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S U M M A R Y
In a lossy medium with complex frequency-dependent wave speed both rays and plane waves
at an interface should satisfy the dispersion relation (that is, the wave equation), the radiation
condition (the amplitude should go to zero at infinity) and the horizontal complex slowness
should be continuous (Snell’s law). It is known that this may lead to a transmitted wave which
violates the radiation condition and which also causes problems with the phase of the reflec-
tion coefficient. In fact, ray-tracing algorithms and analytical evaluations of the reflection and
transmission coefficients in anelastic media may lead to non-physical solutions related to the
complex square roots of the vertical slowness and polarizations. The steepest-descent approxi-
mation with complex horizontal slowness involves non-physical complex horizontal distances,
and in some cases also a non-physical vertical slowness that violates the radiation condition.
Similarly, the reflection and transmission coefficients and ray-tracing codes obtained with this
approach yields wrong results. In order to tackle this problem, we choose the stationary-phase
approximation with real horizontal slowness. This gives real horizontal distances, the radiation
condition is always satisfied and the reflection and transmission coefficients are correct. This
is shown by comparison to full-wave space-time modelling results by computing the reflection
and transmission coefficients and respective phase angles from synthetic seismograms. This
numerical evaluation is based on a 2-D wavenumber-frequency Fourier transform. The results
indicate that the stationary-phase method with a real horizontal slowness provides the correct
physical solution.

Key words: Body waves; Seismic anisotropy; Seismic attenuation; Theoretical seismology;
Wave propagation; Acoustic properties.

1 I N T RO D U C T I O N

Wave propagation in lossy media involves a number of unclear
issues concerning the definition of energy (e.g. Carcione 1999),
the Snell–Fermat equivalence (Carcione & Ursin 2016) and the
correct calculation of the reflection and transmission coefficients
(Krebes & Daley 2007). Regarding the last issue, the problem of
effectively tracing seismic rays and evaluating the corresponding
reflection coefficients in attenuating media is due to the ambiguities
related to the signs of the complex-valued square roots involved in
the expression of the vertical slownesses, which result in a set of
mathematically correct but non-physical solutions (Richards 1984;
Krebes & Daley 2007).

Both for rays and plane waves, the solution should satisfy:

(1) The dispersion relation (that is, the wave equation).
(2) The radiation condition (the amplitude should go to zero at

infinity).

(3) The horizontal complex slowness (in the tangential plane at an
interface for reflected and transmitted waves) should be continuous.

Vavryčuk (2008, 2010) has improved the theory of ray tracing in
anelastic media by introducing energy-based quantities. The equa-
tions, which hold for smoothly inhomogeneous anisotropic low-loss
viscoelastic media, are based on real-valued rays defined as trajecto-
ries based on an inhomogeneous complex and stationary slowness
vector, where by inhomogeneous we mean a plane wave whose
propagation and attenuation directions are not the same. The prob-
lem of the vertical slowness is solved by invoking the radiation
condition and the concept of critical angle, but as Krebes & Daley
(2007) show, imposing the radiation condition may introduce large
errors in the reflection coefficient when the horizontal slowness is
complex and the fact that critical angles do not exist in anelastic
media (Borcherdt 1977; Carcione 2014) invalidates such a concept
as a useful criterion. In our case only the real part of the horizontal
slowness is required to be continuous since the imaginary part is
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nil. The full-wave solution is an integral over the real horizontal
slowness. The vertical slowness is complex, given by the dispersion
relation, which in our form relates the complex slowness vector to
the inverse of the complex velocity squared. The wave is homoge-
neous only for elastic media and pre-critical waves.

The calculation of the plane-wave displacement reflection and
transmission coefficients requires the proper signs of the vertical
slownesses of all the events. Generally, a wrong choice yields co-
efficients varying discontinuously as a function of the angle of in-
cidence. Richards (1984), Krebes & Daley (2007) and Sidler et al.
(2008) have analysed this problem for a homogeneous wave incident
on a plane interface. Richards (1984) showed that for a homoge-
neous incoming plane wave, the transmitted plane waves may have
a vertical slowness corresponding to propagation and attenuation
in opposite vertical directions. The outgoing wave is thus violating
the radiation condition with increasing amplitude away from the
interface. This situation also creates problems with the reflected
wave, as the vertical slowness for the transmitted wave is used in
computing the reflection coefficient. Krebes & Daley (2007) have
shown that this may produce errors in both amplitude and phase of
the reflection coefficient. They discuss three choices for the vertical
slowness: (i) Propagation away from the interface with increas-
ing amplitude. This was recommended by Richards (1984) and
Brokešová & Červený (2002), but it violates the radiation condi-
tion, although the first author showed that somehow the violation
could be reconciled with the radiation condition. An example shows
that there may be phase problems with the reflection coefficient. (ii)
Choose the wave which is attenuated away from the interface. How-
ever, this wave propagates towards the interface. There is also a
discontinuity in the vertical slowness, sz, when Im

(
s2

z

)
becomes

negative. They report problems with the reflection coefficient also
in this case. (iii) They propose to use the complex conjugate of the
vertical slowness when its imaginary part becomes negative. This
produces a wave which propagates and is attenuated away from the
interface (Daley & Krebes 2015), but it no longer satisfies the dis-
persion relation (eq. 1). From this discussion, it follows that none
of the proposed solutions behave according to accepted physical
laws. Krebes & Daley (2007) also compute the stationary-phase
solution of the exact slowness integral, and show that this real sta-
tionary value of horizontal slowness gives reasonable values for
the reflection coefficient. Their approximate solution for the hori-
zontal slowness is the real part of the complex horizontal slowness
obtained with the steepest-descent method (eq. 33 is expression to
solve for the real horizontal slowness). They used the real part of
the complex saddle-point sx to compute the reflection coefficient,
but their traveltime is still that of a homogeneous plane wave.

Sidler et al. (2008) use an accurate numerical technique, based
on a frequency–slowness approach, to evaluate the plane-wave re-
flection coefficients in anelastic media. This reference solution is
compared to the analytical results based on the vertical slowness
component. Sidler et al. (2008) explore the analytical solution space
and its ambiguities by analysing the paths along the Riemann sur-
faces associated with the square roots involved in the vertical slow-
ness. This analysis generally provides the correct sign. However,
there are some cases that require an alternative solution, because
the correct integration path for the vertical slowness does not exist
on the corresponding Riemann surface. The approach is essentially
equivalent to enforcing continuity of the vertical slowness in the
pre-critical range and honouring the radiation condition in the post-
critical range.

Daley & Krebes (2004) analyse the slowness integral for a re-
flected or transmitted SH wave at a plane interface between two

anelastic isotropic media. They deform the integration path in the
complex plane and use the method of steepest descent to compute a
stationary value of the vertical slowness which is complex (see also
Ruud 2006). This also leads to complex values for the distances
between the source and the transmission point and the transmis-
sion point and the receiver (denoted complex rays). But the sum is
real, equal to the physical horizontal distance between the source
and receiver. The problem with the vertical slowness occurs when
the product of the real and imaginary parts is negative. Then both
the up-going and down-going waves violate the radiation condition.
This problem cannot occur when the horizontal slowness is real.

Another issue related to the sign of the vertical slowness is the
problem of the ‘opposite phase’, where the phase shifts predicted by
the elastic model are abrupt at the elastic critical angle and opposite
in sign from those for an anelastic model. The fact is that this
occurs even for a small (negligible) amounts of attenuation. This
problem is indicated in Hearn & Krebes (1990), where they obtain a
polarity reversal at large offsets (see the fourth trace of their fig. 11),
whereas if one uses full-wave theory to compute the same reflected
waveform, one does not obtain such a polarity reversal. See page 206
(second paragraph) of Krebes & Daley (2007), where they already
show that ‘In fact, if exact synthetic seismograms are computed for
their example by numerically evaluating the full wavefield integral
over p (the ‘generalized ray’), one finds no polarity reversal between
the elastic and anelastic cases’. For more details on this non-physical
discrepancy see also figs 3 and 4 in the same paper, which compare
the elastic and anelastic cases (first arrival at 1.5 km).

The reflected and transmitted SH waves are exactly represented
by integrals over real horizontal slowness (Ursin & Stovas 2002).
The steepest-descent approximation leads to a non-physical solution
with complex horizontal slowness, complex horizontal distances,
and a plane-wave solution which possibly violates the radiation
condition. We choose the stationary-phase approximation to the
slowness integral (Tsvankin 1995). Here, the horizontal slowness
and all the horizontal distances are real, and the radiation condition
is always satisfied.

Here, we consider the case of SH-waves in isotropic media but
the mathematical problem is equivalent to those of P waves (the
acoustic wave equation) and electromagnetic waves, by virtue of
the acoustic-electromagnetic analogy (Carcione & Robinson 2002).
Moreover, the generalization to the anisotropic case (for SH waves)
straightforward.

2 P L A N E - WAV E I N T E G R A L F O R
R E F L E C T E D / T R A N S M I T T E D S H WAV E S

We consider a source and receivers as shown in Fig. 1, where the
quantities of the lower medium are primed. The source is located at
the horizontal distance x1 from an unknown reflection/transmission
point. Only x = x1 + x2, z1, z2, x ′ = x1 + x ′

2 and z′
2 are known.

We want to compute x1 and x2 (x ′
2) and the traveltimes for a re-

flected/transmitted SH wave (Krebes & Daley 2007).
The horizontal slowness sx and the vertical slownesses sz for the

incoming and reflected waves are related by the dispersion relation,
which for an isotropic anelastic medium is

s · s = s2
x + s2

z = 1

v2
, (1)

(e.g. Carcione 2014), where v is the complex velocity. Here the
complex slowness is

s = sR + isI = (sx , sz)
� = (sx R + isx I , sz R + iszI )�. (2)
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Figure 1. Reflection-transmission problem.

where i = √−1 and the subindices ‘R’ and ‘I’ denote real and imag-
inary parts, respectively. In eq. (1), the complex velocity satisfies

v2 = v2
0

(
1 − i

Q

)
(3)

or

1

v2
= 1

v2
0

(
1 + i/Q

1 + 1/Q2

)
, (4)

where v0 and Q are the real velocity and quality factor, respectively
(Aki & Richards 2002). In the preceding expressions v0 = vh for
Q � 1, where vh is the speed of homogeneous plane waves (for
smaller Q, they are not the same).

The vertical slowness s ′
z for the transmitted wave is computed

from

s2
x + s ′

z
2 = 1

v′2 , (5)

where v′ is the velocity of the lower medium (defined as in eqs 3
and 4).

The scalar displacement of the transmitted wave can be expressed
by (Aki & Richards 2002)

u(ω) = A(ω)

4πμ(ω)

∫
1

sz(sx , ω)
F(ω, sx )exp[iωτ (ω, sx )]dsx . (6)

Here τ is time, ω is the angular frequency, A(ω) is the source
spectrum,

μ(ω) = ρv2 = ρv2
0

(
1 − i

Q

)
= μ0

(
1 − i

Q

)
(7)

is the shear modulus (ρ is the mass density), and

τ (ω, sx ) =
{

sx x + sz z, for reflection

sx x ′ + sz z1 + s ′
z z′

2, for transmission
(8)

is a complex exponent (with z = z1 + z2). With the sign convention
in eq. (6), positive real and imaginary parts of sx and sz correspond to
waves propagating and being attenuated in the +x and +z directions,
respectively. A schematic of the steepest descent (saddle point)
contour for the integral (6) is given in fig. 2 of Daley & Krebes
(2004).

The boundary conditions (Snell law) require that sx is the same
for incident and transmitted/reflected plane waves (Richards 1984;
Borcherdt & Wennerberg 1985; Borcherdt et al. 1986; Hearn &
Krebes 1990; Borcherdt 2009; Carcione 2014).

Traveltimes are obtained as Re(τ ) = τR (e.g. Krebes &
Slawinski 1991; Daley & Krebes 2004). In eq. (6), the amplitude
function is

F(ω, sx ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R = μsz − μ′s ′
z

μsz + μ′s ′
z

, for reflection

T = 2μsz

μsz + μ′s ′
z

, for transmission

(9)

(e.g. Carcione 2014). These are actually the reflection and transmis-
sion coefficients, since rigorously there are some extra factors (see,
for example, Aki & Richards 2002, eq. 6.18, for the P-wave case
and Krebes & Daley 2007, eq. 9).

In the following, we shall consider only one frequency, ω, and
omit this dependence. In eq. (6), the horizontal slowness is complex.
However, an exact solution for the displacement is obtained from
(Aki & Richards 2002; Chapman 2004)

u(ω) = A(ω)

4πμ(ω)

∫ ∞

−∞

1

sz(sx R)
F(ω, sx R)exp[iωτ (sx R)]dsx R, (10)

where sx = sxR is real. Eq. (10) is the integral (6) but with the
integration path along the real axis.

3 T H E S T E E P E S T - D E S C E N T
A P P ROX I M AT I O N

Following Daley & Krebes (2004) we deform the integration path
in eq. (10) into the complex plane. The result is an integral like (6)
which is evaluated by the method the steepest descent. The complex
stationary point, s̄x , is found by solving

∂τ

∂sx
=

⎧⎪⎪⎨
⎪⎪⎩

x + z
∂sz

∂sx
= 0, for reflection

x ′ + z1
∂sz

∂sx
+ z′

2

∂s ′
z

∂sx
= 0, for transmission

. (11)

From the dispersion relation (1) we obtain

∂sz

∂sx
= − sx

sz
(12)

and a similar equation for the lower medium. Substitution of these
expressions into eq. (11) gives for the transmitted wave

x ′ = sx

(
z1

sz
+ z′

2

s ′
z

)
. (13)

This equation must be solved iteratively for the complex value of
sx, the horizontal slowness of the incoming and transmitted wave,
using the dispersion relation (1).

For the reflected wave, the stationarity condition (11), with (12),
becomes

x = z
sx

sz
. (14)

Combining this equation with the dispersion relation (1) gives the
stationary values

sx = x

rv
= sin ψ

v
, sz = z

rv
= cos ψ

v
(15)

where r = √
x2 + z2 and ψ is the angle that the stationary ray makes

with the vertical axis. The slowness vector is then

s = 1

v
(sin ψ, cos ψ)�. (16)
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From these equations it follows that the stationary reflected ray is
homogeneous, that is, the real and imaginary parts of s are parallel
(Carcione 2014).

For the reflected wave, the vertical slowness in the lower medium
is

s ′
z

2 = 1

v′2 − s2
x = 1

v′2 − 1

v2

( x

r

)2
, (17)

where eq. (15) has been used. Note that this is not the vertical
slowness for the stationary transmitted wave which must be found
using the stationary value of the horizontal slowness, being the
solution of eq. (13). In fact, the stationary horizontal slowness com-
ponents (obeying Snell law) for the reflected and transmitted wave
are different, that is, when computing the reflection coefficients the
component corresponds to a receiver above the interface (the re-
flection ray), while the transmission coefficient involves a receiver
below the interface (the transmission ray).

For the transmitted wave we must find the complex, stationary
values of x1 and x ′

2 such that x ′ = x1 + x ′
2 is real. We have

x1 = sx

sz
z1, and x ′

2 = sx

s ′
z

z′
2 = x ′ − x1. (18)

As for eqs (14) and (15), we obtain the complex Snell law

sx = x1

r1v
= x ′ − x1

r ′
2v

′
2

, (19)

where r1 =
√

x2
1 + z2

1 and r ′
2 =

√
(x ′ − x1)2 + z′

2
2. Eq. (19) must

be solved for the complex value of x1. Alternatively, we may
square this equation, giving a fourth-order equation for x1, see
eq. (49).

The steepest-descent approximation for the displacement is now
obtained from eq. (6) (Aki & Richards 2002, Box 6.3),

u = A

4πμ
F(s̄x )

∣∣∣∣ 2π

ωτ
′′ (s̄x )

∣∣∣∣
1/2 exp[iωτ (s̄x )]exp[iχ (s̄x )]

sz(s̄x )
. (20)

Here

τ
′′ = ∂2τ

∂s2
x

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z
∂2sz

∂s2
x

, for reflection

z1
∂2sz

∂s2
x

+ z′
2

∂2s ′
z

∂s2
x

, for transmission,

(21)

where, from the dispersion relation (1),

∂2sz

∂s2
x

= − 1

s3
z v

2
, (22)

with τ
′′ = |τ ′′ |exp(iθ ), iτ

′′ = |τ ′′ |exp[i(θ + π/2)], and

χ = −(θ + π/2)/2 ± π/2. (23)

The two solutions differ in sign.

4 T H E V E RT I C A L - S L OW N E S S P RO B L E M

With the sign convention in eq. (6), it is seen that szR and szI should
have the same sign for a wave to propagate and being attenuated
in the same vertical direction. From the dispersion relation (1) we
have

Im
(
s2

z

) = 2sz RszI = Im

(
1

v2
− s2

x

)
. (24)

This quantity should therefore be positive, and for sx real this is
always the case (see eq. 4).

For horizontal slowness sx complex there will be problems when

Im

(
1

v2
− s2

x

)
< 0, (25)

because then szR and szI have opposite sign according to eq. (24).
This means that the two plane waves represented by the dispersion
relation will propagate and attenuate in opposite directions. That
is, both waves violate the radiation condition with respect to their
direction of propagation. For the reflected wave this will give prob-
lems with the reflection coefficient, involving the vertical slowness
in the lower medium (see eq. 17), when

Im

(
1

v′2

)
< Im

(
1

v2

) ( x

r

)2
or

1

v′
0

2

1

Q ′ + Q ′−1
<

1

v2
0

1

Q + Q−1

( x

r

)2
.

(26)

For large values of Q (weak loss) this becomes

1

v0
′√Q ′ <

1

v0
√

Q

x

r
. (27)

See eq. (28) in Krebes & Daley (2007). They discuss three choices
for the vertical slowness, but the problems persist.

The steepest-descent solution with complex horizontal slowness
involves non-physical complex horizontal distances, and in some
cases also a non-physical vertical slowness that violates the radiation
condition. In order to have a solution which is always physical, we
choose the stationary-phase solution (e.g. Tsvankin 1995) with a
real horizontal slowness, as illustrated in the next section.

5 T H E S TAT I O NA RY- P H A S E S O LU T I O N

The problems encountered in the previous section can be avoided
by approximating the slowness integral (10) by the method of sta-
tionary phase (Tsvankin 1995). With sxR = sx, this integral may be
written as

u = A

4πμ

∫ ∞

−∞

1

sz(sx )
F(sx )exp[iωτR(sx ) − ωτI (sx )]dsx . (28)

The stationarity conditions are

∂τR

∂sx
=

⎧⎪⎪⎨
⎪⎪⎩

x + z
∂sz R

∂sx
= 0, for reflection

x ′ + z1
∂sz R

∂sx
+ z′

2

∂s ′
z R

∂sx
= 0, for transmission

(29)

From the dispersion relation (1) we obtain for the upper medium

∂sz R

∂sx
= − sx sz R

|sz |2 (30)

and a similar equation for the lower medium. For the transmitted
wave,

x ′ = sx

(
z1sz R

|sz |2 + z′
2s ′

z R

|s ′
z |2

)
, (31)

where sx and the quantity between parenthesis are real. It must
be solved iteratively for sx, the stationary value of the horizontal
slowness for the incoming and transmitted wave. By using a real
value for sx in eq. (31), we get a corresponding value for x′ directly.
This may be used in a shooting method to compute sx when x′ is
given, but it may also be used to compute results for many values of
x′ along a receiver line. Although, strictly, a trial-and-error shooting
method is not needed, since given x′, it should be possible to solve
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eq. (31) for sx using the Newton–Raphson method (see Hearn &
Krebes 1990). We note that the steepest-descent solution in eq. (13)
cannot be used in the same way, as a complex value of the horizontal
slowness may not necessarily result in a real value for x′.

For the reflected wave, the stationarity condition gives

x = sx sz R

|sz |2 z (32)

or( z

x

)
sx = sz R

[
1 +

(
szI

sz R

)2
]

. (33)

This is a non-linear equation which must be solved for the stationary
value sx (see Appendix B). For small attenuation (szI small) we
obtain the approximations

sx = x

r

√
Re

(
1

v2

)
(34)

and

sz R = z

r

√
Re

(
1

v2

)
. (35)

Compare with eq. (15). For Q � 1, eq. (34) is the same as eq. (40)
in Krebes & Daley (2007).

The stationary phase-approximation of the integral (28) is
(Bleistein 1984),

u = A

4πμ

F(s̃x )

sz(s̃x )

∣∣∣∣ 2π

ωτ
′′
R(s̃x )

∣∣∣∣
1/2

exp[iωτR(s̃x ) − ωτI (s̃x )]

× exp [i(π/4)sgnτ
′′
R(s̃x )], (36)

where all quantities are to be evaluated at the stationary value sx =
s̃x computed above. We have, see eq. (8),

τI =
{

zszI , for reflection

z1szI + z′
2s ′

z I , for transmission
(37)

and

τ
′′
R = ∂2τR

∂s2
x

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z
∂2sz R

∂s2
x

, for reflection

z1
∂2sz R

∂s2
x

+ z′
2

∂2s ′
z R

∂s2
x

, for transmission,

(38)

From eq. (30) we obtain

∂2sz R

∂s2
x

= − sz R

|sz |2 + s2
x sz R

|sz |6
[
3s2

z I − s2
z R

]
. (39)

There is a similar equation for the lower medium.

6 G E O M E T R I C A L R AY S

For the steepest-descent approximation of the transmitted wave
(sx complex), we can write x ′ = x1 + x ′

2 with

x1 = −z1
∂sz

∂sx
= z1

sx

sz
,

x ′
2 = −z′

2

∂s ′
z

∂sx
= z′

2

sx

s ′
z

. (40)

Note that, in general, both x1 and x ′
2 are complex. But their sum

is real, equal to the horizontal distance between the source and
receiver.

The complex traveltime is τ = τ1 + τ ′
2, with

τ1 = sx x1 + sz z1 = z1

szv2
,

τ ′
2 = sx x ′

2 + s ′
z z′

2 = z′
2

s ′
zv

′2 . (41)

The complex ray velocities in the upper medium are

V1x = x1

τ1
= sxv

2,

V1z = z1

τ1
= szv

2, (42)

and similar expressions for the ray velocities in the lower medium.
For the stationary-phase approximation (sx real) of the transmitted

wave, we have x ′ = x1 + x ′
2, with

x1 = z1
sx sz R

|sz |2 ,

x ′
2 = z′

2

sx s ′
z R

|s ′
z |2

(43)

and the traveltime is τ = τ1 + τ ′
2 with

τ1 = sx x1 + sz R z1 = z1sz R

(
1 + s2

x

|sz |2
)

,

τ ′
2 = sx x ′

2 + s ′
z R z′

2 = z′
2s ′

z R

(
1 + s2

x

|s ′
z |2

)
. (44)

This gives the real ray velocities in the upper medium

V1x = x1

τ1
= sx

s2
x + |sz |2 ,

V1z = z1

τ1
= |sz |2

sz R(s2
x + |sz |2)

, (45)

and similar expressions for the ray velocities in the lower medium.
Using eq. (3) and defining a ≡ s2

z (see Appendix A), we have for
the reflected wave

aR = 1

v2
0

· 1

1 + Q−2
− s2

x

aI = 1

v2
0

· 1

Q + Q−1
. (46)

For large values of Q (weak loss), we obtain (Appendix A)

sz R ≈ √
aR ≈

√
1

v2
0

− s2
x = cos θ

v0

szI ≈ aI

2
√

aR
≈ 1

2Qv2
0

√
v−2

0 − s2
x

= 1

2v0 Q cos θ
, (47)

where sx = sin θ/v0.
With these simple expressions, the stationary-phase

approximation is

exp[iω(sx x + sz z)] = exp

[
iω

(
x

sin θ

v0
+ z

cos θ

v0

)]

× exp

(
−ω

r

2v0 Q

)
. (48)

This solution corresponds to a ray tracing with a real velocity and
computing the attenuation along the ray. Eq. (48) is similar to eqs
(36)–(38) of Krebes & Daley (2007). Ray-tracing in anelastic media
may break down, even for a homogeneous wave with parallel real



666 B. Ursin, J.M. Carcione and D. Gei

Table 1. Stationary slowness and traveltime of the reflected wave.

Q s−1
x s̄−1

x s−1
z s̄−1

z τR τ̄R

(m s−1) (m s−1) (m s−1) (m s−1) (ms) (ms)

∞ 3710 3710 2375 2375 74.2 74.2
5 3706 (3729, −369) (2371, −333) (2386, −236) 73.3 73.1
1 3500 (4076, −1688) (2240, −1594) (2609, −1081) 59.9 57.6

Table 2. Reflection coefficient and damping factor of the reflected
wave.

Q |R| |R̄| D D̄

∞ 0.07 0.07 0.07 0.07
5 0.07 0.1 7.2 × 10−3 1.1 × 10−2

1 0.12 0.19 3.2 × 10−5 1.1 × 10−4

and complex slowness vectors as it hits an interface, see Krebes &
Daley (2007). Vavryčuk (2008) proposes an approximate solution.
Our approach in this paper is for plane-wave expansions, and it
cannot be expanded to ray-tracing.

7 R E S U LT S

The reflection and transmission coefficients for SH waves in
isotropic media are given in eq. (9). For the reflected wave, we
have to find its stationary slowness and then compute sz using eq.
(1). In the case of a complex sx obtained from eq. (15) (the steepest-
descent method), sz and s ′

z are given by equations (16) and (17),
respectively. For a real sx (stationary-phase solution), we solve eq.
(29) and use eq. (1) and its primed version. For the transmitted
wave, we have to find its stationary slowness from equations (13)
(steepest-descent solution) and (31) (stationary-phase solution), and
sz and s ′

z are given by eq. (1) and its primed version.

7.1 Low-Q comparisons

To compare both approaches, let us consider a specific example,
where x = 80 m, z1 = 70 m , x′ = 60 m, z2 = 55 m, z′

2 = 65 m, and

v2 = 4

(
1 − i

Q

)
and v′2 = 9

(
1 − i

Q ′

)
,

in [km s−1]2, so that v0 = 2 km s−1 and v′
0 = 3 km s−1; moreover,

ρ = 2 g cm−3 and ρ ′ = 2.2 g cm−3. The frequency is f = 50 Hz and
ω = 2π f.

We must solve eq. (33) for sx for the reflected wave and eq. (31)
for the transmitted wave, using the results from Appendix A. We
solve the equations by stepwise iteration, using the downhill method
(Bach 1969a,b). The results for the reflected wave are shown in
Tables 1 and 2 for different values of Q and a lossless lower medium
(note that eq. 27 is satisfied). The barred symbols correspond to
the method of steepest descent, that is, to eq. (15). The positive

Table 4. Traveltime, transmission coefficient and damping factor of the
transmitted wave.

Q Q′ τR τ̄R |T| |T̄ | D D̄

∞ ∞ 61.8 61.8 0.79 0.79 0.79 0.79
5 ∞ 61.2 61.2 0.79 0.79 0.26 0.26
5 10 61.2 61.1 0.79 0.79 0.17 0.17
1 ∞ 53.8 53.6 0.89 0.88 2 × 10−2 2 × 10−2

1 10 53.7 53.5 0.89 0.87 1.3 × 10−2 1.3 × 10−2

0.7 1 45 31 0.83 1.17 1.5 × 10−3 0.26

sign is chosen for all the vertical slowness components, that is, the
principal value. The amplitude decay or damping factor from source
to receiver is obtained as

D = |R exp[iω(sx x + sz z)]| = |R| exp[−ω(sx I x + szI z)],

where sxI = 0 in the case of the stationary-phase solution (geomet-
rical spreading is not considered).

The initial guess for the transmission problem (eq. 31) is obtained
from the lossless case. It can easily be shown that Snell law and
x1 + x ′

2 = x ′ lead to a quartic equation in x1:

a4x4
1 + a3x3

1 + a2x2
1 + a1x1 + a0 = 0,

a0 = −x ′2z2
1v

2,

a1 = 2x ′z2
1v

2,

a2 =
(

x ′2 + z′
2

2
)

v′2 −
(

x ′2 + z2
1

)
v2,

a3 = 2x ′
(
v2 − v′2

)
,

a4 = v′2 − v2. (49)

We solve this equation using radicals by Ludovico Ferrari method
and obtain x1 = 23.9 m, s−1

x = 6183 s m−1, and a traveltime τ =
61.8 ms. The amplitude decay or damping factor from source to
receiver is obtained as

D = ∣∣T exp[iω(sx x ′ + sz z1 + s ′
z z′

2)]
∣∣

= |T | exp[−ω(sx I x ′ + szI z1 + s ′
z I z′

2)],

where sxI = 0 in the case of the stationary-phase solution.
The results for the transmitted wave are shown in Tables 3 and 4

for different values of Q′. The barred symbols correspond to the
method of steepest descent, that is, to eq. (13). An anomalous be-
haviour is observed in the last case for the steepest-descent case,

Table 3. Stationary slowness and traveltime of the transmitted wave.

Q Q′ s−1
x s̄−1

x s−1
z s̄−1

z s′
z
−1 (s̄′

z)−1

(m s−1) (m s−1) (m s−1) (m s−1) (m s−1) (m s−1)

∞ ∞ 6183 6183 2114 2114 3431 3431
5 ∞ 6190 (6190, −223) (2121, −235) (2123, −226) (3430, 0) (3427, +38)
5 10 6190 (6198, −420) (2121, −235) (2124, −218) (3430, −224) (3433, −152)
1 ∞ 6321 (6332, −1063) (2253, −1083) (2310, −1050) (3408, 0) (3357, +150)
1 10 6321 (6354, −1255) (2253, −1083) (2316, −1041) (3409, −220) (3371, −37)
0.7 1 6442 (2486, −752) (2347, −1457) (1493, −4026) (3419, −1993) (688, +3642)
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when considering diffusion-like Q values. Note that the real hor-
izontal slowness component is not equal to the real part of the
complex slowness components obtained with the steepest-descent
method (they are equal for Q � 1).

7.2 Comparison of reflection and transmission coefficients

7.2.1 Reflection coefficient

Let us consider now a similar problem studied by Krebes and Daley
illustrated in their figs 1–10 (Krebes & Daley 2007). Here, we
assume a Maxwell mechanical model to describe the anelasticity,
whose complex velocity is

v = v0

√
Q

Q − i(ω0/ω)
,

and its primed version (e.g. Carcione 2014), where ω0 is a refer-
ence frequency, with v0 = 1 km s−1, v′

0 = 2 km s−1, Q = 15, Q′

= 20, ρ = 2 g cm−3 and ρ ′ = 2.1 g cm−3 (Q is the quality factor
at ω0). The frequency-dependent quality factor is ωη/(ρv2

0), where

the Maxwell viscosity η = ρv2
0 Q/ω0. Krebes & Daley (2007) show

that choosing the sign of the vertical slowness component to satisfy
the radiation condition (Im(s ′

z) > 0), the transmitted wave ampli-
tude decays with distance away from the interface) involves large
errors in the absolute value of the reflection coefficient. On the other
hand, choosing the principal value (a Fortran compiler yields this
value) implies large discrepancies in the phase and the anelastic re-
flection coefficient does not tend to the elastic one as the anelasticity
is decreased. In their second approach they take a real horizontal
slowness components as the real part of the steepest-descent solu-
tion, which is not the same as the solution obtained from eq. (29).
The solution of Krebes & Daley (2007) only agree approximately
for Q � 1 with our solution that applies for very low Q as well. For
Q � 1, sx is approximately the real part of the steepest descent sx.
In addition, we consider a receiver in the lower medium (the trans-
mission problem) and check our results with numerical simulations
(see below).

Fig. 2 shows the reflection coefficient obtained with steepest-
descent method (dashed line) and stationary-phase method (solid
line). The dotted line corresponds to the lossless case. While the ab-
solute values of the reflection coefficient are similar, the phases are

Figure 2. Reflection coefficient for the lossless, stationary-phase and steepest-descent cases (dotted, solid and dashed lines, respectively). Square roots in the
second case are computed as the principal value.
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Figure 3. Transmission coefficient for the lossless, stationary-phase and steepest-descent cases (dotted, solid and dashed lines, respectively). Square roots in
the second case are computed as the principal value.

very different, indicating problems when the stationary slowness is
complex (steepest-descent method). The results for a real horizon-
tal slowness are similar to those of the lossless case as should be
expected.

7.2.2 Transmission coefficient

To obtain the initial guess for the transmission problem, we assume
the incidence angle θ , calculate x1 = z1tan θ and find the location
of the receiver x′. From equation (49), we obtain

b2x ′2 + b1x ′ + b0 = 0,

b0 = (v′2 − v2)x4
1 + x2

1 (z′
2

2
v′2 − z2

1v
2),

b1 = 2z2
1v

2x1 − 2(v′2 − v2)x3
1 ,

b2 = x2
1 (v′2 − v2) − z2

1v
2. (50)

The solution is x ′ = −(b1 +
√

b2
1 − 4b0b2)/(2b2) and can be ob-

tained up to the critical angle θC = sin −1(v′/v), since beyond this
angle x′ = ∞, with x1C = z1tan θC.

Fig. 3 shows the transmission coefficient obtained with steepest-
descent method (dashed line) and stationary-phase method (solid
line). The dotted line corresponds to the lossless case. There is
no noticeable difference between the different coefficients below
the elastic critical angle. As we show below, the difference ap-
pears after that angle. In this case, the phase corresponding to the
steepest-descent method is closer to the elastic phase, although the
differences are small, of the order of a few degrees. The numeri-
cal evaluation of the transmission coefficient below shows that the
stationary-phase solution is the correct one and represents a con-
clusive test.

7.3 Numerical test

We use the method outlined in Appendix C to obtain the reflection
and transmission coefficients. Two meshes with 243 × 81 grid points
model the interface, with a grid size dx = 10 m and a vertical extent
of 510 m for each mesh. To avoid unphysical reflections from the
sides, top of the upper mesh and bottom of the lower mesh, we use
absorbing boundaries of 40 and 18 grid points width. In addition,
non-reflecting boundary condition is implemented along the vertical
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Figure 4. Reflection coefficient (a) and phase angle (b) as a function of the
angle of incidence. The solid and dashed lines correspond to the stationary-
phase and steepest-descent solutions, respectively. The symbols indicate the
numerical evaluation for different frequencies (9 (triangles), 10 (circles) and
11 (squares) Hz).

direction. The source, located 212 m above the interface, is a Ricker
wavelet with a dominant frequency of 10 Hz. We propagate the
wavefield with a time step of 1 ms.

Figs 4 and 5 show the comparison between the analytical and
numerical solutions. The solid and dashed lines correspond to the
stationary-phase and steepest-descent solutions, while the symbols
indicate the numerical evaluation for different frequencies. As can
be seen, the correct physical solution is that of the stationary-phase
method with a real horizontal slowness. The analytical transmission
coefficients in Fig. 5 are computed with the stationary slowness of
the reflected wave. Although this is an approximation, the results
indicate that the stationary-phase solution is the one which is in
better agreement with the numerical evaluation.

8 C O N C LU S I O N S

Reflected and transmitted SH waves from an interface between two
homogeneous anelastic half spaces can be exactly computed by an
integral over frequency and real horizontal slowness. The steepest-
descent approximation gives a stationary value for the horizon-
tal slowness that is complex and horizontal distances which are

stationary phase

steepest descent

Figure 5. Transmission coefficient (a) and phase angle (b) as a function
of the angle of incidence. The solid and dashed lines correspond to the
stationary-phase and steepest-descent solutions, respectively. The symbols
indicate the numerical evaluation for different frequencies (9 (triangles up),
10 (circles) and 11 (triangles down) Hz).

complex. In some cases, the dispersion relation gives complex ver-
tical slownesses for up- and down-going waves which both have
increasing amplitude in the direction of wave propagation. Both the
complex horizontal distances and the exponentially increasing wave
amplitudes are non-physical effects. The stationary-phase approxi-
mation to the slowness integral gives real horizontal slownesses and
real horizontal distances. This is a physical wave solution which will
not violate the radiation condition. The amplitude always decreases
in the direction of wave propagation.

Moreover, by using a real value for horizontal slowness, we get a
corresponding value for the horizontal distance, which may be used
to compute results along a receiver line, while the steepest-descent
solution cannot be used in the same way, as a complex value of
the horizontal slowness may not necessarily result in a real value
for the distance. The results are compared to numerical simulations
indicating that the stationary-phase solution with a real horizontal
slowness is the correct solution.

By virtue of mathematical analogies, the theory developed here
can be applied to sound and electromagnetic waves. The general-
ization to the anisotropic case (for SH and P–SV waves) is straight-
forward and will be performed in a future work as well as the
implications on Fermat principle.
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A P P E N D I X A : T H E V E RT I C A L
S L OW N E S S

The dispersion relation (1) can be expressed by

s2
z = s2

z R − s2
z I + 2isz RszI = aR + iaI = a, (A1)

where

a = 1

v2
− s2

x

for the steepest-descent method (sx complex) and the stationary-
phase method (sx real).

From eq. (A1) we obtain

szI = aI

2sz R
. (A2)

When this is used in eq. (A1), we obtain a second-order equation
for szR. We choose the positive solution, giving

s2
z R = 1

2
(aR + |a|). (A3)

From eq. (A1) or from eqs (A2) and (A3) we obtain

|sz |2 = s2
z R + s2

z I = |a|

=
√[

Re

(
1

v2
− s2

x

)]2

+
[

Im

(
1

v2
− s2

x

)]2

. (A4)

From eq. (4), with real sx,

aR = 1

v2
0

1

1 + 1/Q2
− s2

x (A5)

and

aI

aR
=

{
Q

[
1 − v2

0

(
1 + 1

Q2

)
s2

x

]}−1

. (A6)

Eq. (A3) has two solutions for szR, a positive solution for downgo-
ing waves and a negative solution for upgoing waves. But for the
reflected wave the difference in vertical coordinates is also negative,
resulting in eq. (29) with positive szR.

In the lossless case, Q → ∞, so that A = 2, aI = 0 and sz R = √
aR

and eq. (29) can be solved analytically, giving

sx = x

v0r
= sin θ

v0
. (A7)

The reflection traveltime is

τ = x

v0 sin θ
, (A8)

as can be deduced from simple geometrical arguments.

http://samizdat.mines.edu/wave_layered_media/
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A P P E N D I X B : T H E S TAT I O NA RY- P H A S E
S O LU T I O N F O R T H E H O R I Z O N TA L
S L OW N E S S

For the reflected wave the stationary-phase solution is given in
eq. (33) which becomes

s2
x =

(
x

z

)2 (
s2

z R + 2s2
z I + s4

z I

s2
z R

)
= Re

(
1

v2

)
− s2

z R + s2
z I , (B1)

where we have used the dispersion relation (A1) for sx real. With
eq. (A2) this gives

Re

(
1

v2

)
=

(
r

z

)2

s2
z R + 1

4s2
z R

[
2

(
x

z

)2

− 1

]

×
[

Im

(
1

v2

)]2

+ 1

16s6
z R

(
x

z

)2 [
Im

(
1

v2

)]4

. (B2)

Neglecting the last term, we obtain a second-order equation for s2
z R .

The result is

s2
z R = 1

2

( z

r

)2

⎧⎨
⎩Re

(
1

v2

)
+

√∣∣∣∣ 1

v2

∣∣∣∣ − 2

(
x

z

)2 [
Im

(
1

v2

)]2
⎫⎬
⎭ ,

(B3)

so that

s2
z R =

( z

r

)2
{

1

2
Re

(
1

v2

)

×
[

1 +
√√√√1 +

[
1 − 2

(
x

z

)2
][

Im

(
1

v2

)
/Re

(
1

v2

)]2
]}

,

(B4)

From this value of szR we obtain

szI = 1

2sz R
Im

(
1

v2

)
(B5)

and then from eq. (32),

sx = sz R

(
x

z

)[
1 + 1

4s4
z R

Im

(
1

v2

)2
]

. (B6)

We see that eqs (B4) and (B6) reduce to eqs (34) and (35) for small
attenuation.

A P P E N D I X C : N U M E R I C A L
E VA LUAT I O N O F T H E R E F L E C T I O N
A N D T R A N S M I S S I O N C O E F F I C I E N T S

Let us consider the SH-wave equation of the mechanical Maxwell
model in the (x, z)-plane, equivalent to Maxwell’s TM wave equation

(Carcione & Robinson 2002),

∂xσxy + ∂zσyz = ρ∂tvy + s,

∂tσyz = ρv2
0(∂zvy − η−1σyz),

∂tσxy = ρv2
0(∂xvy − η−1σxy), (C1)

where vy is the particle velocity, σ denotes stress, s is a source and
∂ indicates partial derivative (e.g. Carcione 2014).

In order to obtain the reflection and transmission coefficients from
space–time domain data, we compute synthetic seismograms by
using a domain-decomposition method to model the upper and lower
media by using two grids (Carcione et al. 2006) and the equation
of motion for shear waves. The spatial derivatives are computed
with the Fourier and Chebyshev pseudospectral methods along the
horizontal and vertical direction, respectively, and a fourth-order
Runge–Kutta algorithm is used a time solver. This method has
been applied with success to obtain the reflection coefficient of the
ocean bottom in the presence of the viscoelastic Rayleigh-window
phenomenon (Carcione & Helle 2004).

The inversion method for the reflection coefficient consists on
the following:

(1) Generate a synthetic seismogram of the particle velocity vy

(propagation in the (x, y)-plane), placing a line of receivers at the
penultimate row of grid points above the interface. This seismogram
contains the incident and reflected fields.

(2) Compute the synthetic seismogram without interface (the
lower medium is set equal to the upper medium) at the same location.
This seismogram contains the incident field only.

(3) Perform the difference between the first and second seismo-
grams. The difference contains the reflected field only.

(4) Perform an (ω, kx)-transform of the incident field to obtain
vy0(ω, kx), where ω is the angular frequency and kx is the horizontal
wavenumber.

(5) Perform an (ω, kx)-transform of the reflected field to obtain
vy(ω, kx).

(6) Define A = vy(ω, kx)/vy0(ω, kx); the quantity |A| is the absolute
value of the reflection coefficient, and the phase angle is given by
tan−1[Im(A)/Re(A)]. Then, transform kx to incidence angle by using
sin θ = vpkx/ω, where vp is the phase velocity in the upper medium
at the reference frequency ω0 (vp = 1/Re[1/v(ω0)] (Carcione
2014).

Regarding the transmission coefficient, generate a synthetic seis-
mogram of the particle velocity vy placing a line of receivers
at the second row of grid points below the interface. This seis-
mogram contains the transmitted wave field. Then, compute the
synthetic seismogram without interface (the lower medium is set
equal to the upper medium) at the same location. This seismogram
contains the incident field only. Then, proceed with points 4 to
6 above.


