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An accurate and efficient scheme for wave propagation 
in linear viscoelastic media 

H. Tal-Ezer*, J. M. CarcioneS, and D. Kosloff§ 

ABSTRACT 

The problem of wave propagation in a linear vis- 
coelastic medium can be described mathematically as 
an exponential evolution operator of the form e@ 
acting on a vector representing the initial conditions, 
where ~‘vJ is a spatial operator matrix and t is the time
variable. Techniques like finite difference, for in- 
stance, are based on a Taylor expansion of this evo- 
lution operator. We propose an optimal polynomial 
approximation of eM1 based on the powerful method of 
interpolation in the complex plane, in a domain which 
includes the eigenvalues of the matrix M. 

The new time-integration technique is implemented 
to solve the isotropic viscoacoustic equation of mo- 
tion. The algorithm is tested for the problem of wave 
propagation in a homogeneous medium and compared 
with second-order temporal differencing and the spec- 
tral Chebychev method. The algorithm solves effi- 

ciently, and with machine accuracy, the problem of 
seismic wave propagation with a dissipation mecha- 
nism in the sonic band, a characteristic of sedimentary 
rocks. The computational effort in forward modeling 
based on the new technique is half compared to that of 
temporal differencing when two-digit precision is re- 
quired. Accuracy is very important, particularly for 
propagating distances of several wavelengths. since 
the anelastic effects should not be confused with 
nonphysical phenomena, such as numerical dispersion 
in time-stepping methods. Finally, we compute the 
seismic response to a single shot in a realistic geologic 
model which includes a gas-cap zone in an anticlinal 
fold. The results clearly show the importance of the 

attenuation and dispersion effects for an appropriate 
interpretation of the seismic data. In particular, the 
gas-cap response (a bright spot) suffers significant 
variations in amplitude, phase, and arrival time com- 
pared to the purely acoustic case. 

INTRODUCTION 

The problem of wave propagation in anelastic media has 
practical value in many fields: geophysics, ocean acoustics, 
applied mechanics, and physics of materials, etc. (Bor- 
cherdt, 1982; Szilard, 1982; Ferry, 1970). Linear viscoelas- 
ticity provides a general framework to describe the anelastic 
effects in wave propagation, i.e., the conversion of part of 
the energy into heat and the dispersion of the wave field 
Fourier components with increasing time The main diffi- 
culty in implementing the linear viscoelastic and anisotropic 
constitutive relation in the equation of motion is the pres- 
ence of convolutional integrals. This problem was solved by 
assuming a complex viscoelastic modulus whjch_is a~rational 

function in the frequency domain. Within this context, the 
time-domain equation of motion can be written in differential 
form by introducing additional variables into the formulation 
(Day and Minster. 1984; Emmerich and Korn, 1987; Car- 
cione et al., 1988a). 

Spectral methods have recently become a very useful tool 
for the solution of time-dependent dif-ferential equations. 
Generally, a spectral method is applied to calculate the 
spatial derivatives, and a finite-difference approach is used 
to march the solution in time This results in an imbalanced 
scheme with infinite spatial accuracy but only second-order 
temporal accuracy. Carcione et al. (1988a,b) used the Fou- 
rier method to compute the spatial derivative terms and a 
sptiral time-integration technique ?Q solve the isotropic 
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viscoacoustic and viscoelastic equations of motion. We refer 
to this technique as the spectral Chebychev method (see also 
Tal-Ezer et al., 1987). However, this method as originally 
designed to solve wave propagation in elastic media. al- 
though very accurate, is, in general, inefficient in terms of 
computer time for viscoelastic wave propagation problems. 
On the other hand, by using second-order temporal differ- 
encing, it is possible to have efficiency but not high accu- 
racy, and accuracy is very important in anelastic propaga- 
tion where the numerical dispersion could be taken as 
physical dispersion. 

We propose a new time-integration method specially de- 
signed to deal with wave propagation in linear viscoelastic 
and anisotropic media. As with the Chebychev method, the 
equations governing wave motion are recast as a single 
first-order matricial differential equation in time After spa- 
tial discretization, a coupled system of ordinary differential 
equations is obtained. The formal solution is the exponential 
evolution operator rv’ (where &l is an operator matrix 
containing the spatial derivatives and t is the time variable) 
acting on the initial condition vector (homogeneous case), or 
a similar operator acting on the source spatial distribution 
vector (inhomogeneous case). The technique can be applied 
to a number of methods for spatial derivation, including the 
finite-difference. finite-element, and Fourier methods. 

The spectral Chebychev method consists of a Chebychev 
polynomial expansion of the evolution operator whose re- 
gion of convergence (in the Fourier method approximation) 
is the imaginary axis of the complex wavenumber plane. In 
anelastic propagation, however, the eigenvalues of the ma- 
trix &l lie on a T-shaped domain D which includes the 
negative real axis and the imaginary axis; hence, a more 
appropriate expansion is required. The new approach is 
based on a polynomial interpolation of the exponential 
function in the complex domain D, in a set of points known 
to have maximal properties. This set of points is found 
through a conformal mapping between the unit disc and the 
domain of the eigenvalues D. In this way, the interpolating 
polynomial is “almost best” (Tal-Ezer, 1989). 

The first section presents the governing equation of mo- 
tion. To illustrate the properties of the method, we choose 
the isotropic viscoacoustic wave propagation problem, ana- 
lyzed in detail in the following sections. Then we develop 
and justify the polynomial approximation of the evolution 
operator in the homogeneous and inhomogeneous cases, and 
describe the forward modeling algorithm. The scheme is 
then compared to second-order temporal differencing, the 
spectral Chebychev method, and known analytical solu- 
tions. Finally, we show how to solve a realistic problem 
which computes the seismic response to a single shot of a 
complex structme containing a hydrocarbon cap in an anti- 
clinal fold, a typical trap in exploration geophysics. Viscoa- 
caustic and acoustic seismograms and snapshots are com- 
pared. 

EQUATION OF MOTION 

In n-dimensional media the linearized equation of momen- 
tum conservation is 

pii=V*T;-tf. (1) 

where u(x. I) is the displacement field, z(x, t) is the stress 
tensor. f(x. t) represents the body forces, p(x) is the density, 
and x is the position vector. A dot above a variable denotes 
time differentiation. For a linear viscoelastic and anisotropic 
solid, the most general relation between the components of 
the stress tensor ati, and the components of the strain tensor 
F,~, , is given by Boltzmann’s superposition principle: 

(T(j = *jjLL +F!,[ 3 It,+? = 1, . . ) II, (2) 

where biiLp(x, t) is a fourth-rank tensorial relaxation func- 
tion. The asterisk denotes time convolution, and repeated 
indices imply summation. Wave motion is described by 
substitution of equation (2) into the equation of motion, 
equation (I). However, implementation of Boltzmann’s su- 
perposition principle in the time domain is not straightfor- 
ward due to the presence of convolutional kernels in equa- 
tion (2). This problem was solved by Carcione et al (1988a,c) 
for the isotropic viscoacoustic case and Carcione et al. 
(1988b) for the viscoelastic case. To avoid the time convo- 
lutions in equation (2), it is necessary to introduce additional 
variables called memory variables. The numerical algorithm 
requires that the equation of motion be recast as a first-order 
differential equation in time as 

E=ME+S, (3) 

where E is a vector whose components are the unknown 
variables, M is an operator matrix containing the spatial 
derivatives, and S is the body force vector. To illustrate the 
nature of the problem, we next consider the simplest case: 
wave motion in an isotropic linear viscoacoustic medium. 

VISCOACOUSTIC WAVE PROPAGATION 

The constitutive relation for n-dimensional viscoacoustic 
media is expressed by 

p = -e**, (4) 

where p(x, t) is the pressure, e(x, r) is the dilatation, and $(x, 
t) is the relaxation function given by 

t)(t) = M/j 1 - i [ o=, (1 -~)emt’T’Fr]ffCtl, (5) 

in which T,[(x) and 7,((x) denote material relaxation times 
for the &h mechanism, L is the number of relaxation 
mechanisms, MH(x) is the relaxed modulus, and H(t) is the 
step function (see Carcione et al., 1988a). 

The equation of motion is obtained by taking divergence in 
the equation of momentum conservation (1): 

-Do =p + s, (6) 

where s(x, t) is a source term given by the divergence of the 
body forces divided by the density, and D is a spatial 
derivative operator defined by 

D=“i !L 

[ 1 as; p dXj ’ 
i=l,...,n. (7) 

After introducing the memory variables, it is possible to 
write the equation of motion for the viscoacoustic solid in 
the form of equation (3), where 
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ET = [e> e, eje, . . . , e,~l, (8) 

with elp, e = i-, . . . , L being the memory variables, 

ST= [O, s, 0, . . . , O] (9) 

is the source term, and 

r 01 0 0 . . . 0 
DM,, 0 D D . . . D 1 

I 41 

0 

-1/T,, 

0 . . . 0 

&I= 
$2 0 0 -i/r,2 . . . 0 I (10) 

the spatial matrix, where M,,(X) = IJJ(X, 0) is called the 
unrelaxed modulus, and 

is the response function at t = 0, corresponding to the &h 
mechanism. 

Spatial discretization of the equation of motion 

The spatial derivative terms in equation (3) are calculated 
with the Fourier method, which consists of a discretization 
in space and computation of the spatial derivatives by means 
of the fast Fourier transfer&m (Koslo# and !&y*al, 1982). 

Considering an n-dimensional medium, system (3) be- 
comes a coupled system of 

(L+2)N=(L+2) n N;, 
i=l 

ordinary differential equations in the unknown variables at 
the grid points, where Ni, i = 1, . . , II denote the number 
of grid points in the xi direction. 

The semidiscrete representation of the system to be solved 
can be written in compact notation as 

EN = IV&EN + SAr, 

subject to the initial condition 

(12) 

EN(t - 0) = E;,, (13) 

where E, and S, are vectors of dimension (L + 2)N, and 
MN is a (L + 2) N * (L + 2) N matrix. The solution of equation 
(12) subject to equation (13) is formally given by 

EN = ethllN + J 
I 

eTM”SN(t - 7) CIT. (14) 
0 

The quantity erMN IS called the evolution operator. Most 
frequently, an explicit or implicit finite-difference scheme is 
used to march the solution in time (Day and Minster, 1984; 
Emmerich and Korn, 1987). These algorithms are based on a 
Taylor expansion of the evolution operator. 

Eigenvalues of the matrix M 

Considering constant material properties and a zero source 
term, a plane-wave solution to equation (3) is assumed of the 
form 

E=Eoe i(w, f - w . x) (15) 

where w,. = w +iw, is the complex angular frequency and K 

is the real wavenumber. Substitution of equation (15) in 
equation (3) yields 

iw,.E = 

0 1 0 0 . . . 0 
M,, K 

2 K2 K2 K2 -- -- . . . -- --0 p P P P 
+I 0 -l/7,, 0 . . . 0 
($2 0 0 - Urcr2 . . . 0 
: : : 

bl_ 0 0 0 . . . -1/r,L 

E= jE. 

1 
(16) 

Equation (I 6) is an eigenvalue equation for the eigenvalues A 
= iw,. The discretized characteristic equation corresponding 
to equation (16) is 

l& - 1x1 = 0, (17) 

where i-isthe identity matrix. The n-dimensional wavenum- 
ber is 

” 

K2(Vj) = c &;), (18) 
i= I 

with 

27rZlj Ni N; 
Ki=G* 

V; = --) . . . 
2 ‘1’ 

(19) 

where DX, is the grid spacing in the xi direction. For 
instance, for L = I the characteristic equation results in 

( A,, + 7, - I i [AZ + c&J)1 - X,,q$) ( 7, - 7, - 1 1 = 0, (20) 

where wo(zl) = CRK(u), with cR = d/MR/p, the relaxed 
velocity of the medium. 

There are three solutions for each v in equation (20). When 
the attenuation is not too strong, we have (T,/T, - 1) -+ 1. 
Under this condition, one eigenvalue, say Ail), is close to 
-l/7*, and the others Ai2’ and Ai3) lie in the vicinity of 
-ho(v) and ioo(v), respectively. The first eigenvalue corre- 
sponds to a static mode that attenuates with time and the 
others correspond to propagating waves. 

For instance, in the 1-D case, for T, = 0.0016 s, To = 
0.0015 s, CR = 2000 m/s, and K = K(N/2) = dDX, DX = 10 
m, the Nyquist (maximum) wavenumber, the eigenvalues 
are A”’ = -645.73 s-‘, Xc2’ = (-10.46 + 638.33i) s-‘, and 
Ac3’ = h(‘), where the bar denotes complex conjugate. 

Figure I shows the eigenvalues of the matrix MN when 
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N = 22, (a) T, = 0.0016 s, T, = 0.0015 s, and (b) ‘T, = 0.0020, 

T<, = 0.0015 s. We refer to the complex plane of the 
eigenvalues as the z-plane. The eigenvalues corresponding to 
the Nyquist and zero wavenumbers are represented by the 
largest circles. The propagating modes lie near the imaginary 
axis and the static modes are clustered around -I/T,, which 
is the solution for u = 0. 

measures the degree of attenuation of the wave field. The 
lower Q,, , the stronger is the dissipation. When L = I, 

Carcione et al. (1988~) show that the spatial quality factor 
for a viscoacoustic solid is given by 

Q,(w) = 
Re [M,. (w)l 

Im [M,.b)l' 

where M,.(w) = $(I) is the complex bulk modulus, and Ke 
and Im denote real and imaginary parts, respectively; the 
tilde indicates time Fourier transform. The quality factor 

z-plane 
I\] = 22 

-7p 

Q,(w) = 
I + 0%,7, 

47, - T,,) . 
(22) 

(21) 
THE ALGORITHM 

This function has a minimum at O, = l/v/7,7,,. Substitution 
of the relaxation times in equation (22) results in a lower 
minimum for case (b). As shown in Figure I, a lower Q, 
implies a shift of the eigenvalues to the left of the imaginary 
axis. 

1 
7063 

I 
0 

L -700 

780 

4 : : : 
- -700 

FIG. I. Eigenvalues of the spatial matrix M, for N = 22, (a) 
T, = 0.0016 s. 7,. = 0.0015 s. and (b) T.. = 0.0020 s. 7.. = 

0:OOlS s. The telaxed velocity is ;.R ‘= 2000 m/s. The 
propagating modes lie near the imaginary axis and the static 
modes are clustered around -I/T,,, which is the solution 
corresponding to zero wavenumber. 

A polynomial interpolation of the evolution operator is 
obtained in Appendix A. The interpolation is done in a set of 
points which have maximal properties of convergence; this 
set of points is found through a conformal mapping between 
the unit disc (Id-space) and the domain of the eigenvalues of 
&l&-space). The polynomial in Newton form is 

+ . . . + u,,(i - Z,)) * * * (z - z,p 11, (23) 

where zi and a,i, j = 0, . . , m - I are the interpolating 
points and divided differences, respectively, and m is the 
order. 

The problem is to calculate E,(t) in equation (14) by using 
the polynomial approximation, i.e., 

EN(~) = Pm(r, MN)V,V. (24) 

In the homogeneous case (zero source term) the polynomial 
is 

with 

VN = EL. 

In the inhomogeneous case we have 

(26) 

P,?,@, l&l) = Pij(L MN) = 
C f 

J 
e+h(t - 7) dT, (m 

0 

with 

v,V ‘A&. (28) 

the source spatial distribution; and k(:) the time function, 
such that S = Ah. 

The numerical method used to solve the viscoelastic 
equation of motion in previous works (Carcione et al., 1988a, 
b,c) is a particular case of the present method (Tal-Ezer, 
1989). In the spectral Chebychev method, the polynomials 
used to approximate the evolution operator are scaled, 
modified Chebychev polynomials. Thus, an efficient algo- 
rithm which uses the three-term recurrence relation was 
implemented. However, this scheme is efficient when the 
domain D of the eigenvalues of &IN is on the imaginary axis 
or close to it. To solve the viscoelastic equation of motion, 
the parameter B, defined in equation (A-3), should be chosen 
large enough that the resulting region of convergence in- 
cludes the nonpropagating modes situated on the negative 
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real axis. In this case, accuracy is assured if the number 
terms of the Chebychev series satisfy mt > Br. When the 
domain D is on the negative real axis (e.g., the diffusion 
equation), the polynomials are scaled Chebychev (Tal-Ezer, 
1985). In this case, the number of terms is constrained to 
m2 > 2.5 (At)“.6, where A is given by equation (A-3). The 
present algorithm is found to be accurate when the degree of 
the polynomial is m > max_(mt in m2). 

The arrangement of the interpolating points plays a signif- 
icant role in reducing the roundoff errors. The points zj, 
j = 0, . . , m - 1 have to be ordered such that the 
interpolating points in u-space, l~,j, j = 0, . . , tn - I, are 
equally distributed on the circle of radius 8, where 6 is the 
logarithmic capacity of the conformal mapping equation 
(A-4). The program given in Appendix A generates the 
interpolating points according to this requirement. It yields 
110 = 6(2,0 = O), U, = -S(z, = -A), and I(~, i = 2, . . , k - 
1, as illustrated in Figure 2, where k = 10 (m = 20) is 
displayed. The angle between adjacent points is r/k. The 
ordering is indicated by the size of the circles with the 
smallest one corresponding to I/(, . The right side of Figure 2 
shows the interpolating points zi. The points of the lower 
u-plane, Iii, map to the complex conjugate of the lower 
z-plane points. When Re [M;] > 0, the points are purely 
imaginary, and when Re [Nil < 0, the points lie on the 
negative real axis. 

The calculation of EN(r) can be carried out in real arith- 
metic even if zi and uj in equation (23) are complex numbers, 
since the m interpolating points zj, j = 0, . . , m - 1 can be 
arranged as zo, z,, , z2, I?, . , zk, &,. 2k points, where ze 
and z, are real numbers. Tal-Ezer (1989) proved that iff’(?) = 
f(z) If(z) defined in equations (A-la) and (A-lb) satisfies this 
property], and the interpolating points are defined as before, 
the interpolating polynomial has real coefficients. Conse- 
quently, the polynomial can be expressed as (TallEzer, 
1989), 

PZ&- , (z) = al) + a, (z - zo) 

h-l 

+ (z - Z”)(Z - z,) c S;(z)R;(z), (29) 
i= I 

where 

S;(z) = Re [az;l + Re[azi + I l{z - Re [z, + I I], (30a) 

FIG. 2. Interpolating points in z-space obtained by a confor- 
ma1 mapping z = x(u) from u-space (m = 20). The points of 
the lower u-plane, U;, map to the complex conjugates of the 
lower z-plane points. 

and 

RI(Z) = 1, Ri(z)= n (Z_Zj)(Z_2j), i=2,. . . ,k-1. 
.i = 2 

(30b) 

Based on equation (29), the solution is computed by 

, .\ j-7 
E,vlr) = Pzr t (I. &)V,v, (Si) 

using the following algorithm: 

E, = [a”! + 01 (MN - zoI)]V,v, (32a) 

a,v = (MN - zoI)(& - ZlI)V,V, (32b) 

the first step. and for i = 1, . . . , k - 1: 

QN = {MN - Re [G + I II]RN I (32~) 

EN = EN + Re [a~;lR,v + Re [azi+ IIQN, (32d) 

RN = {I%( - Re [z; + I ]~>QN + Im2[zi + l IRN. (32e) 

The algorithm requires three vectors, QN and Rh’ as auxil- 
iary arrays, and E,v to accumulate the solution. 

The forward modeling algorithm 

With the method just described, we can construct a 
forward modeling algorithm. For seismic modeling, we start 
with zero initial conditions. The first time interval should be 
greater than the duration of the source time function, say to. 
The solution is obtained as 

to 
E/v(h) = e-+‘“h(to - 7) dr AN 

1 

= Pi'1 ,(fo, F$,~)A?V. (33) 

The solution can be propagated in time again by considering 
EN(tO) as an initial condition using the homogeneous solu- 
tion 

EN(t) = e ‘R?l”E,,,(tO) = Pi;, ,(t, MN)EN(t,j). (34) 

The calculation of seismograms at a given point of the 
medium does not require significant extra effort, since only 
additional divided differences, which contain the time depen- 
dence, need be generated. 

Since the Fourier method considers the discretized varia- 
bles on the grid as periodic functions, absorbing boundaries 
are implemented to prevent wraparound, the phenomenon 
where a pulse which exits the grid on one side reenters it on 
the opposite side. To eliminate this effect, we use a method 
developed by Kosloff and Kosloff (1986), based on a gradual 
elimination of amplitudes in a strip surrounding the numer- 
ical mesh, More details can be found in Tal-Ezer et al. 
(1987), where the method is modified slightly to increase its 
efficiency. 

EXAMPLES 

We first test the new algorithm for the 1-D viscoacoustic 
problem to illustrate its resolution properties and efficiency 
in terms of computer time compared with temporal differ- 
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encing and the spectral Chebychev method. Second, com- 
parison with a known analytical solution in a 2-D medium is 
performed. Finally, we compute the response of a realistic 
geologic model to a single shot. We refer to the spectral 
Chebychev technique as method 1 and the present algorithm 
as method 2. 

One-dimensional wave propagation 

Comparison with the spectral Chebychev method.-Let us 
consider the initial value problem in a 1-D medium with 
constant velocity and density. This problem was solved in 
Carcione et al. (1988a), where the solution is obtained by 
first solving the acoustic wave equation and then applying 
the correspondence principle. Assuming an initial condition 
of the form 

e(x, 0) = e -&’ cos (&TrK(Q?), (35) 

with K0 the cutoff wavenumber, and F and ‘(1 constants, the 
viscoelastic solution is given by 

e,,(.w, t) = F-‘[P,,(x, WI], (36) 

where 

i-r I .x 
t?;,(.x, w) = Tr -ci - - 

T h7r(o) 

cos 0 ~ L J i)(W) 

+exp [-$(4+&J]) (37) 

with k() = 2~rK(, and T’(W) the complex velocity given by 

J MC. (WI 
7)(W) = ~ 

P 

(38) 

The operator F-’ performs the inverse time Fourier trans- 
form. The relaxed bulk modulus is MR = 8 GPa, and the 
density p = 2000 kg/m3, which give a relaxed velocity cR = 
2000 m/s. The relaxation times are defined in Table I. They 
give an almost constant quality factor Q, = 100 in the 
seismic exploration band. Figures 3a and 3b show the quality 
factor and phase velocity versus frequency. The phase 
velocity is calculated as c.(w) = o/Re [k,.], where k, = w/i(w) 
is the complex wavenumber. Assuming K, = 1140 m-’ , q = 
0.5, and F = I ., the analytical solution at xg = 400 m and 
t0 = 0.2 s is 

Table 1. Relaxation times. 

I T,, TV, 
- 

I 0.3196389 0.3 169863 
: 0.0850242 0.0226019 0.084264 0.0224143 I 

z 0.0060121 0.0016009 0.0059584 0.0015823 

2e, (x,) , to) = 0.7528533 138. (39) 

Assuming that the relaxed velocity is the acoustic velocity, 
the solution corresponds to the main peak of the signal with 
amplitude 2e(x(,, to) = 1, in the acoustic limit (i.e., Q, + ~0, 
or 7,y + 7,,1, e = 1, . , L). 

The numerical solution is computed by using a number of 
grid points N = 198 and a grid spacing DX = 10 m. This 
sampling is sufficient to assure that the error comes solely 
from the time integration method. Table 2 illustrates the 

90. 

85 I 

FIG. 3. (a) Spatial quality factor versus frequency, (b) phase 
velocity versus frequency. The medium is defined by 
a relaxed bulk modulus MR = 8 GPa, a density p = 2000 
kg/m3, and the five sets of relaxation times given in Table 1. 
They give an almost constant Q, value in the seismic 
exploration band. 

Table 2. Resolution properties. 

Method I Method 2 
ml m 

275 140 285 150 

290 160 
300 166 
320 185 

Error 

=;;I’ 3 

<lop4 
<IO_6 
<lo-‘0 
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resolution properties of methods I and 7. with VI, the 
number of terms of the Chebychev series and IPI the degree 
of the interpolating polynomial. These quantities are equal to 
the number of operations to be performed with the matrix &I, 
which represents the main computational effort since it 
requires the evaluation of the spatial derivatives. For 
method 1. a value of B = 1334 s _’ is necessary to obtain 
convergence. Method 2 requires A = 633 s -’ and B = 628 
s -‘. The result for m = 185 shows that while the minimum 
value required to have an acceptable resolution (two digits) 
is I~I = 150, increasing 111 by only 23 percent is enough to 
match the analytical solution by up to ten digits. Method I 
requires a higher B value and therefore more number of 
terms to obtain the same accuracy. As mentioned above. this 
condition insures the inclusion of the non-propagating modes 
in the region of convergence. 

It has been proven experimentally that in sedimentary 
rocks there is a minimum in the quality factor in the sonic 
band around 2 kHz. The dissipation mechanism has been 
modeled by Murphy et al. (1986). The theory assumes the 

I 3 1 5 

LOC(FREO) (FREQ.HL) 

FIG. 4. (a) Spatial quality factor versus frequency, (b) phase 
velocity versus frequency. The medium is defined by 
a relaxed bulk modulus M, = 8 GPa, a density p = 2000 
kg/m3, and 7, = 8 x IO-’ s, and T,, = 7 X IO” s. These 
relaxation times give a minimum in the quality factor in the 
sonic band, a typical phenomenon in sedimentary rocks. 

existence of narrow cracks between the surfaces of the 
grains in contact. As the grains oscillate under the presence 
of a perturbation. the pore fluid is squeezed out of, and 
sucked back into. the cracks. The energy is dissipated by 
viscous shearing. To simulate these conditions. we take T, = 
8 x IO ’ s and T,, = 7 x IO -’ s. The quality factor and 
velocity dispersion are represented in Figures 4a and 4b, 
respectively. The relaxation times yield a quality factor 
Q,. = 600 in the seismic exploration band and practically no 
velocity dispersion. With the same conditions as the previ- 
ous example, the analytical Tolution is 

2r,.(.Y,,. t,,) = 0.9733393369. (40) 

For fg of the order of milliseconds, method I solves the 
problem but it is not useful for wave propagation times used 
in seismic prospecting since the method is sensitive to the 
quantity to/~,,. which in this case exceeds the dynamic range 
of the computer (see Carcione et al., 1988a). 

Method 2 requires A = I4 286 5-I and B = 628 s-‘. To 
match the analytical solution with an error less than 10~“‘. a 
polynomial of degree )?I = 610 is necessary. The degree is 
greater than in the previous example. a consequence of 
smaller relaxation times which increase the value of the 
eigenvalues corresponding to the nonpropagating modes. 

Comparison with second-order temporal differencing.-lt is 
instructive to compare the new time integration technique 
with the established second-order temporal differencing 
since this method is widely used in forward and inverse 
modeling. and particularly for wave propagation in anelastic 
media. The spatial derivatives are computed by using the 
Fourier method and, therefore. the numerical dispersion is 
due only to the temporal approximation. 

Let us consider the I-D viscoacoustic equation of motion 
with L relaxation mechanisms. We require L memory vari- 
bles v,(, ( = I. . L. and we obtain from equations (3). 
(8). (9), and (IO) 

(4lb) 

where 

L \ f J 

and 4, is given by equation (I I ). Denoting the time step by 
At, the time variable is discretized by t = y,.!, t. Following the 
approach of Emmerich and Korn (1987). we establish the 
second-order scheme 

At’ * 
(43a) 

'I = 
OII 

', + 112 + <,;:~_ 112 

(' I 1 
2 

(43b) 
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ferencing, in Appendix B we calculate the phase velocity 
dispersion in a I-D medium with L relaxation mechanisms. 

and 

(43c) 

Substitution of these expressions in equations (41a) and 
(41 b) yields 

and 

+ 2eY - eq - 1 (44b) 

with 

2T,1 A t+e 
A? = 

2r,,r f At’ 
(45a) 

and 

27d -At 
B( = 

27,re + At’ 
(45b) 

Let us consider the problem of the previous section whose 
analytical solution is given by equation (39), but, in this case, 
in single precision arithmetic. The finite-difference problem 
requires initial conditions for the dilatation and its time
derivative, or equivalently, the dilatation at t = 0 and at t = 
At. e(At) is computed numerically by using a very small time
step in order to obtain machine accuracy. An alternative 
approach is to compute it by means of the correspondence 
principle, which can be used to check the numerical solu- 
tion. In Table 3, we compare our scheme to second-order 
temporal differencing. The first column represents the num- 
ber of digits required to match the analytical solution. The 
CPU time corresponds to a Microvax computer. The time
step is indicated for finite differencing and the degree of the 
polynomial for method 2. For two-digit precision, which we 
think is a necessary condition for computing wave fields in 
anelastic media, method 2 is almost two times faster than 
finite differencing. To obtain machine accuracy, the present 
technique does not require much_additinnal_CPU tirnc; while 
finite differencing is completely impractical. 

To illustrate the approximations introduced by finite dif- 

Table 3. Efficiency. 

Digits 

1 
? 

4 
5 

Finite differences 

CPU 
dt time

(ms) (s) 

36 
A.5 0:2 1:; 

0.1 330 
0.01 3290 

Method 2 

CPU 
time

m (s) 

170 
172 174 :; 

176 :: 
190 43 

Two-dimensional wave propagation 

Comparison to analytical time history.-The problem in- 
volves wave propagation in a homogeneous viscoacoustic 
medium. The calculations use a 132 x 132 grid with DX = 

DZ = 20 m the grid spacing. The source is a shifted zero 
phase wavelet defined by 

k(t) = exp - & - &.)2 cos lT&,(t - tc) , 
1 

(46) 
J 

with tr. = 0.06 s and a high cutoff frequency off0 = 50 Hz. 
The same material properties of the one-dimensional prob- 
lem are used in this problem (relaxation times given in Table 
I). The analytical solution is obtained by means of the 
correspondence principle. A detailed derivation can be 
found in Carcione et al. (1988a). 

Figure 5 compares numerical and analytical time histories 
at a distance of 800 m of the source. It can be seen that the 
better agreement is obtained with method 2. Method 1 shows 
some discrepancies near the onset of the signal. It can be 
shown that this problem appears due to the presence of the 
smaller relaxation time which makes the quantity, to/T, 
approach the dynamic range of the computer. 

Common-shot experiment.-In this example, we compute 
a common-shot seismogram of an inhomogeneous structure 
with a wide range of seismic velocities and quality factors. 
We show in detail how to handle this realistic problem. The 
geological model is represented in Figure 6. It is a typical 
hydrocarbon trap where the reservoir rock, a permeable 
sandstone, is saturated with gas in region 5 and with brine in 
region 6. The gas-cap zone and the brine-saturated sand- 
stone are highly dissipative. The anticlinal fold is enclosed 
between impermeable shales represented by media 4 and 7. 
The material properties are indicated in Table 4 where the 
relaxed velocities are given. The quality factors were chosen 
such that they have constant value around the dominant 

Analytical 

_____~_. Method 1 

!I ----- 
Method 2 

ll----- 
FIG. 5. Seismogram comparison between analytical and 
numerical solutions at a station located 800 m from the 
source. The source tim-e furrcrtiun- is- given ‘v equation (46). 
The medium is two-dimensional with the same material 
properties indicated in Figure 3. 
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Anticlinal trap model 

oJ+++++++ tt+ H-y’;: + ++tttt++-+ ++-I-+ 

-500 

~____~~_.. _.~_~I.~ 

0 1000 2000 3000 4( 
DBTMCE {m) 

FIG. 6. Anticlinal trap model and configuration for the common-shot experiment. The numbers indicate the media 
whose properties are given in Table 4. * denotes the source and + the receivers. 

frequency of the wavelet (30 Hz) which is given in equation 
(46). The source, represented by a star, is located in the 
weathering zone (medium I) at a depth of 140 m, and the 
wave field is recorded by 168 geophones situated at the free 
surface. The calculations use a grid size of N,, = 198 and 
NZ = 185, with horizontal and vertical grid spacings of DX = 
DZ = 20 m. The free-surface condition was obtained by zero 
padding in the vertical direction to 308 grid points. This is 
equivalent to having the region of grid points between 186 
and 308 in the vertical direction with zero velocity. To 
prevent wave-field wraparound, we use an absorbing region 
of 18 points surrounding the numerical mesh. 

The anelastic properties in each region are obtained by 
using two sets of relaxation times, i.e., the modeling uses 
two memory variables, which together with the dilatation 
and its time derivative yield N,, = 4 unknown variables [see 
equation (8)j. Since the algorithm uses three vectors [see 
equations (32a-e)], total memory requirements are 
3N,,NXNI, which amounts to 0.44 megawords for the 
present model. 

The numerical solution is propagated to 2 s with a first 
increment of t0 = 0.12 s by using the inhomogeneous 
formulation and additional increments of 0. I s with the 
homogeneous formulation. The parameters A and B can be 
estimated according to the eigenvalues of the matrix &_I given 

Table 4. Material properties. 

Medium 

1 

: 

e 

4 

cK (m/s) Q 

2600 80 
3200 100 
4000 120 
5200 250 
3650 
4300 Z 
6000 300 

by equation (17) and the criterion given by equation (A-3), 
i.e., to consider the highest eigenvalues. This procedure 
requires resolution of the eigenvalue problem. A simpler 
way is to consider the range of the eigenvalues for a 
homogeneous medium. For the Fourier method, this range is 
given by 

and 

A = -T;‘, (47d 

with K., and K; denoting the real wavenumbers in x and z. In 
general, cR should be taken as the highest velocity in the grid 
and I-,, the minimum relaxation time Since this is an approx- 
imation, an additional safety margin should generally be 
taken due to the heterogeneity of the medium and the 
absorbing boundary conditions. For the source time interval, 
for instance, the algorithm requires A = 385 s-l and B = 
1732 SC’ with a polynomial degree m = 374 according to the 
criterion /n > max(m, , m2). 

For comparison, the acoustic response of the model is also 
computed. The relaxed velocities given in Table 4 were 
taken as acoustic velocities. Note that the acoustic case is 
obtained by setting ‘T,( = 7,,(, I’ = 1, . , L. The seismic 
responses are shown in Figure 7, with (a) acoustic and (b) 
and (c) viscoacoustic. To display later events, the samples 
were multiplied by f3. Figure 7c displays the same data given 
in (b) with an additional uniform gain (factor three). The 
source and the free surface combined act as a dipole source 
which produces the duplication of the reflected events with a 
period of approximately 0.1 s. For instance, the pinchout 
response at 1 s and the gas-cap response (a bright spot 
between 1.2 s and 1.5 s) appear in pairs with reversed 
polarity. The attenuation of the wave field is evident in 
Figure 7b. while the dispersion effects can be appreciated by 
comparing Figures 7a and 7c. For instance, the events 
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corresponding to the bottom of medium 2 (0.8 s) and the 
bright spot (1.3 s) arrive earlier in the viscoacoustic case. 
This is a consequence of taking the acoustic case in the 
low-frequency limit. This difference is relative, since the 
acoustic case could be chosen in the high-frequency limit, 
and then the opposite effect takes place. The bright-spot 
event is a combination of reflections from the upper and 
lower interfaces of the anticline and the gas-brine contact. 
Since these reflections are very close to each other, besides 
changes in arrival time anelasticity also causes phase and 
amplitude variations which significantly alter the character- 
istics of the bright-spot response. In particular. the absorb- 
ing region appears to have performed well. No trace of 
wraparound is present at later times despite the gain function 
applied to the data. This fact is very important since the 
anelastic efffects should not be disturbed by nonphysical 
causes. 

The energy dissipation can also be appreciated by com- 
paring acoustic and viscoacoustic snapshots. They are rep- 
resented in Figures 8a-8b at 0.72 s propagating time and in 

ACOUSTIC 
0.0 

a? 

0.4 

0.6 

0.8 

10 

1.2 

t4 

1.6 

1.8 
T 

2.0 (8) 

Figures 8c-Xd at 0.82 s propagating time As can be seen, 
two wavefronts of reversed polarity travel close to each 
other, more attenuated in the viscoacoustic case. The rep- 
resentations include the absorbing region at the sides. The 
snapshots indicate that perturbations arising from the finite 
dimensions of the model practically do not exist. 

CONCLUSIONS 

Wave propagation in anelastic media is correctly de- 
scribed within the framework of the theory of linear vis- 
coelasticity by assuming that the material rheology is repre- 
sented by the general standard linear solid constitutive 
relation. This assumption introduces nonpropagating modes 
whose eigenvalues lie on the negative real axis of the 
complex wavenumber plane. Hence, the domain of the 
eigenvalues of the evolution operator, which in the elastic 
case is the imaginary axis, also includes the real negative 
axis. A convenient approximation of the evolution operator 

VISCOACOUSTIC 
0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

12 

1.4 

1.6 

1.8 
T 

2.0 (a) 

FIG. 7. Synthetic time sections corresponding to the anticliual trap model. with (a) acoustic and (b) and ($1 
viscoacoustic. The data are displayed with a cubic gain in time (c) is the same as (b) with an additional uniform Wn 
(factor three). The source time function is given by equation (46). 
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is done by polynomial interpolation at optimal points of the 
domain of the eigenvahtes. 

The resulting algorithm is used to solve the isotropic 
viscoacoustic equation of motion. The method is very accu- 
rate and efficient and applies to situations where the relax- 
ation times are far from the source frequency band. For 
instance, the seismic problem with relaxation times in the 
sonic band is a problem that the spectral Chebychev method 
cannot solve. Efficiency comparison with second-order time
differencing reveals that the new approach is almost two 
times faster when two-digit precision is required. To obtain 
machine accuracy, very small time steps and, therefore, a 
large amount of CPU time are required with finite differenc- 
ing, which makes it impractical for application to forward 

ACOUSTIC IT = 720 msl 

VISCOACOUSTIC IT = 720 ms) 

modeling algorithms. The present approach improves the 
situation by giving an accuracy within computer precision 
and not much additional CPU time The last example in- 
volves calculation of a common-shot seismogram from a 
typical hydrocarbon trap. The model involves realistic ma- 
terial properties. A detailed description is given of how to 
handle this problem with the new technique. The results 
indicate the necessity of anelastic modeling for an appropri- 
ate interpretation of seismic data. The new technique will be 
very useful to solve the problem of wave propagation in a 
general anisotropic-viscoelastic medium where, due to the 
high number of calculations and required accuracy, an 
efficient algorithm is necessary. 

ACOUSTIC (T = 820 ma) 

VISCOACOUSTIC IT = 820 msl 

FIG. 8. Acoustic and viscoacoustic snapshots corresponding to the anticlinal trap model; (a) and (b) at 720 ms 
propagating time and (c) and (d) at 820 ms propagating time
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APPENDIX A 

POLYNOMIAL APPROXIMATION OF THE EVOLLITION OPERATOR 

Polynomial approximation of the evolution operator given 
in equation (14) can be reduced to approximating a function 
,j’(z). analytic in a domain II which includes all the eigenval- 
ues of MN, by polynomials (Tal-Ezer, 1989). In the homo- 
geneous case: 

.f’(z, = et;, (A-la) 

and in the inhomogeneous case: 

I 
t .f(Z) = e’Tll(t - T) dr, (A-lb) 

II 

where we consider a separable source term of the form S = 
Ah. with A(x) the spatial distribution and h(t) the time
function. The domain D is given by 

f>=(z/, E D, U I&, D, =[-A. 0]:D2 = [piB. iB],. (A-2) 

A > 0, B > 0. 

where 

A 2 /max [~j,“]l, 
Iv 

B 2 A’?‘- 

i I 2 
(A-3) 

The approach is based on interpolation in the domain D, 
over a set of points known as Fejer points (Walsh, 1956). 
Getting these points is based on the following: 

Let x(n) be a conformal mapping from the [r-plane to 
z-space, which maps the complement of a disc of radius 6 to 
the complement of D. where 6 is called the logarithmic 
capacity of D and is given by the limit 6 = Ix’(x)l. The prime 
denotes derivative with respect to the argument. The ana- 
lytic expression for x(/r) corresponding to the domain D is 

~/I! = 6, 

where 

(A-4) 

E_vm 8_B(l +E) 

.B ’ 4 
(A-S) 

The same function x(&j) maps the complement of the unit 
disc to the complement of the domain D. Then, Fejer points 
are 

-. =x(/4,). ‘i .;=o, , 177 - I, (A-6) 

where [I, are the I~I roots of the equation I(‘?’ = 6, with m the 
degree of the polynomial. It is proven in Tal-Ezer (19891 that 
the set I~j], j = 0. . . . , 1~1 ~ I has maximal properties of 
convergence. Then. the sequence of polynomials P,,,(Z) of 
degree 1)~ found by interpolation to an arbitrary functionf’(z), 
analytic on f) at the points z,, converge maximally toJ’(z) on 
D [see also the theorem in page I68 of Walsh (1956)]. The 
interpolating polynomial in Newton form is 

+ . . . + (I,,! (i - Z()) . . . k - z,,, , 1. 
(A-7) 

where (I,, is the divided difference of orderj. (e.g., Hamming. 
1973, p. 298). 

“j =.f’[:c,. , z;]. j=o.. .m-I. (A-8) 

Note that the time dependence is contained in these coeffi- 
cients. When two interpolating points coincide (the case Zj = 
:,+, , j 5 m -- I appears). the divided difference between 
these two point\ is calculated as 
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2.j =.r[;7()3 . i.] 
.“G,’ j=O,...,m-1, (A-IO) 

W-9) 

with_/(z) given by equation (A-la) or equation (A-lb). 
When the logarithmic capacity S is large, uj will be very 

small. In this case, to avoid exceeding the dynamic range of 
the computer, it is convenient to work with P,,@i), where 
2 = z/S. The interpolating points and divided difference are 
normalized as 

respectively, where f(i) = f‘(z). 

Computation of the interpolating points 

This Fortran program shows how to arrange the interpo- 
i = Zii6, lating points in order to get a high-degree interpolating 

and polynomial insensitive to roundoff errors: 

C 

C 

c 
C 
C 

C 

C 

C 

C 

C 

C 

C 

complex u(20),2(2O),zz 

Conformat mapping from the unit-circle (u-plane) to the 
T-shape doma in (z-plane). 

pi=3.14159265 
ni2=ni/2. 
&20. 
dtheta=2.*pi/m 

Interpolating points in u-space 

m2=m1/2-1 
do i=l,m2 
if(mod(ml,2).eq.O) then 
i 1=2*i+l 
thetal=(m2_i+l)*dtheta 
theta2=p i -theta1 
e I se 
i 1=2*( i +l ) 
thetal=pi2_i*dtheta 
theta2=pi2+i*dtheta 
endif 

A=700. 
B=350. 
E=sqrt(A*A+B*B)/B 

Interpolating points in z-space 

dc l=3 m,2 
zz=0.5k(l+E~*(u( i)+l./u( i))+(l.,O.)*(l-E) 
z i )=-0.5*8 sqrt( ZZ**2-4) 
2 I i+l)=conjg(z( i)) 
end do 
stop 
end 

APPENDIX B 

PHASE VELOCITY DISPERSION IN THE SECOND-ORDER 
TIME-DIFFERENCING APPROXIMATION 

Let us consider the I-D viscoacoustic problem in a homo- 
geneous medium. First, we evaluate the exact phase velocity 
dispersion. Let a plane-wave solution to equations (41a) and 
(41b) be of the form 

c = e(&(Wl~ A< I) (B-la) 

and 

ClY = elH)e 
i(wt k, 7) (B-lb) 

with k,. the complex wavenumber. Considering constant 
material properties. substitution of equations (B-la) and 
(B-lb) into equations (4la) and (41 b) gives 
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-~~e=-~~~~,,e+~,e,~l. t?= I,. , L (B-2a) 

and 

iwelt = e$( - -, JJ=l,...,L. (B-2b) 
r,t 

Obtaining e It from equation (B-2b) and replacing it in 
equation (B-2a) yields 

Substituting in equation (B-3) M,, and +I given by equations 
(42) and (I I), respectively, the phase velocity is expressed as 

c(w) = w 
Re [k,. (41 

= (‘R Re 

(B-4) 

where Ree’ means to take the real part and then invert the 
result. When w + 0, c.(w) + cR, the relaxed velocity, and 
when o -j cc, C(W) + c,,, the unrelaxed velocity given by 

Because T,~ > rUy, VE, then c,, > cR. 
Let us consider now the second-order approximation of 

the time derivatives in equations (4la) and (4lb). Discretiz- 
ing the time variable, equations (B-la) and (B-lb) take the 
form: 

and 

e“ = eoe itwylr k, .TI (B-6a) 

eyt = e,,,,e~~w~~~ I’ 0, (B-6b) 

A second-order Taylor approximation of the time derivatives 
implies 

and 

where 

(B-7b) 

Following the same procedure to obtain the exact phase 
velocity, we get in this case 

l/2 

(‘R 
i(w) =-Rem’ 

L I + iw7,1sH 
l-L+ c 

SR , =, I + iw7,( se I I (B-9) 

When o + 0, i(w) + cR, and when w + x, r(w) ---f x. In the 
acoustic limit (T,, ---f T,,(. P = I, . . . , L), we obtain the 
numerical phase velocity dispersion for an acoustic medium 
(Kosloff and Baysal, 1982): 

(‘R 
i(w) = -. (B-IO) 

s fl 

The stability criterion is given by the condition 0 < 1. Taking 
w = c’,,K, where K is the real wavenu’mber, we get 

L 

c,,At < -. (B-l I) 
K 

The largest K is the Nyquist spatial frequency for which K = 

dDX. Then the stability criterion is defined by 

At 2 
(‘II r* < ,. (B-12) 

For accuracy. t(w) should not differ significantly from c(o) in 
the source frequency band. Hence, comparing equations 
(B-4) and (B-9) implies that sH = I, or equivalently 8 < 1. 
Then, it is required that At + l/we, where w0 is the dominant 
frequency of the source. The error is greater in the viscoa- 
caustic case than in the acoustic case, since the approxima- 
tion (B-9) gives not only a different relaxed velocity (CR/se) 
but also different relaxation times (T,~.s~ and T,,~s~). 


