectite layers and one oil–gas saturated kerogen layer.
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Figure 7. Dissipation factor of waves parallel (‘11’ waves) and normal (‘33’ waves) to the layering plane as a function of frequency. The medium consists of
a sequence of nine water–gas saturated illite–smectite layers and one oil–gas saturated kerogen layer.

where β(ω) is the departure angle between the original positions of
the lateral boundaries and those after applying the shear stresses,
which can be determined by measuring the average horizontal dis-
placement at �T (Santos & Carcione 2015).

Finally, the stiffness p66 is obtained using the boundary condi-
tions:

− τ (u)ν = g2, (x1, x2) ∈ �B ∪ �R ∪ �T, (32)

us = 0, (x1, x2) ∈ �L, (33)

where

g2 =
⎧⎨
⎩

(�G, 0), (x1, x2) ∈ �B,

−�G, 0), (x1, x2) ∈ �T,

0, −�G), (x1, x2) ∈ �R.

Then, we proceed as indicated for p55(ω).
The approximate solution of these five BVP was computed using

an FE procedure. On each cell of the FE partition of the compu-
tational domain, we used bilinear functions to approximate each
component of the solid displacement vector, while for the non-
wetting and wetting fluid displacements we used a closed subspace
of the vector part of the Raviart–Thomas–Nedelec space of zero
order (Raviart & Thomas 1975). See Santos & Carcione (2015)
and Santos & Gauzellino (2017) for details on the description of
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Figure 8. Polar representation of the energy velocities of the qP and qSV
waves for the FE 2PBM model at 50 Hz as a function of gas saturation
in kerogen layers. The medium consists of a sequence of nine water–gas
saturated illite–smectite layers and one oil–gas saturated kerogen layer.
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Figure 9. Polar representation of the dissipation factors of the qP waves
for the FE 2PBM model at 50 Hz as a function of gas saturation in kerogen
layers. The medium consists of a sequence of nine water–gas saturated
illite–smectite layers and one oil–gas saturated kerogen layer.

these FE spaces. Also, it was shown in Santos & Carcione (2015)
that the error associated with these FE problems, measured in the
energy norm, is on the order of h1/2, with h being the size of the
computational mesh. The proof can be generalized to the case of
two-phase fluids analysed here.

4 N U M E R I C A L M E T H O D O L O G Y

The five complex stiffnesses pIJ(ω), as a function of the frequency
and propagation direction, are determined by solving the associated
BVP using the FE method. The corresponding energy velocities
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Figure 10. Polar representation of dissipation factors of the qSV waves for
the FE 2PBM model at 50 Hz as a function of gas saturation in kerogen
layers. The medium consists of a sequence of nine water–gas saturated
illite–smectite layers and one oil–gas saturated kerogen layer.
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Figure 11. Polar representation of the energy velocities of the qP waves
for the FE 2PBM and SPBM models at 50 Hz as a function of kerogen
concentration. The medium consists of a sequence of eight (seven) water–
gas saturated illite–smectite layers and two (three) oil–gas saturated kerogen
layer. Sg = 10 per cent in the illite–smectite and kerogen layers.

and dissipation factors for qP, qSV and SH waves are obtained as in
appendices A and B of Santos & Carcione (2015).

The FE experiments consider square periodic layered samples �

of side length 0.09 cm with six periods of illite–smectite and kerogen
layers (see Fig. 1), discretized using a 60 × 60 uniform mesh, that
is, � = ∪j�j. The material properties are given in Table 1.
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Figure 12. Polar representation of the energy velocities of the qSV waves
for the FE 2PBM and SPBM models at 50 Hz as a function of kerogen
concentration. The medium consists of a sequence of eight (seven) water–
gas saturated illite–smectite layers and two (three) oil–gas saturated kerogen
layer. Sg = 10 per cent in the illite–smectite and kerogen layers.
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Figure 13. Polar representation of the dissipation factors of the qP waves
for the FE 2PBM and SPBM models at 50 Hz as a function of kerogen
concentration. The medium consists of a sequence of eight (seven) water–
gas saturated illite–smectite layers and two (three) oil–gas saturated kerogen
layer. Sg = 10 per cent in the illite–smectite and kerogen layers.

4.1 Numerical simulations

The experiments consider a square sample of side length 0.09 cm
with an alternating sequence of 0.0135 cm of illite–smectite and
0.0015 cm of kerogen layers, each layer saturated by a two-
phase fluid. In the illite–smectite layers, the wetting and non-
wetting phases are water and gas, with residual saturations Srw =
4.5 per cent and Srg = 0, respectively, and gas saturation is Sg =
1 per cent. In the kerogen layers, the wetting and non-wetting phases
are oil and gas, with residual saturations Srw = Sro = 4.5 per cent
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Figure 14. Polar representation of the dissipation factors of the qSV waves
for the FE 2PBM and SPBM models at 50 Hz as a function of kerogen
concentration. The medium consists of a sequence of eight (seven) water–
gas saturated illite–smectite layers and two (three) oil–gas saturated kerogen
layer. Sg = 10 per cent in the illite–smectite and kerogen layers.

and Srg = 0, respectively, and gas saturation is Sg = 10 per cent.
Thus, in these experiments Srn = Srg.

The experiments compare energy velocities (Santos et al. 2014)
and dissipation factors of qP, qSV and SH waves computed using the
2PBM, when the sample is saturated by a two-phase fluid mixture,
with the velocities obtained with the analytical solution using the
SPBM model as in Krzikalla & Müller (2011). The properties of the
single-phase fluids are determined by weighting those of the water–
gas and the oil–gas mixtures with the corresponding saturations.
The effective single-phase fluid viscosity η(eff) and density ρ(eff) are
obtained as arithmetic averages of those of the water–gas or oil–gas
viscosities, while the effective bulk modulus K(eff) was determined
using a Reuss average of the water–gas or oil–gas bulk moduli:

η(eff) = ηn Sn + ηw Sw,

ρ(eff) = ρn Sn + ρw Sw,

1

K (eff )
= Sn

Kn
+ Sw

Kw
.

Small differences between energy velocities of the qP and qSV
waves at 50 Hz for the FE 2PBM and analytical models can be
observed due to capillary pressure and relative permeability effects
present in the 2PBM (Fig. 2). The dissipation factors of the qP and
qSV waves are much higher for the 2PBM than for the SPBM (Figs 3
and 4). Furthermore, attenuation is higher at angles between 60 and
90 deg for qP waves and at angles between 30 and 60 deg for qSV
waves.

The higher attenuation predicted by the 2PBM model is due to
the combined effects of relative permeability and capillary pres-
sure. Relative permeabilities define the dissipation function in the
Lagrangian formulation of the 2PBM (Santos et al. 1990a), and they
represent the interaction between the two fluid phases as they move
within the pore space. To quantify this effect, we have computed the
L2 norm of the horizontal and vertical displacements of both fluid
phases for the p11 and p33 tests. For the p11 test, the L2 norm of the
horizontal displacement of the non-wetting phase is higher than that
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Figure 15. Patchy gas saturation distribution in the kerogen layers. The white regions correspond to Sg = 30 per cent, the black regions correspond to
Sg = 1 per cent. Overall gas saturation in the kerogen layers is 10 per cent. The sample is a square of side length 0.09 cm.
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Figure 16. Polar representation of energy velocities of the qP and qSV waves
for the FE 2PBM and FE SPBM models at 50 Hz. Pathy gas-oil distribution
in the kerogen layers with over all gas saturation Sg = 10 per cent. The
medium consists of a sequence of six water–gas saturated illite–smectite
layers and four oil–gas saturated kerogen layer (Kerogen concentration is
40 per cent). Sg = 1 per cent in the illite–smectite layers.

of the wetting phase, while for the p33 experiment this behaviour
was observed for the vertical displacements. The same behaviour
of the displacements of the two fluid phases was observed in all
the experiments performed in this section. These relative motions
between the two fluid phases induce energy losses not present in
single-phase fluids.

The energy velocities of SH waves are not affected by the rela-
tive permeability and capillary pressure (Fig. 5). This behaviour is
explained by the fact that SH waves are uncoupled of the qP waves
and the shear experiment associated with the SH waves does not
induce changes in fluid pressure.
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Figure 17. Polar representation of dissipation factors of the qP and qSV
waves for the FE 2PBM and FE SPBM models at 50 Hz. Pathy gas-oil dis-
tribution in the kerogen layers with over all gas saturation Sg = 10 per cent
with . The medium consists of a sequence of six water–gas saturated illite–
smectite layers and four oil–gas saturated kerogen layer (Kerogen concen-
tration is 40 per cent). Sg = 1 per cent in the illite–smectite layers.

Next, we analyse the behaviour of the phase velocities and dis-
sipation factors of waves as they travel parallel and normal to the
layers as function of frequency. In particular, this study allows to
identify the possible existence and location of attenuation peaks.
The following experiment analyses the behaviour of waves as a
function of frequency in the range 1 Hz–1 kHz. Fig. 6 displays ve-
locities of waves parallel (‘11’ waves) and normal (‘33’ waves) to
the layering plane, while Fig. 7 shows the corresponding dissipa-
tion factors. Velocities increase with frequency. Furthermore, ‘11’
waves exhibit higher phase velocities than ‘33’ waves. Dissipation
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Figure 18. Absolute value of the fluid pressure for the 2PBM model at 50 Hz, patchy gas–oil saturation with 10 per cent overall patchy gas saturation in
the kerogen layers. The medium consists of a sequence of six water–gas saturated illite–smectite layers and four oil–gas saturated kerogen layer (Kerogen
concentration is 40 per cent). Sg = 1 per cent in the illite–smectite layers.

factors are frequency dependent with attenuation peaks of associ-
ated quality factors Q = 50 at about 50 Hz for ‘11’ waves and Q =
67 at about 60 Hz for ‘33’ waves.

In reservoir rocks saturated by two-phase water–gas or oil–gas
mixtures, a certain percentage of immobile water or oil (the wetting
phases) always exists, indicated by the residual wetting saturation
Srw. Thus, in the analysis that follows, the residual saturations are
Srg = 0, Srw = 10 per cent.

4.2 Sensitivity to gas saturation in kerogen layers

To analyse changes in energy velocities and dissipation factors due
to variations of gas saturation in the kerogen layers, we consider
the same sample of the validation experiments but Sg = 10 and
30 per cent in the kerogen layers. The energy velocities of the qP
and qSV waves for the 2PBM are not sensitive to changes in gas
saturation in the kerogen layers ( Fig. 8). The corresponding values
of the energy velocities for the SPBM are not shown due to their
small differences with those of the 2PBM.

The dissipation factors of the qP and qSV waves as a function
of the propagation angle at 50 Hz are shown in Figs 9 and 10,
respectively. For qP waves, attenuation is higher for waves travelling
normal to the layering plane, and higher for Sg = 10 per cent than
for Sg = 30 per cent. The attenuation predicted by the SPBM model
exhibits a similar behaviour but with much lower values.

For qSV waves, attenuation is stronger for angles between 30 and
60 deg, and higher for Sg = 30 per cent than for Sg = 10 per cent.
Attenuation values obtained using the SPBM model are negligible
and are shown as a point at the origin. As in the previous exam-
ple, relative permeabilities are responsible for the high attenuation
predicted by the 2PBM model.

4.3 Sensitivity to kerogen concentration

Here, we analyse changes in the energy velocities and dissipa-
tion factors of qP and qSV waves due to variations in the kerogen

concentration. We consider the same sample of the validation exper-
iments with six periods of 0.012 cm of illite–smectite and 0.003 cm
of kerogen (20 per cent kerogen) and six periods of 0.0105 cm of
illite–smectite and 0.0045 cm of kerogen (30 per cent kerogen). As
expected, lower velocity corresponds to higher kerogen content
(Figs 11 and 12). Furthermore, much higher dissipation factors
are observed for the 2PBM model than for the SPBM model, and a
completely different anisotropic behaviour (Figs 13 and 14). These
results indicate that the SPBM model is not reliable for predicting
attenuation in multiphase saturated porous rocks.

4.4 Sensitivity to patchy saturation

Finally, we analyse the effect of patchy gas–oil saturation in the
kerogen layers for the case of 40 per cent kerogen concentration.
Patchy-saturation patterns produce strong mesoscopic-loss effects
at the seismic frequency band, as shown by White et al. (1975).

To generate patchy gas–oil distribution in the kerogen layers,
we proceed as follows. The first step to generate a patchy fluid
distribution is to assign to each subdomain �j, of the partition of the
domain �, a pseudo-random number using a generator with uniform
distribution. This random field is Fourier transformed to the spatial
wavenumber domain and its amplitude spectrum is multiplied by
the von Karman spectral density given by (Frankel & Clayton 1986;
Santos et al. 2005)

Sd(kx1 , kx3 ) = S0(1 + k2(CL)2)−(H+Ne/2), (34)

where k = √
(kx1 )2 + (kx3 )2 is the radial wavenumber, Ne is the Eu-

clidean dimension, CL the correlation length, H is a self-similarity
coefficient (0 < H < 1) and S0 is a normalization constant. Eq. (34)
corresponds to a fractal process of dimension D = Ne + 1 − H at
scales smaller than CL. The resulting fractal spectrum is then trans-
formed back to the spatial domain, obtaining a microheterogeneous
fractal gas saturation model S( j)

g .
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Next, to assign to each cell �j either Sg = 1 per cent or Sg =
30 per cent, a threshold value S∗

g is chosen so that for each subdo-
main �j where S( j)

g ≤ S∗
g it is assumed that such subdomain has

Sg = 1 per cent, while if Sg
( j) > Sg

∗, Sg = 30 per cent in �j. In
this way, a multiscale binary gas–oil patchy-saturation model is
constructed and an overall brine saturation Sg is obtained. In the ex-
amples, the fractal dimension is D = 2.3 and the correlation length
is 1.67 per cent of the side length of the sample. Residual saturations
are Srw = 10 per cent and Srg = 0. Saturation in the illite–smectite
layers is chosen to be uniform with gas saturation Sg = 1 per cent.

Fig. 15 displays the patchy gas–oil distribution in the kerogen
layers. The white regions correspond to Sg = 30 per cent, and the
black regions correspond to Sg = 1 per cent. Figs 16 and 17 show
the energy velocities and dissipation factors of qP and qSV waves
at 50 Hz for the SPBM and 2PBM models and patchy gas–oil sat-
uration in the kerogen layers for overall gas saturation 10 per cent.
The results of the SPBM were obtained using the FE harmonic ex-
periments as in Picotti et al. (2010) with the effective single-phase
fluid properties determined as in eq. (34).

Energy velocities of qP and qSV waves are very similar for both
models (Fig. 16). On the other hand, the attenuation of the qP waves
is almost isotropic for the SPBM model , while the 2PBM model
exhibits much higher attenuation and strong anisotropy (Fig. 17).
Furthermore, qSV attenuation is strong for angles between 30 and
60 deg and higher for the 2PBM model than for the SPBM model.

Fig. 18 shows the absolute value of the total fluid pressure distri-
bution T̃ at 50 Hz, defined as T̃ = Tn + Tw, with Tn and Tw being
the generalized forces in eqs (3) and (4), respectively. It is seen
that pressure gradients are the highest at the gas–oil interfaces. This
illustrates the WIFF mechanism.

5 C O N C LU S I O N S

We have shown that in porous rocks saturated with two-phase fluids,
the presence of capillary forces (interfacial tension) and the rela-
tive permeabilities, significantly affect the attenuation of qP and
qSV waves. We considered shales composed of illite–smectite lay-
ers saturated with water and gas, and kerogen layers saturated with
oil and gas. Quasi-static numerical experiments performed with an
FE procedure allowed us to compute the energy velocities and dis-
sipation factors due to WIFF. The higher attenuation and strong Q
anisotropy predicted by the 2PBM are due to the combined effects
of relative permeability and capillary pressure. Relative permeabil-
ities define the dissipation function in the Lagrangian formulation,
representing the interaction between the two fluid phases as they
move within the pore space. These relative motions induce energy
losses not present in rock saturated with single-phase or effective
fluids.
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Toksöz, M.N., Cheng, C.H. & Timur, A., 1976. Velocities of seismic waves
in porous rocks, Geophysics, 41, 621–645.

White, J.E., Mikhaylova, N.G. & Lyakhovitskiy, F.M., 1975. Low-frequency
seismic waves in fluid-saturated layered rocks, J. acoust. Soc. Am., 57,
doi:10.1121/1.1995164.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/218/2/1199/5488436 by Purdue U

niversity Libraries AD
M

N
 user on 03 O

ctober 2019

http://dx.doi.org/10.1016/j.ijrmms.2014.05.004
http://dx.doi.org/10.1190/1.1440639
http://dx.doi.org/doi:10.1121/1.1995164

