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ABSTRACT

Reservoir rocks are heterogeneous porous media saturated
with multiphase fluids, in which strong wave dissipation and
velocity dispersion are closely associated with fabric hetero-
geneities and patchy saturation at different scales. The irregular
solid inclusions and fluid patches are ubiquitous in nature,
whereas the impact of geometry on wave dissipation is still not
well-understood. We have investigated the dependence of wave
attenuation and velocity on patch geometry. The governing
equations for wave propagation in a porous medium, containing
fluid/solid heterogeneities of ellipsoidal triple-layer patches, are
derived from the Lagrange equations on the basis of the poten-
tial and kinetic energies. Harmonic functions describe the

wave-induced local fluid flow of an ellipsoidal patch. The ef-
fects of the aspect ratio on wave velocity are illustrated with
numerical examples and comparisons with laboratory measure-
ments. The results indicate that the P-wave velocity dispersion
and attenuation depend on the aspect ratio of the ellipsoidal
heterogeneities, especially in the intermediate frequency range.
In the case of Fort Union sandstone, the P-wave velocity in-
creases toward an upper bound as the aspect ratio decreases. The
example of a North Sea sandstone clearly indicates that intro-
ducing ellipsoidal heterogeneities gives a better description of
laboratory data than that based on spherical patches. The unex-
pected high-velocity values previously reported and ascribed to
sample heterogeneities are explained by varying the aspect ratio
of the inclusions (or patches).

INTRODUCTION

The seismic exploration method is a nondestructive technique to
obtain information about the subsurface. Indeed, the P-wave veloc-
ity is an effective property of lithology and fluid content (Gregory,
1976). Wave-induced local fluid flow (LFF) (mesoscopic loss) has
been recognized as one of the main causes of wave dispersion and
attenuation (Müller et al., 2008; Ba et al., 2011, 2016), which is
greatly affected by solid-fluid heterogeneities, composed of differ-
ent types of pore structures, mineral grains, cements, and immis-
cible fluid patches.
Rocks containing pores and cracks can be approximated with a

double-porosity system. The double-porosity continuum model
was first introduced by Barenblatt et al. (1960) to study fluid flow
between pores and cracks. Aifantis (1977, 1979, 1980), Wilson and
Aifantis (1982), and Khaled et al. (1984) developed a framework of

multi-porous (or double-porosity) models based on the conservation
equations of mass, momentum, and energy. A linear poroelastic
constitutive model for dual-porosity media was proposed by Els-
worth and Bai (1992) based on the equations of mass conservation.
Berryman and Wang (1995, 2000) derived the wave-propagation
equations of a double-porosity medium with a host pore system
and embedded fractures.
The effects of partial saturation on wave velocities have been

widely studied (White, 1975; White et al., 1975; Dutta and Odé,
1979a, 1979b; Dutta and Seriff, 1979; Knight and Nolen-Hoek-
sema, 1990; Mavko and Mukerji, 1998; Johnson, 2001; Müller and
Gurevich, 2004; Pride et al., 2004; Müller et al., 2008; Ba et al.,
2011; Sun et al., 2016; Sharma, 2017; Zheng et al., 2017). Exper-
imental observations were reported in the sonic and ultrasonic fre-
quency bands (Wyllie et al., 1956, 1958; Gregory, 1976; Murphy,
1984; Bacri and Salin, 1986; Cadoret et al., 1995, 1998). More
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recently, fluid patch distributions were directly observed in partially
saturated rocks using injection experiments and computer tomog-
raphy (CT) imaging techniques (Lebedev et al., 2009; Lopes
and Lebedev, 2012). It is clear that wave velocity dispersion and
attenuation are dependent on patch size and spatial distri-
bution (Helle et al., 2003; Toms et al., 2006; Sun et al., 2015).
It has been concluded that the wave-induced LFF due to mesoscopic
heterogeneities is the main mechanism responsible for energy
dissipation in partially saturated rocks (Johnson, 2001; Müller and
Gurevich, 2004; Berryman and Pride, 2005; Toms et al., 2006).
However, the mechanism by which arbitrary-shaped heterogeneities
govern wave dispersion/attenuation still needs further investi-
gations.
Several models were developed to analyze the effects of patchy

saturation, theoretically or computationally, for a single-porosity
medium saturated with a mixture of immiscible fluids (White, 1975;
Dutta and Odé, 1979a, 1979b; Johnson, 2001; Pride et al., 2004;
Quintal et al., 2011; Ba et al., 2017) and a double-porosity media
saturated with a single fluid (Berryman andWang, 2000; Pride et al.,
2004; Rubino and Holliger, 2012). The effects of randomly distrib-
uted fluid patches were studied by Toms et al. (2007). A triple-layer
patchy (TLP) model has been proposed for a double-porosity media
saturated with two immiscible fluids, which is shown in Figure 1b
(Sun et al., 2016). Even though researchers have made many at-
tempts to explain the observed velocity-saturation relationships, the
formation and evolution of fluid patches in real rocks are still poorly
understood. Recent experiments show that the characteristic patch
size may depend on the saturation and injection rate (Toms-Stewart
et al., 2009; Lopes et al., 2014). A method has been proposed to
model the distinct relationship between the patch size and injection
rate (Liu et al., 2016).
The main objective of this work is to derive an ellipsoidal TLP

(ETLP) model to incorporate the geometric effects of ellipsoidal
solid inclusions and fluid patches in wave propagation (Figure 1c).

This model is more general than those based on spherical patches,
especially for deeply buried tight rocks containing flat pore spaces
and penny-shaped cracks. The new model differs from the previous
TLP model in three respects: (1) the solid and fluid inhomogeneities
are analyzed in terms of concentric ellipsoids, which incorporate the
effects of the aspect ratio (see Figure 2), (2) the ellipsoidal patches
are randomly distributed in space (isotropy), and (3) the size and
aspect ratio of the ellipsoids are random. Here, the volume fraction
of the inner fluid pocket is constant.
As shown in Figure 1c, the ellipsoids are randomly distributed in

space. The aspect ratio can be larger or smaller than unity. Although
the semiaxes are assumed to be aligned with the Cartesian coordi-

Figure 1. Diagrams of mesoscopic patchy models. (a) White/Dutta model: A porous skeleton saturated with water (the host background)
contains spherical gas pockets (dark shaded patches). (b) TLP model: A porous skeleton saturated with an immiscible fluid fout (host fluid)
contains uniform spherical heterogeneities min (hatched patches) saturated with another fluid fin (dark-shaded spherical patches). (c) ETLP
model: A porous skeleton saturated with an immiscible fluid fout (host fluid) contains random-sized ellipsoidal heterogeneities min (hatched
patches) saturated with a second fluid fin (dark-shaded ellipsoidal patches). The aspect ratio of the ellipsoids is random, but the volume fraction
of the inner fluid pocket in each cell is constant.

Figure 2. A 2D diagram of an ETLP. The irregular volume contain-
ing the solid and fluid inhomogeneities is represented by the equiv-
alent concentric ellipsoidal shells. Two porous components are
separated by the interface Ssolid. The two immiscible fluids are sep-
arated by the interface Sfluid with radii (a10, b10, c10). The overall
ellipsoidal patch has the radii (a20, b20, c20).
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nates, the random aspect ratio leads to ellipsoids with semimajors,
randomly pointing along the horizontal and vertical directions.

DYNAMIC GOVERNING EQUATIONS OF THE
ETLP MODEL

Fabric and fluid heterogeneities are taken into consideration si-
multaneously in the ETLP model that consists of ellipsoidal solid
inclusions embedded in a homogeneous host porous medium. The
matrix is partitioned into inclusions and host skeleton by the inter-
face Ssolid (see Figure 2). The heterogeneous skeleton has a double-
porosity structure; i.e., the ellipsoidal inclusions have porosity of
ϕin and the surrounding host region has porosity of ϕhost. The radii
of the inclusions are much smaller than the wavelength but much
larger than the pore size (at a mesoscopic scale). The interface be-
tween the inclusions and the host medium is open, and the fluids can
flow through it. The host region is approximated by an equivalent
concentric ellipsoidal shell. Similar to White’s (1975) model for a
periodic heterogeneity, a typical representative elementary volume
(REV) is analyzed. An ellipsoidal solid heterogeneity is located at
the center. The REV is saturated with two immiscible fluids that
form an inner ellipsoidal core and an outer concentric ellipsoidal
shell. It is assumed that the center of the fluid overlaps with that of
the solid heterogeneity. The dynamic formulation developed for the
REV is considered a representation of the macroscopic mean re-
sponse. Based on such approximations, analytical solutions are ob-
tained by deriving differential equations and measurable coefficients.
The double-porosity skeleton is saturated with two immiscible

fluids separated by the interface Sfluid. Therefore, the fabric structure
and pore fluid patches are two independent heterogeneous systems
and need to be treated separately. Consequently, the domain saturated
with the inner fluid pocket may include the skeletons composed of
the two porous components. On the other hand, the host fluid can also
saturate the two porous components when the volume represented by
Sfluid is smaller than that of Ssolid.
The configurations of the fluid interface Sfluid and solid interface

Ssolid are as follows: (1) Sfluid is located inside Ssolid and (2) Ssolid is
located inside Sfluid (Sun et al., 2016). Then, a new formulation is
proposed to incorporate the fluid and solid heterogeneities simulta-
neously.
If the region saturated with one fluid covers two types of porous

components, the effective porosity in such a region will be used for

the formulation. The function
hϕin

ϕhost

i
fluid

indicates the effective

porosities of the region covered by the inner fluid pocket and the
surrounding fluid patch, respectively. The relationships between the
effective and intrinsic porosities are

�
ϕin

ϕhost

�
fluid

¼ G ·

�
ϕin

ϕhost

�
solid

; (1)

where

G ¼ δv

� vs
δv HðδvÞ

−HðδvÞ 1−v1
δv þHðδvÞ

�
; (2)

where HðδvÞ is the Heaviside function,

HðδvÞ ¼
�
0 δv < 0

1 δv ≥ 0
; (3)

and δv ¼ v1 − vs, with v1 and vs being the volume fractions of the
inner fluid pocket and solid inclusion, respectively.
In the same way, the effective permeability can be determined by

hκini−1 ¼ κ−1in vs þ κ−1hostHðv1 − vsÞ × ðv1 − vsÞ; (4)

hκi−1host¼κ−1hostð1−v1Þþðκ−1host−κ−1in ÞHðv1−vsÞ×ðv1−vsÞ:
(5)

The fluid pocket is assumed to have an ellipsoidal surface with the
initial principal radii (a0; b0; c0) (Figure 3). The instantaneous
radii are (a; b; c) when the P-wave oscillation causes LFF. Using
the ellipsoidal coordinates ðr; θ;ψÞ, the distance from the origin
point to a point on the ellipsoidal surface is

r ¼ ða2 cos2 ψ sin2 θ þ b2 sin2 ψ sin2 θ þ c2 cos2 θÞ1∕2; (6)

where ψ ∈ ½0; 2π�, θ ∈ ½0; π�. In the case that the fluid pocket is ex-
posed to anisotropic hydrostatic pressure, the pocket expands and
shrinks, keeping its original shape. Then, we have a∕a0 ¼ b∕b0 ¼
c∕c0 ¼ r∕r0.
By considering wave-induced flow at the fluid surface, the fluid

being depleted from the inner pocket to the outer shell is ϕ1ζ, and the
opposite flow induces the variation −ϕ2ζ, where ζ is the variation of
fluid content, which allows for fluid mass conservation in the system:

ζ ¼ 1

ϕ2

�
1 −

a10b10c10
a1b1c1

�
¼ 1

ϕ2

�
1 −

a310
a31

�
: (7)

Here, a10; b10; c10 are the initial principal radii of the inner fluid
pocket and a1; b1; c1 are the instantaneous radii of the inner fluid
pocket when the P-wave oscillation causes LFF. We introduce the
following notation:

ϕ1 ¼ hϕiin ¼ ϕ10v1; (8)

ϕ2 ¼ hϕihost ¼ ϕ20ð1 − v1Þ: (9)

Figure 3. Schematic diagram of an ellipsoidal fluid pocket and the
corresponding surrounding fluid patch. Here, a10, b10, and c10 are
the initial principal radii.
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For a double-porosity dual-fluid system with ellipsoidal hetero-
geneities, the dynamic governing equations can be derived using
the Euler-Lagrange equations including the dissipation functions

∂
∂t

�
∂L
∂ _ui

�
þ
X3
j¼1

∂
∂xj

�
∂L
∂ui 0j

�
þ ∂L

∂ui
þ ∂ðDþDLÞ

∂ _ui
¼ 0;

(10)

∂
∂t

�
∂L
∂_ζ

�
þ ∂L

∂ðζÞ þ
∂ðDþDLÞ

∂_ζ
¼ 0; (11)

where L ¼ T −W. The kinetic energy T is

T ¼ 1

2

X3
i¼1

ρ00 _u2i þ
X3
i¼1

X2
m¼1

ρ0m _ui _U
ðmÞ
i

þ 1

2

X3
i¼1

X2
m¼1

ρmm
_UðmÞ2
i þ ϕ1ϕ

2
2

6
_ζ2χ1; (12)

where UðmÞ
i is the fluid displacement in the mth fluid region. Here,

m ¼ 1 denotes the inner fluid pocket,m ¼ 2 is the surrounding shell,
and ui is the mesoscopic volume average displacement of the solid
skeleton. It is assumed that the concentric ellipsoidal fluid patches
have random sizes (see Figure 1c). The radii of the ith type of ellip-
soidal patch size are (ai10, bi10, ci10), and the results are frequency
dependent and depend on the patch size. This can be related to the
unit cell defined by White (1975), which is composed of a core and
an outer shell. The patch size is physically determined by the gas
pocket size and the saturation. In the ETLP model, the patch is
ellipsoidal and triple layered. The last term in the kinetic energy is
related to the LFF at the fluid interface (Appendix A), where

χ1 ¼
�
ρf1

1

n

Xn
i¼1

a2i10E1 þ ρf2
ϕ10

ϕ20

1

n

Xn
i¼1

a2i10E2

�
; (13)

E1¼
Z

2π

ψ0¼0

Z
π

θ0¼0

ðsin2θ0cos2ψ0þr2ba sin
2θ0 sin

2ψ0þr2cacos2θ0Þ32

×ðr−2ca cos2θ0þr−2ba sin
2ψ0 sin

2θ0þcos2ψ0 sin
2θ0Þ12

×Yh
l ðθ0;ψ0ÞYh̄

l̄
ðθ0;ψ0Þsinθ0dθ0dψ0; (14)

E2 ¼
1

3

�
1þ b210

a210
þ c210

a210

��
1 −

a10
a20

�
; (15)

where rba ¼ b10∕a10 and rca ¼ c10∕a10. Here, Yh
l ðθ0;ψ0Þ are Lap-

lace’s spherical harmonics of degree l and order h. The total number
of the different principal radii is n.
The density coefficients are (Ba et al., 2011; Sun et al., 2016)

ρmm ¼ ρfm
2

ϕm

�
1þ 1

ϕm0

�
; (16)

ρ0m ¼ ρfm
2

ϕm

�
1 −

1

ϕm0

�
; (17)

ρ00 ¼ ρ0 −
1

2

X2
m¼1

ρfmϕm

�
1 −

1

ϕm0

�
; (18)

where ρ0 ¼
P

2
m¼1 vmð1 − ϕm0Þρsm is the density of the dry skel-

eton, ρfm are the fluid densities of the mth fluid patch, and
v2 ¼ 1 − v1 is the volume fraction of the surrounding shell of fluid
patch.
The strain energy W is

W¼1

2
½ðAþ2NÞI21−4NI2þ2Q1I1ðξ1−ϕ2ζÞþR1ðξ1−ϕ2ζÞ2

þ2Q2I1ðξ2þϕ1ζÞþR2ðξ2þϕ1ζÞ2�; (19)

where I1 and I2 are the first and second strain invariants of the solid
phase, ξm are the fluid dilatations of the fluid displacements
UðmÞ(m ¼ 1; 2), N is the effective shear modulus of the whole solid
skeleton, and A;Qm; Rm (m ¼ 1; 2) are the stiffness coefficients.
The dissipation function D is

D ¼ 1

2

X2
m¼1

bm
X3
i¼1

ð _UðmÞ
i − _uiÞ2 þ

ϕ1ϕ
2
2

6
_ζ2β1; (20)

where bm ¼ vmϕ2
m0ðηm∕κmÞ (m ¼ 1, 2) is the Biot’s dissipation

coefficients, κm is the permeability of each component, and ηm and
vm are the viscosity and volume fraction of each phase, respectively.
The notations κ1 ¼ hκiin and κ2 ¼ hκihost are introduced.
The last term in dissipation function is caused by LFF, where

β1 ¼ ϕ10

�
η1
κ1

1

n

Xn
i¼1

a2i10E1 þ
η2
κ2

1

n

Xn
i¼1

a2i10E2

�
: (21)

The dynamic equations are

ρ00üþ
X2
m¼1

½ρ0mÜðmÞþbmð _u− _UðmÞÞ�¼N∇2uþðAþNÞ∇I1

þQ1∇ð∇ ·U1−ϕ2ζÞþQ2∇ð∇ ·U2þϕ1ζÞ
ρ01üþρ11Üð1Þþb1ð _Uð1Þ− _uÞ¼Q1∇ð∇ ·uÞþR1∇ð∇ ·U1−ϕ2ζÞ
ρ02üþρ22Üð2Þþb2ð _Uð2Þ− _uÞ¼Q2∇ð∇ ·uÞþR2∇ð∇ ·U2þϕ1ζÞ

−ðχ1ζ̈1þβ1 _ζ1Þ
ϕ1ϕ

2
2

3
¼ϕ2½Q1∇ð∇ ·uÞþR1∇ð∇ ·U1−ϕ2ζÞ�

−ϕ1½Q2∇ð∇ ·uÞþR2∇ð∇ ·U2þϕ1ζÞ�; (22)

where ζ ¼ ∇ · Z is the increment of LFF caused by the pressure
gradient between different fluid patches, Z is the LFF between
the immiscible fluid patches, and e is the strain. The Biot dissipation
coefficients can also be written as bm ¼ ρfmϕmω

ðmÞ
c (m ¼ 1, 2),

where ωðmÞ
c ¼ μmϕm0∕ρfmκm are the characteristic frequencies for

immiscible fluid patches.
Using a harmonic-wave analysis, we substitute the solution

eiðωt−kxÞ in the solid and fluid displacements of the wave equations,
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where ω and k are the angular frequency and wavenumber, respec-
tively. Then, we have2
4 a11Y þ b11a12Y þ b12a13Y þ b13
a21Y þ b21a22Y þ b22a23Y þ b23
a31Y þ b31a32Y þ b32a33Y þ b33

3
5
8<
:

C1

Cð1Þ
2

Cð2Þ
2

9=
; ¼ 0; (23)

where Y ¼ ðk∕ωÞ2, m ¼ 1, 2. Equation 23 has nonzero solutions
for C1; C

ð1Þ
2 ; Cð2Þ

2 , only if the determinant is zero, which yields

AY3 þ BY2 þ CY þD ¼ 0: (24)

The coefficients aij; bij and A; B; C;D are given in Appendix B. This
equation in ðk∕ωÞ2 has three roots, corresponding to the fast P-wave
and two slow P-waves. The complex and phase P-wave velocities are,
respectively, defined as v ¼ ω∕k and VP ¼ 1∕ðReð1∕vÞÞ. The P-
wave dissipation factor is obtained as Q−1 ¼ ðImðv2ÞÞ∕ðReðv2ÞÞ.

NUMERICAL EXAMPLES

Effects of aspect ratio on velocity dispersion and
attenuation in a tight sandstone

We first consider the effects of the aspect ratio of the ellipsoidal
inhomogeneities in a Fort Union sandstone, which has an average
grain size between 0.125 and 0.15 mm (Murphy, 1984). Table 1
shows the rock and fluid properties.
Figures 4 and 5 show the acoustic phase velocity dispersion and

attenuation in Fort Union sandstone as a function of water satura-
tion at a frequency of 5Hz, 100 Hz, 5 kHz, and 1 MHz and a patch
size a ¼ 1.2 mm (semi-major axis). The semi-minor axis radii are
set as b ¼ a · rba and c ¼ a · rca (for simplicity, rca ¼ 1). In natu-
ral rocks, the fluid patch shapes are not spheres (Tserkovnyak and
Johnson, 2002). The geometry depends on the
experimental conditions, such as fluid injection
rate, open/close boundaries, etc. Laboratory
observations have confirmed that the P-wave
velocity may be quite different even for the same
saturation, which is caused by different fluid
patch geometries induced by different injection
rates (Lebedev et al., 2009; Liu et al., 2016).
As shown in Figures 4 and 5, the P-wave veloc-
ities at different frequencies depend on the aspect
ratio of the inhomogeneities, which indicates that
the fluid patch geometry must be considered to
interpret velocity dispersion and attenuation
phenomena.
As shown in Figure 4, the velocity-saturation

relationships are highly dependent on the aspect
ratio at 100 Hz and 5 KHz (when the aspect
ratio approaches one, the ETLP model reduces
to the TLP model of Sun et al., 2016). However,
at 5 Hz, the velocity sharply increases at high
water saturations (80% to almost 100%) when the
aspect ratio decreases (Figure 4a). For a water sat-
uration less than 80%, the velocity is almost con-
stant with varying aspect ratio. On the contrary, at
1 MHz, the velocity increases with decreasing
aspect ratio at low water saturations (0%–60%)
(Figure 4d).

Figure 5 shows that the P-wave attenuation is also sensitive to the
aspect ratio. In general, the attenuation peak shifts to the low water
saturations with decreasing aspect ratio. At 5 Hz in Figure 5a, the
attenuation is significant in the water saturation range >60%,
whereas at 100 Hz in Figure 5b, this occurs in the range >40%.
It is also shown that at the same frequency, a lower attenuation peak
can be observed with decreasing aspect ratio, and the attenuation is
low at 1 MHz and aspect ratio 0.1 in Figure 5d.

Table 1. Rock and fluid properties for the Fort Union
sandstone (Murphy, 1984).

Property Value

ϕ 0.085

Ks (GPa) 35.00

Kb (GPa) 7.14

Nb (GPa) 9.06

ρs (kg∕m3) 2650

κ (m2) 0.5 × 10−15

Kwater (GPa) 2.25

ρwater (kg∕m3) 997

ηwater (Pa · s) 0.001

Kgas (MPa) 0.8

ρgas (kg∕m3) 100

ηgas (Pa s) 1.00 × 10−5

Figure 4. The P-wave velocity as a function of water saturation in Fort Union sandstone
predicted by the ETLP model. The aspect ratios of the ellipsoidal inhomogeneities are 1,
0.5, 0.2, and 0.1. (a-d) Correspond to frequencies of 5 Hz, 100 Hz, 5 kHz, and 1 MHz,
respectively.
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High-porosity sandstone at sonic frequencies

The effects of ellipsoidal patches on the velocity-saturation rela-
tionship are investigated by comparison to laboratory data of a
North Sea sandstone, with a porosity of 35% and a permeability
of 8.7D, at several frequencies. The rock properties are given in
Table 2 (Boruah and Chatterjee, 2010).
The rock-skeleton bulk and shear moduli Kb and N are obtained

as Kb¼ðKsð1−ϕÞÞ∕ð1þαϕÞ and N¼ðNsð1−ϕÞÞ∕ð1þ1.5αϕÞ
(Cadoret et al., 1998; Han et al., 2007). The dry-rock velocities
of the sandstone are fitted to determine the consolidation
parameter α.

The North Sea sandstone is predominantly composed of quartz
with clay coating the mineral grains (Avseth, 2000). The quartz ce-
mentation is inhibited by the clay and organic matter coating the
solid grains. The clay content in the pore system results in a great
number of small contact cracks. The double-porosity structure con-
sists of low-porosity clay and high-porosity sandstone. The solid
particles are usually not very rounded or polished and larger inter-
particle pores exist.
When a traveling wave passes through a heterogeneous rock, a

pore pressure gradient is generated due to the spatial variations of
the pore shape/structure, pore stiffness, and fluid saturation. Fluid
flow occurs across the interface between the patch and the host

phase, which equilibrates pressure differences
at a local scale and causes velocity dispersion
and attenuation. The pressure equilibration of
the pore fluid depends on LFF, which in turn de-
pends on the patch size and diffusion length. For a
low-frequency wave, the diffusion length can be
much larger than the fluid patch size. Then, the
pore fluid pressure equilibrates between the differ-
ent phases in each wave circle, and the Gassmann-
Wood’s model is a reliable approximation (Müller
et al., 2010). At the high-frequency limit, the
unrelaxed local fluid pressure will strengthen
the elastic stiffness of the porous matrix. Gass-
mann-Hill’s model is used to calculate the upper
limit of the frame velocity.
The patch size can be characterized by the

volume-surface area ratio (Tserkovnyak and
Johnson, 2002). For ellipsoidal heterogeneous
inclusions, the volume-surface area ratio is a func-
tion of the three radii corresponding to the differ-
ent semiaxes, which in turn depend on the aspect
ratio. The range of fluid patch sizes can be deter-
mined from the average grain size and estimating
the diffusion length (Sun et al., 2016). In this
work, the aspect ratio of the ellipsoidal patch pro-
vides another degree of freedom to characterize
the effect of the LFF.
We calculated the P-wave dispersion and at-

tenuation on the basis of the patch geometry and
inclusion volume fractions. The Biot-Gassmann-Wood (BGW) and
Biot-Gassmann-Hill (BGH) limits (Ba et al., 2015) are also given as
a reference. The aspect ratio of the ellipsoidal heterogeneities is 1
(Figure 6) and 0.001 (Figure 7). It is shown that the aspect ratio
affects the P-wave velocities. The predicted velocities at 500 kHz
significantly increase when the aspect ratio decreases from 1 to
0.001, especially for water saturations in the range of 10%–90%.
At a sonic frequency of 50 kHz, the velocities also increase with
decreasing aspect ratio (the P-wave velocity at Sw ¼ 80% increases
approximately by 100 m∕s). At a seismic frequency of 50 Hz, the
velocities at high water saturation (approximately 90%) decrease
with the decreasing aspect ratio.
Figure 6 shows the modeling results with spherical hetero-

geneities (aspect ratio equal to one; the ETLP model reduces to
the TLP model of Sun et al., 2016). The aspect ratio 0.001 can better
describe the 500 kHz experimental data (see Figure 7). The
TLP model with spherical inclusions cannot describe the strong
stiffening effects at ultrasonic frequencies observed in the data of

Figure 5. P-wave attenuation as a function of water saturation in Fort Union sandstone
predicted by the ETLP model. The aspect ratios of the ellipsoidal inhomogeneities are 1,
0.5, 0.2, and 0.1. (a-d) Correspond to frequencies of 5 Hz, 100 Hz, 5 kHz, and 1 MHz,
respectively.

Table 2. Rock and fluid properties of a North Sea sandstone
(Boruah and Chatterjee, 2010).

Property Value

ϕ 0.35

Ks (GPa) 39.47

ρs (kg∕m3) 2630

N (GPa) 36.61

κ (m2) 8.586 × 10−12

Kbrine (GPa) 2.48

ρbrine (kg∕m3) 1060

ηbrine (Pa s) 0.0011

Kgas (GPa) 1.01 × 10−5

ρgas (kg∕m3) 1.2

ηgas (Pa s) 1.81 × 10−5

WC76 Sun et al.

D
ow

nl
oa

de
d 

02
/1

0/
19

 to
 1

51
.5

1.
25

1.
14

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Batzle et al. (2006). Furthermore, the Gassmann model is only ef-
fective at the low-frequency limit, i.e., when there are no pressure
gradients in the pore fluid. It is not applicable at higher frequencies,
in which the Biot and local fluid mechanisms should be considered.
By modeling flat heterogeneities and double-porosity/dual-fluid
characteristics, the ETLP provides a better fit of the experimental
data than the BGH model.
The unexpected high values of the ultrasonic velocities were pre-

viously ascribed to sample heterogeneity (Batzle et al., 2006). There
is an inflection point in the ultrasonic experimental data at water sat-
urations of approximately 80%. The North Sea sandstone has high
porosity (35%) and high permeability (8.7D). The sharp increase of
velocity versus saturation in the saturation range >80% could be re-
lated to the different geometric features of the fluid patches between
the low and high water saturations. In the ETLP modeling, a single

set of parameters regarding the patch size and shape is used, which
cannot fully describe the observed velocity at each saturation. How-
ever, it is able to explain the general trend and characteristics of the
velocity-saturation relationship.

CONCLUSION

We propose an ETLP model to describe wave propagation in par-
tially saturated double-porosity media. The model combines the
macroscopic Biot flow and the mesoscopic LFF under the effects
of ellipsoidal fluid and fabric heterogeneities. This model provides a
physical approach to investigate the coupling effect between hetero-
geneity-geometry and wave dispersion/attenuation. The model in-
corporates the fluid distribution and rock structure heterogeneities
from spherical to flat shapes, a wide distribution that commonly
coexists in natural reservoir rocks. When the aspect ratio is one, the
model reduces to the TLP model with spherical patches, which can
then further be reduced to the classic Biot theory. For small aspect
ratios, we can model the effects of cracks. An analysis of the effects
of frequency and ellipsoidal aspect ratio based on numerical exam-
ples reveals that the aspect ratio is an essential parameter that controls
the observed dispersion and attenuation. It is concluded that the
agreement between the predicted velocity and experiment data is rea-
sonably good because of the more flexible geometry of the present
model, which can be applied to partially saturated fractured porous
reservoirs and allows for a broader insight on the related wave phe-
nomena because it considers inclusions of flat shapes. Because we
have developed the model from first principles (Lagrange equations),
we also have obtained the governing differential equations of wave
propagation that can be used to compute synthetic seismograms.
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APPENDIX A

KINETIC ENERGY OF LFF

The velocity field in the fluid pocket is obtained from

ρf1
∂_r
∂t

¼ −∇p; (A-1)

where p is the pressure. The density ρf1 is assumed constant. The
pressure can be obtained in spherical coordinates as (Buivol, 2006)

p ¼
X∞
l¼0

Xl

h¼−l
clhðtÞ

rl0
rl10

Yh
l ðθ0;ψ0Þ; (A-2)

where r0 (r0 < r10) is the instantaneous distance from an arbitrary
point on the ellipsoid fluid pocket surface to the origin point, r10 is

Figure 6. Measured and theoretically predicted P-wave velocities
of the North Sea sandstone. The aspect ratio of the ellipsoidal in-
homogeneity is one. The symbols are experimental data from Batzle
et al. (2006).

Figure 7. Measured and theoretically predicted P-wave velocities
of the North Sea sandstone. The aspect ratio of the ellipsoidal in-
homogeneity is 0.001. The symbols are experimental data from
Batzle et al. (2006).
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the static radius of the fluid pocket, clh are the coefficients of the
mathematical expansion, and Yh

l ðθ0;ψ0Þ are the Laplace spherical
harmonics of degree l and order h. By combining the above two
equations, the fluid displacement is

r ¼ r0 þ
X
l;h

rlhðtÞr10∇
�
rl0
rl10

Yh
l ðθ0;ψ0Þ

�
: (A-3)

The unperturbed fluid element position is r0 and the position co-
efficients rlh satisfy _rlh ¼ −ð1∕ρf1r10Þ∫ clhðtÞdt. In the case of ir-
rotational vibrations, the displacement gradient is independent of
θ0;ψ0, and ∇ ¼ d∕dr0. At the surface of the fluid pocket, the radial
displacement component is given by

r1 ¼ r10 þ
X
l;h

rlhðtÞlYh
l ðθ0;ψ0Þ; (A-4)

where r10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a210 sin

2 θ cos2 ψ þ b210 sin
2 θ sin2 ψ þ c210 cos

2 θ
p

is
the distance from a point on Sfluid to the origin point. The final
kinetic energy of the inner fluid pocket is

1

2
ϕ10

Z
Ω1

ρf1 _r · _rdΩ1

¼ 1

2
ϕ10

Z
Ω1

ρf1

�X
l;h

_rlhðtÞr1∇
�
rl0
rl1

Yh
l ðθ0;ψ0Þ

�

·
X
l̄;h̄

_rl̄ h̄ðtÞr1∇
�
rl̄0
rl̄1

Yh̄
l̄
ðθ0;ψ0Þ

��
dΩ1

¼ 1

2
ϕ10

Z
∂Ω1

ρf1

�X
l;h

_rlhðtÞr1
�
rl0
rl1

Yh
l ðθ0;ψ0Þ

�

·
∂
∂r0

�X
l̄;h̄

_rl̄ h̄ðtÞr1
�
rl̄0
rl̄1

Yh̄
l̄
ðθ0;ψ0Þ

���
dS0

¼ 1

2
ϕ10ρf1

X
l;h

X
l̄;h̄

l̄
Z

π

θ0¼0

Z
2π

ψ0¼0

_rlh _rl̄ h̄r1 ~rðθ0;ψ0Þ2

× Yh
l ðθ0;ψ0ÞYh̄

l̄
ðθ0;ψ0Þ sin θ0dθ0dϕ0; (A-5)

where ~rðθ0;ψ0Þ2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21b

2
1 cos

2θ0þa21c
2
1 sin

2ψ0 sin
2θ0þb21c

2
1 cos

2ψ0 sin
2θ

p
0.

Note that r0 ¼ r10 on the ellipsoidal surface and dS0 ¼ ~r2 sin θ0
dθ0dψ0. By considering the proportional deformation relationships
a∕a0 ¼ b∕b0 ¼ c∕c0 ¼ r∕r0,

~r2¼a21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b210
a210

cos2θ0þ
c210
a210

sin2ψ0 sin
2θ0þ

b210c
2
10

a410
cos2ψ0 sin

2θ0

s
:

(A-6)

The kinetic energy of the inner sphere is then

Tð1Þ
L ¼ 2πρf1ϕ10

Z
π

θ0¼0

Z
2π

ψ0¼0

r10a1
a10

�
r10 _a1
a10

�
2

× ~r2Yh
l ðθ0;ψ0ÞYh̄

l̄
ðθ0;ψ0Þ sin θ0dθ0dψ0

¼ 2πρf1ϕ10a31 _a
2
1

Z
π

θ0¼0

Z
2π

ψ0¼0

r310
a310

�
b210
a210

cos2θ0

þ c210
a210

sin2 ψ0 sin
2 θ0 þ

b210c
2
10

a410
cos2 ψ0 sin

2 θ0

�1
2

× Yh
l ðθ0;ψ0ÞYh̄

l̄
ðθ0;ψ0Þ sin θ0dθ0dψ0

¼ 2πρf1a
3
1rbarca _a

2
1ϕ10E1; (A-7)

E1 ¼
Z

2π

ψ0¼0

Z
π

θ0¼0

ðsin2 θ0 cos2ψ0 þ r2ba sin
2 θ0 sin

2 ψ0

þ r2ca cos2 θ0Þ32
×ðr−2ca cos2 θ0 þ r−2ba sin

2 ψ0 sin
2 θ0

þ cos2 ψ0 sin
2 θ0Þ12Yh

l ðθ0;ψ0ÞYh̄
l̄
ðθ0;ψ0Þ sin θ0dθ0dψ0;

(A-8)

where rba ¼ b10∕a10 and rca ¼ c10∕a10. To approximately estimate
E1, we consider a case in which rba ¼ 1; i.e., the radii at the x-axis
and y-axis are the same. Then, E1 can be integrated as

E1 ¼
Z

2π

ψ0¼0

Z
π

θ0¼0

ðsin2 θ0 þ r2ca cos2 θ0Þ32ðsin2 θ0

þ r−2ca cos2 θ0Þ12Yh
l ðθ0;ψ0ÞYh̄

l̄
ðθ0;ψ0Þ sin θ0dθ0dψ0:

(A-9)

In the case of a spherical pocket, i.e., a10 ¼ b10 ¼ c10, the eigenfunc-
tions Yh

l ðθ0;ϕ0Þ are normalized to be orthonormal integrated over the
surface of the unit sphere.

E1 ¼
Z

π

θ0¼0

Z
2π

ψ0¼0

Yh
l ðθ0;ψ0ÞYh̄

l̄ ðθ0;ψ0Þ sin θ0dθ0dψ0

¼ δðl − l̄Þδðh − h̄Þ: (A-10)

For l ¼ h ¼ 1, E1 ¼ 1, and Tð1Þ
L ¼ 2πρf1a

3
1rbarca _a

2
1ϕ10.

The kinetic energy term Tð2Þ
L related to the outer concentric shell

domain is obtained as follows. For an ellipsoid x2∕a2 þ y2∕b2þ
z2∕c2 ¼ R2, the equation can be written as X2 þ Y2 þ Z2 ¼ R2

by X ¼ x∕a; Y ¼ y∕b, and Z ¼ z∕c. The volume integral is

V¼abc
Z Z Z

Ω
dXdYdZ¼abc

Z
R

0

r2dr
Z

π

0

sinθdθ
Z

2π

0

dψ ;

(A-11)

where X ¼ r sin θ sin ψ , Y ¼ r sin θ cos ψ , Z ¼ r cos ψ , and
dXdYdZ ¼ r2 sin θdrdθdψ . The surface ellipsoidal fluid patch
is written as ðx2∕1Þ þ ðy2∕ðb21∕a21ÞÞ þ ðz2∕ðc21∕a21ÞÞ ¼ a21. In the
case of an instantaneously proportional deformation relationship
_r ¼ ð _a∕ _a1Þ_r1, the kinetic energy Tð2Þ

L is
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Tð2Þ
L ¼ 1

2
ϕ20ρf2

Z
Ω2

_r2dr ¼ 1

2
ϕ20ρf2

×
Z
Ω2

_a2

a21
r21dr ¼

1

2
ϕ20ρf2

b1c1
a21

Z
a2

a1

_a2

a21
a2da

×
Z

π

0

sin θ0

Z
2π

0

a21

�
sin2 θ0 cos

2 ψ0

þ b21
a21

sin2 θ0 sin
2 ψ0 þ

c21
a21

cos2 θ0

�
dψdθ; (A-12)

where r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 sin

2 θ cos2 ψ þ b21 sin
2 θ sin2 ψ þ c21 cos

2 θ
p

is
used. By considering the mass conservation at the fluid interface,
_rϕm0dS ¼ _r1ϕ10dS1ðm ¼ 1; 2Þ, ð_r∕ _aÞ ¼ ð_r1∕ _a1Þ and

_a¼ϕ10dS1
ϕ20dS

_a1¼
ϕ10

ϕ20

_a1

×
ða21b21 sin2ψ cos2ψþa21c

2
1 sin

4ψþðb21−a21Þc21 cos2θsin4ψÞ
1
2

ða2b2 sin2ψ cos2ψþa2c2 sin4ψþðb2−a2Þc2 cos2θsin4ψÞ12

¼ϕ10a21
ϕ20a2

_a1: (A-13)

Then,

Tð2Þ
L ¼ 1

2
ρf2a

2
1b1c1

ϕ2
10 _a

2
1

ϕ20

Z
a2

a1

1

a2
da

×
Z

π

0

sin θ0

Z
2π

0

�
sin2 θ0 cos

2 ψ0 þ
b21
a21

sin2 θ0 sin
2 ψ0

þ c21
a21

cos2 θ0

�
dψdθ

¼ 1

2
ρf2a

2
1b1c1

ϕ2
10 _a

2
1

ϕ20

×
�
1

a1
−

1

a2

�
×
4π

3

�
1þ b21

a21
þ c21

a21

�

¼ 2πρf2a
3
1rbarca _a

2
1

ϕ2
10

ϕ20

E2: (A-14)

By considering the proportional deformation relationship, we
have E2 ¼ 1∕3ð1þ ðb210∕a210Þ þ ðc210∕a210ÞÞð1 − ða10∕a20ÞÞ ¼ 1∕3
ð1þ ðb210∕a210Þ þ ðc210∕a210ÞÞð1 − v1∕31 Þ, where a20 is the radius of
the outer patch.
In the case of a spherical pocket, E2 ¼ ð1 − ða10∕a20ÞÞ

¼ ð1 − v1∕∕31 Þ and Tð2Þ
L ¼ 2πρf2a

3
1 _a

2
1ðϕ2

10∕ϕ20Þð1 − v1∕31 Þ.
Then, the local kinetic energy related to the ellipsoidal fluid patch

inclusions is

TL ¼ Tð1Þ
L þ Tð2Þ

L ¼ 2πa31rbarca _a
2
1ϕ10

�
ρf1E1 þ ρf2

ϕ10

ϕ20

E2

�
:

(A-15)

Suppose that there are N0 concentric ellipsoidal fluid patches with n
types of principal radii in a unit volume. The number of fluid
patches with radius of the i-type (ai20, bi20, ci20) is Ni; then, a prob-
ability is defined as pi ¼ ðNi∕N0Þ. The total volume of the fluid
pockets in the unit volume is

N0

Xn
i¼1

4π

3
ai2bi2ci2piv1 ¼ N0

Xn
i¼1

4π

3
a3i2rbarcapiv1

¼ N0

Xn
i¼1

4π

3
a3i1ribaricapi ¼

ϕ1

ϕ10

; (A-16)

where ϕ1 ¼ v1ϕ10 and v1 is the volume fraction of the inner fluid
pockets. If a3i1ribaricapi ¼ c, where c is a constant,

a3i1ribaricapi ¼
3ϕ1

N04πϕ10n
:ðA − 17Þ (A-17)

By considering the wave-induced fluid flow at the fluid interface,
the depleted fluid from the inner pocket to the outer domain is
ϕ1ζ, and the opposite flow has a content variation −ϕ2ζ, where
ζ ¼ 1∕ϕ2ð1 − ða10b10c10∕a1b1c1ÞÞ ¼ 1∕ϕ2ð1 − ða310∕a31ÞÞ. In the
case of small amplitude oscillations of the fluid interfaces, the radius
a1 can be derived as a1 ¼ a10ð1 − ϕ2ζÞ−1

3 ≈ a10 þ ð1∕3Þa10ϕ2ζ.
Then

_a1 ¼
1

3
a10ϕ2

_ζ: (A-18)

The total kinetic energy of LFF of the N0 ellipsoid fluid patches is

TL ¼ N0

Xn
i¼1

2πa3i1ribaricapi _a2i1ϕ10

�
ρf1E1 þ ρf2

ϕ10

ϕ20

E2

�
;

¼
Xn
i¼1

3ϕ1

�
1
3
ai10ϕ2

_ζ

�
2

2n

�
ρf1E1 þ ρf2

ϕ10

ϕ20

E2

�
;

¼ ϕ1ϕ
2
2

6
_ζ2χ1; (A-19)

where χ1 ¼ ðρf1 1
n

P
n
i¼1 a

2
i10E1 þ ρf2

ϕ10

ϕ20

1
n

P
n
i¼1 a

2
i10E2Þ or

χ1 ¼ v2∕31 ðρf1 1
n

P
n
i¼1 a

2
i20E1 þ ρf2

ϕ10

ϕ20

1
n

P
n
i¼1 a

2
i20E2Þ. The term v1

is the fluid volume fraction and a20 is the radius of overall patch.
In deriving equation A-19, it is assumed that the radius ai20 and

aspect ratios riba, rica of the ith type of ellipsoidal patches satisfy

a3i2ribarica ¼ 3

Nin4π
; (A-20)

whereNi 0 is the number of ellipsoidal patches with radius of ai2 and
the corresponding aspect ratios riba, rica, and n is the number of
random-sized patches in a unit volume. Because the total volume
of patches with aspect ratios rca; rba is Vi ¼ Nið4π∕3Þa3i2ribarica,
equation A-20 is actually equivalent to the condition Vi ¼ 1∕n,
which means that the unit volume is equally partitioned by patches
with different aspect ratios.
The function χ1 can be expressed in simplified forms for some

special cases. In the case of uniform ellipsoidal fluid patches,
χ1 ¼ a220v

2∕3
1 ðρf1E1 þ ρf2E2ðϕ10∕ϕ20ÞÞ. If the fluid patches are

spheres, then χ1 ¼ a220v
2∕3
1 ðρf1 þ ρf2ðϕ10∕ϕ20Þð1 − ða10∕a20ÞÞÞ.

For nonuniform spherical patches, χ1 ¼ v2∕31 ðρf1 1
n

P
n
i¼1 a

2
i20þ

ρf2
ϕ10

ϕ20

1
n

P
n
i¼1 a

2
i20ð1 − ai10

ai20
ÞÞ.

In equation A-20, we have assumed that the unit volume is
equally partitioned by each aspect ratio, so that the equations
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can be simplified, and the effects of the aspect ratio distribution on
velocity are taken into consideration using only one parameter, i.e.,
the average aspect ratio. Changes in the distribution function of the
aspect ratio will result in more complex equations and will be con-
sidered in a future work.

APPENDIX B

PLANE-WAVE ANALYSIS

According to Cardano’s formula, the complex velocities can be
written as

vk¼
1ffiffiffiffi
Y

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zk
�
−q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þp3

27

q �
1∕3

þz2k
�
−q

2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þp3

27

q �
1∕3

s ;

k¼1;2;3; (B-1)

where p¼ð3AC−B2Þ∕ð3A2Þ, q¼ð2B3−9ABCþ27A2DÞ∕ð27A3Þ,
and z ¼ −ð1∕2Þ þ ð ffiffiffi

3
p

∕2Þi.
The coefficients A; B; C;D are

A ¼ a11a22a33 − a11a23a32 − a12a21a33 þ a12a23a31

þ a13a21a32 − a13a22a31; (B-2)

B ¼ a11a22b33 − a11a23b32 − a11a32b23 þ a11a33b22

− a12a21b33 þ a12a23b31

þ a12a31b23 − a12a33b21 þ a13a21b32 − a13a22b31

− a13a31b22 þ a13a32b21

þ a21a32b13 − a21a33b12 − a22a31b13 þ a22a33b11

þ a23a31b12 − a23a32b11; (B-3)

C ¼ a11b22b33 − a11b23b32 − a12b21b33 þ a12b23b31

þ a13b21b32 − a13b22b31

− a21b12b33 þ a21b13b32 þ a22b11b33 − a22b13b31

− a23b11b32 þ a23b12b31

þ a31b12b23 − a31b13b22 − a32b11b23 þ a32b13b21

þ a33b11b22 − a33b12b21; (B-4)

D ¼ b11b22b33 − b11b23b32 − b12b21b33 þ b12b23b31

þ b13b21b32 − b13b22b31: (B-5)

The coefficients aij; bij are

a11 ¼ Aþ 2N þ ½Q2ϕ1 −Q1ϕ2�2
S1

; (B-6)

a12 ¼ a21 ¼ Q1 −
R1ϕ2½Q2ϕ1 −Q1ϕ2�

S1
; (B-7)

a13 ¼ a31 ¼ Q2 þ
R2ϕ1½Q2ϕ1 −Q1ϕ2�

S1
; (B-8)

a22 ¼ R1

�
1þ R1ϕ

2
2

S1

�
; (B-9)

a23 ¼ a32 ¼ −
R1R2ϕ2ϕ1

S1
; (B-10)

a33 ¼ R2 þ
ðR2ϕ1Þ2

S1
; (B-11)

b11 ¼ −ρ00ω2 þ ιω
X2
m¼1

bm; (B-12)

b12 ¼ b21 ¼ −ρ01ω2 − ιωb1; (B-13)

b13 ¼ b31 ¼ −ρ02ω2 − ιωb2; (B-14)

b22 ¼ −ρ11ω2 þ ιωb1; (B-15)

b33 ¼ −ρ22ω2 þ ιωb2; (B-16)

b23 ¼ b32 ¼ 0; (B-17)

S1 ¼
1

3
ϕ1ϕ

2
2ωðιβ1 − χ1ωÞ − ðϕ2

2R1 þ ϕ2
1R2Þ: (B-18)
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