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ABSTRACT	 The BISQ model unified the Biot theory and the squirt-flow mechanism. The squirt 
flow is induced by the compression of the pore volume due to the wave excitation and 
pressure gradients between stiff pores and microcracks. On the basis of this model, 
we consider the fluid in microcracks to oscillate perpendicular to the wave direction, 
which is independent of the global (Biot) wave oscillation. The BISQ theory is, then, 
reformulated in terms of the law of conservation of fluid mass and the crack aspect 
ratio and density, hereafter called Re-BISQ model. The BISQ model is a particular 
case of the Re-BISQ model if the microcrack porosity to total porosity ratio is set 
to one. We analyse the effects of rock properties, such as the permeability and the 
characteristic squirt length. Comparisons with ultrasonic experimental data indicate 
that the Re-BISQ model provides a better description of the wave properties than the 
original BISQ model.

Key words:	 anelastic wave propagation, BISQ model, Biot theory, squirt-flow, wave dissipation, 
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1. Introduction

Theoretical studies of wave propagation in reservoirs are developed from a single-porosity 
medium to more complex pore systems. The study of waves in a single-porosity medium started in 
the 1950s, when Gassmann (1951) investigated the effects of pore fluids on the elastic properties 
without considering the relative motion between the fluid and the skeleton. Biot (1956a, 1956b, 
1962) established the basic theory of dynamic poroelasticity in a saturated porous solid. The 
theory laid the foundation for studying waves in a fluid/solid two-phase system and predicted the 
existence of slow P-wave, which was confirmed in experiment by Plona (1980). However, it is 
widely accepted that the Biot theory cannot sufficiently explain the strong attenuation phenomena 
observed in real rocks (Mavko and Nur, 1975; White, 1975; Dvorkin and Nur, 1993; Carcione, 
2014; Ba et al., 2018; Wang et al., 2018). The main reason is that the model assumes that the pores 
are unique and homogeneous (a single-porosity medium) and fluids only flow in the direction of 
wave propagation. These basic assumptions are inconsistent with the internal complexities of 
actual rocks.

To improve the description of wave propagation, White (1975) first presented the concept 
of mesoscopic non-uniformity and patchy-saturation (spherical gas patches) (White model) to 



2

Boll. Geof. Teor. Appl., 60, xxx-xxx	 Wu et al.

explain the strong wave attenuation, but the low frequency limit is inconsistent with Gassmann 
(1951) theoretical model. Dutta and Ode (1979a, 1979b), Dutta and Seriff (1979c), and Carcione 
(2014) solved this inconsistency. Based on White model, Berryman and Wang (1995) obtained 
the constitutive relations of a double-porosity medium. Subsequently, Berryman and Wang 
(2000) developed the dynamic equations of elastic wave propagation in a double-porosity dual-
permeability medium, and studied the wave dispersion and attenuation. Pride and Berryman 
(2003a, 2003b) derived the equations of wave propagation in a double-porosity medium based 
on volume average. Ba et al. (2011, 2014, 2016) derived the Biot-Rayleigh equations for wave 
propagation in double-porosity rocks based on the Hamiltonian principle. Then, Ba et al. (2015, 
2017) presented a double double-porosity model based on the Biot-Rayleigh equations and 
considered the heterogeneous characteristics of the pore-fluid patchy-saturation and double-
porosity structure of actual reservoirs. The model can be used to describe the wave propagation 
characteristics in partially-saturated complex reservoirs. Guo et al. (2018) applied the model in 
analysing wave velocity dispersion and attenuation in fluid saturated tight sandstones. Sun et 
al. (2016) and Zhang et al. (2017) proposed the triple-porosity model for wave propagation in 
reservoir rocks.

On the other hand, the influence of the microscopic local fluid flow on wave propagation 
has also been considered and investigated. Mavko and Nur (1975) considered a squirt-flow 
mechanism based on pore microscopic geometry, which successfully explained the high wave 
dispersion and attenuation. However, the theory highly relies on the pore geometry. Therefore, 
this model is difficult to apply and separates the Biot and squirt flows, which is inconsistent with 
a real physical process. Dvorkin and Nur (1993) presented a BISQ (Biot/squirt) model based 
on the assumption that the pores are saturated with a single fluid. The BISQ model combines 
the Biot and squirt flows into same mechanical model, so that the high velocity dispersion and 
attenuation can be explained. Subsequently, Dvorkin et al. (1994) further extended the BISQ 
model to partially saturated conditions by modifying the characteristic squirt length. Diallo and 
Appel (2000) and Diallo et al. (2003) tried to reformulate the characteristic squirt length to 
improve the BISQ model. However, the predicted P-wave velocity dispersion and attenuation 
move to the high frequencies when the rock permeability decreases, and this is at odds with the 
prediction of the original BISQ model. Cheng et al. (2002) introduced a viscoelastic mechanism 
into the BISQ model, and Nie et al. (2008) added viscoelastic into BISQ model and applied it to 
muddy sandstones. The viscoelastic BISQ model can be used to explain the high dispersion and 
attenuation in the low frequencies band, but it is not a predictive model, only a phenomenological 
approach. Gurevich et al. (2010) and Carcione and Gurevich (2011) presented an alternative 
squirt-flow model, in which the parameters can be entirely estimated from the microstructural 
properties of the rock.

Tang (2011) stated that the BISQ model does not involve two important parameters: the crack 
density and the crack aspect ratio, and he derived the wave equations by incorporating these 
parameters. In this work, we generalise the BISQ model to contain explicitly the influence of 
penny-shape cracks on wave propagation. The BISQ model is reformulated from the perspective 
of fluid mass conservation. The reformulated model presents the actual wave propagation 
characteristics in reservoir rocks.
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2. Reformulated BISQ equations by incorporating microcrack porosity

As shown in Fig. 1 for a typical tight sandstone, the rock can be assumed as made of two 
components, the main inter-granular (stiff) pores and the grain contacts or microcracks, whose 
aspect ratio is very low and their compressibility is much higher than that of the pores.

Dvorkin and Nur (1993) combined the Biot and squirt flows in the same model, considering a 
cylindrical geometry, as shown in Fig. 2a. The fluid pressure due to local flow outside the sample 
is constant, and we set it zero for convenience. The constant-pressure boundary is equivalent to the 
“no-flow boundary” when the microcrack scale is much less than wavelength. Since fluid pressure 
is constant at the boundary (not affected by the wave oscillations), it will not drive local fluid flow. 
Dvorkin and Nur (1993) assumed the situation of rocks with very small volumes of gas trapped 
at the tips of the cracks, which is in line with the natural reservoirs. If a porous rock at 100% full 
saturation is considered, pore fluid is pushed from thin cracks into the surrounding large pores with 
pressure in these pores changing in time. Pressure variation in cracks is much larger than that in 
large pores. Therefore, attenuation and dispersion can still be well estimated by the model.

The radius of this cylinder (R) is the characteristic squirt-flow length, which is of the order 
of the average pore size. Dvorkin and Nur (1993) assumed that this microscale parameter is a 
fundamental rock property and does not relate to frequency and fluid properties. It indicates the 
relaxed distance of the fluid when the squirt flow occurs inside the rock. When a seismic wave 
propagate in the rock, pore fluid flows from the thin cracks into the surrounding inter-granular 
pores or adjacent cracks with different orientations (Mavko and Nur, 1975). Dvorkin and Nur 
(1993) did not distinguish the microcracks from the main pores when analysing the squirt flow, 
which occurs to the fluid in the microcracks, as shown in Fig. 2b, where φ is the total porosity and 
φc is the crack porosity.

The Biot (1956a, 1956b) dynamic equations for wave propagation in a two-phase solid/fluid 
composite are:

(1a)

(1b)

Fig. 1 - Microcracks and inter-granular pores in a thin section 
analysis of a tight sandstone.



4

Boll. Geof. Teor. Appl., 60, xxx-xxx	 Wu et al.

where t is time, κ and η are permeability and viscosity, respectively; u and w are the skeleton and 
fluid displacement vectors, respectively; ρs, ρf , and ρa 

 
are the solid, fluid and coupling densities, 

respectively; M is the Biot modulus; P is fluid pressure; α is the poroelasticity coefficient of 
effective stress, where α = 1-Kdry / K0. Kdry is the bulk modulus of the drained skeleton, and K0 is 
the bulk modulus of the solid.

When a rock is squeezed, the pore fluid squirts from the thin cracks into the surrounding stiff 
pores or the adjacent cracks with different orientations. According to the conservation of fluid 
mass, the following equation holds:

(2)

where D is the volume ratio of crack porosity to total porosity as D = φc/φ, and ν is the fluid 
displacement in the r-direction. If the wavelength is much larger than the crack length, in a local 
area around every single crack it can be considered as the iso-stress state. Only the principle stress 
in the perpendicular direction is considered. For each crack, it can be simplified as the model 
displayed in Fig. 2b. The crack porosity is φc = 4πζε/3 where ζ is the crack aspect ratio and ε is 
the crack density (David and Zimmerman, 2012).

The porosity differential is related to the differentials of the skeleton deformation and fluid 
pressure as follows (Biot, 1941; Rice and Cleary, 1976):

(3)

(4)

Substituting Eqs. 3 and 4 into Eq. 2, we can relate pressure to displacements as:

(5)

where:

Fig. 2 - Scheme of BISQ model (a) and Re-BISQ (b) where different partition of pore fluid is considered in the squirt-
flow process.
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and c0 is the fluid acoustic velocity.

2.1. Dynamical equations
We have to obtain a dynamical equation in the r-direction which complements Eqs. 1a and 1b 

in the x-direction. The equation can be derived from the Lagrange equations with a dissipation 
function as (Biot, 1956a, 1956b):

(6)

The expressions of the r-direction fluid displacement and the microcrack fluid pressure are:

(7a)

(7b)

where 1  is the wavenumber, ω is the angular frequency, and i is the imaginary number.
Substituting Eqs. 7a and 7b into Eq. 6, the fluid pressure gradient equation in the r-direction is:

(8)

where ωc = ηφ/κρf. 

2.2. Pore-fluid pressure
We consider that both the displacements of the solid and the fluid in the x-direction are affected 

by the values of pressure and fluid displacement averaged at the r-direction. The solid and fluid 
displacements in the x-direction are:

(9a)

(9b)

where C1 and C2 are constants (see the Appendix). By substituting Eqs. 7 to 9 into Eq. 5, a 
differential equation describing the fluid pressure dependence on the r-coordinate is:

(10)
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We use a constant pressure boundary condition at r = R to solve this equation, where R is the 
radius of the representative cylindrical volume and is equal to the characteristic squirt-flow length 
(Fig. 2b). The result is:

where J0  is the Bessel function of order zero and:

The average fluid pressure can be obtained from the previous Eqs. 7 and 9 as:

	 (11)

The partial derivative of Eq. 11 gives:

(12)

where J1 is the Bessel function of order one. By assuming the following relationship:

(13)

2.3. P-wave velocity and attenuation
It is assumed that the average local flow pressure can be used as the actual fluid pressure in the 

dynamical Eqs. 1b (Dvorkin and Nur, 1993). According to the relationship between wavenumber 
and P-wave velocity and attenuation (Toksöz and Johnston, 1981), the expressions of P-wave 
velocity (Vp) and attenuation factor (a) are obtained. The derivation is given in the Appendix.

(14)

where:
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The values of X1,2, Y1,2, A, B, and C are calculated for FRe=F. The P-wave velocity and attenuation 
factor of the Re-BISQ model are obtained.

The BISQ model does not consider the two porosities (microcracks and inter-granular) 
separately (the microcracks are treated as inter-granular pores). In the above Eqs. 2 and 6, we 
obtain the BISQ model by setting D = 1. Then the two models are equivalent.

3. Numerical examples

The results of the Re-BISQ, BISQ and Biot models are compared on the basis of the same rock 
properties (Berryman, 1980). The porosity is φ=15%, the bulk modulus of the drained skeleton 
is Kdry=16×10

9 Pa, the Poisson’s ratio is υ =0.15, the density and bulk modulus of solid phase are 
ρs = 2650 kg/m

3 and K0 = 38×10
9 Pa, respectively, the permeability is k =1×10-15 m2, the pore-fluid 

density is ρf = 1000 kg/m
3, its viscosity is η = 0.001 Pad·s, the fluid bulk modulus is Kf=2.25×10

9 

Pa, the coupling density is ρa = 420 kg/m
3, the characteristic length of the squirt flow is R=1 mm 

and the microcrack aspect ratio and density are ζ=0.02 and ε=0.15, respectively.

3.1. First model results
The results are presented in Fig. 3. At ultrasonic frequencies, the P-wave velocity (Fig. 3a) 

and attenuation (Fig. 3b) calculated with the Re-BISQ model are greater than those calculated by 
the BISQ model. The peak frequency of the squirt-flow mechanism is less than the characteristic 
frequency of the Biot flow, which is shown in Fig. 3b. When the frequency ω→∞, the fast P-wave 
velocity and attenuation values of the Re-BISQ model are the same as those calculated by the 
Biot model. The values of the fast P-wave velocity of the Re-BISQ model are slightly different 
from those of the BISQ model, as shown in Fig. 3a. In Fig. 3b, the attenuation obtained with the 
Re-BISQ model in the frequency range of 103-105 Hz is higher than that calculated with the BISQ 
model, whereas the attenuation of the Re-BISQ model is smaller than that calculated with the 
BISQ model at frequencies >105 Hz. The value of fast P-wave attenuation of the Re-BISQ model 
approaches that calculated by the Biot model as frequency increases. The dominant role is the 
macroscopic Biot flow mechanism at high frequencies, and the microscopic local fluid flow in the 
frequency range of 103-105 Hz.

Figs. 3c and 3d show that the values of the slow P-wave velocity and attenuation calculated 
with the Re-BISQ model are higher than those of the BISQ and Biot models in the low frequency 
range. The difference is small. The values of the Re-BISQ and BISQ models are similar. The 
results of the three models are the same at the high-frequency limit.
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3.2. Effect of crack aspect ratio
In order to investigate the effect of crack aspect ratio on wave propagation, the same set of 

rock properties are used except for a varying crack aspect ratio of 0.02, 0.04, and 0.06. The results 
are shown in Fig. 4.

It is shown in Fig. 4a that the fast P-wave velocity decreases slightly as the aspect ratio increases 
in the frequency range around the inflection point. At the low-frequency limit, the values for 
different aspect ratios are the same. In Fig. 4b, the attenuation decreases with increasing aspect 

Fig. 3 - Velocity and dissipation factor of the Biot, BISQ, and Re-BISQ models: a) fast P-wave velocity; b) fast P-wave 
inverse quality factor; c) slow P-wave velocity; d) slow P-wave inverse quality factor.

Fig. 4 - Effect of crack aspect ratio on: a) fast P-wave velocity and b) fast P-wave inverse quality factor.
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ratio, which gradually approaches the attenuation results of the BISQ model. When the aspect 
ratio increases, the attenuation of the squirt flow due to microcracks decreases.

3.3. Effect of viscosity
The same rock parameters except for a varying viscosity of 0.1 Pa·s, 0.01 Pa·s,  and 0.001 Pa·s  

are used to analyse the effect of viscosity on wave propagation. The results are given in Fig. 5.

The fast P-wave velocity dispersion and attenuation shift to low frequencies as viscosity 
increases. The effect is consistent with the trend predicted by the BISQ model. It is generally 
believed that the squirt-flow mechanism mainly affects wave propagation at the sonic or higher 
frequencies with a low fluid viscosity (Pride and Berryman, 2003a; Pride et al., 2004; Deng et al., 
2012). The physical explanation is that rocks are easier to relax with when the fluid viscosity is low.

3.4. Effect of the characteristic squirt-flow length
Here we consider the characteristic squirt-flow lengths of 1, 2, and 3 mm. The results are shown 

in Fig. 6. The attenuation peaks and velocity inflection point of the Re-BISQ model shift towards 
the low frequencies as the characteristic squirt-flow length increases. This effect is consistent with 
the BISQ model.

Fig. 5 - Effect of fluid viscosity on: a) fast P-wave velocity and b) fast P-wave inverse quality factor.

Fig. 6 - Effect of characteristic squirt-flow length on: a) fast P-wave velocity and b) fast P-wave inverse quality factor.
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3.5. Effect of permeability on wave propagation
The permeability values are 0.1, 0.5, and 1.0 mD. The attenuation peaks and velocity inflection 

of the Re-BISQ model shift towards the high frequencies as the permeability increases, which is 
consistent with the trend predicted by the BISQ model (Fig. 7).

Fig. 7 - Effect of permeability on: a) fast P-wave velocity and b) fast P-wave inverse quality factor.

The wave attenuation inverse quality factor as a function of permeability is given in Fig. 8, 
where the rock permeability is in the range <300 mD and the wave frequency is 10 kHz.

Fig. 8 - Wave dissipation (1/Q) as a function of permeability.

As the permeability increases, the attenuation sharply rises to a maximum value and then 
decreases (Fig. 8). The attenuation reaches the peak at the permeability of approximately 10 mD. 
The characteristics are consistent with the squirt-flow attenuation/frequency function (Akbar et al., 
1993). At low permeabilities, the pore fluid is unrelaxed and attenuation is small (corresponding 
to the high-frequency limit), while at high permeabilities, the pore fluid is relaxed, which again 
results in a small attenuation (corresponding to the low-frequency limit). The Re-BISQ model 
generally produces high attenuation than the BISQ model. As the permeability increases, the 
attenuation predicted by the two models tends to be the close. As the permeability increases, the 
fluid in microcracks tends to be relaxed under wave excitations. Therefore, the attenuation values 
predicted by the two models decrease and approach the Biot dissipation.



Anelasticity of porous rocks with microcracks	 Boll. Geof. Teor. Appl., 60, xxx-xxx

11

4. Comparisons between model results and experimental data

In order to verify the Re-BISQ model, we select experimental data for sandstones and tight 
sandstones. The predictions of the Re-BISQ and BISQ models are then compared.

4.1. Sandstones with a nearly-constant porosity
Ten saturated sandstones with a nearly-constant porosity are selected from Klimentos 

and McCann (1990), where ultrasonic (1 MHz) velocity and attenuation were measured at a 
confining pressure of 40 MPa. The porosity of each rock is φ=15±2%, the fluid bulk modulus is 
Kf=2.25×10

9 Pa, and the pore fluid density is ρf=1000 kg/m
3. It is shown in Dvorkin et al. (1994) that 

when the permeability is larger than 100 mD, the measured and the BISQ-predicted attenuation/
permeability relationships are very close. It can be observed from the results in Fig. 8 that when 
the permeability is high, the attenuations predicted by the two models are close to each other.

Here, the permeability of each selected rock sample is less than 100 mD. The rock properties 
are shown in Table 1.

Table 1 - Properties of the 10 sandstone samples from Klimentos and McCann (1990).

	 Sample no.	 Porosity (%)	 Clay (%)	 Vp (m/s)	 Permeability	 Measured 
					     (mD)	  attenuation 
						      coefficient 
						      (dB/cm)

 	 1	 15.46	 15.00	 4152	 0.05	 3.15

	 2	 13.47	 14.00	 4498	 0.06	 4.92

	 3	 16.65	 12.00	 4010	 0.37	 2.36

	 4	 16.71	 8.00	 4381	 0.44	 1.57

	 5	 17.13	 12.00	 3933	 2.21	 2.68

	 6	 13.11	 7.00	 4666	 3.67	 2.10

	 7	 15.13	 4.00	 4794	 11.06	 1.65

	 8	 16.50	 15.00	 4149	 41.54	 3.63

	 9	 16.11	 15.00	 4152	 50.71	 3.30

	 10	 15.41	 5.00	 4246	 52.42	 3.38

The comparison between the attenuation predicted by the two models (Re-BISQ and BISQ) and 
the experimental data are shown in Fig. 9. The attenuation predicted by the Re-BISQ model agrees 
better with the experimental data (Fig. 9), particularly for permeabilities higher than 10 mD.

4.2. Tight sandstones in a given porosity range
The tight sandstones samples were collected from the Sulige Gas Field in the Ordos Basin, 

NW China. The data of the tight sandstones were reported by Wang (2016). We selected ten 
water-saturated tight sandstone samples at a confining pressure of 29 MPa. Experimental set-up, 
conditions, and procedures are given in Wu et al. (2000) and Wang et al. (2006). The experimental 
temperature is 105 °C, and the frequency is 1 MHz. The fluid bulk modulus is Kf=2.25×10

9 Pa and 
the pore fluid density is ρf=1000 kg/m

3. The data are given in Table 2.
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Fig. 9 - Comparison between the two models and the experimental data for sandstones.

Table 2 - Properties of ten tight sandstones (from Wang, 2016).

	 Sample no.	 Porosity (%)	 Permeability (mD)	 Matrix bulk	 Inverse quality 
				    modulus (GPa)	 factor 1/Q 

	 1	 3.81	 0.0300	 39	 0.044366

	 2	 4.08	 0.0424	 39	 0.071839

	 3	 4.20	 0.0443	 39	 0.045372

	 4	 4.98	 0.0591	 39	 0.075529

	 5	 5.20	 0.0641	 39	 0.054113

	 6	 5.53	 0.0724	 39	 0.052056

	 7	 5.62	 0.0748	 39	 0.059453

	 8	 6.44	 0.1013	 39	 0.058893

	 9	 6.81	 0.1161	 39	 0.061350

	 10	 7.19	 0.1336	 39	 0.081699

Fig. 10 - Comparison between the two models and the experimental data for tight sandstones.



Anelasticity of porous rocks with microcracks	 Boll. Geof. Teor. Appl., 60, xxx-xxx

13

The comparison between the attenuation predicted by the two models and the experimental 
data are given in Fig. 10. The attenuation predicted by the Re-BISQ model is closer to the 
experimental data, although both sets of prediction results seem to underestimate the observed 
P-wave attenuation.

5. Conclusions

Previous studies have shown that microcracks have an important influence on wave propagation. 
In this work, we consider the distinction between (penny-shaped) microcracks and inter-granular 
pores in deriving the governing equations of squirt flow affecting wave propagation. The approach 
is based on the conservation of fluid mass. The basic assumptions of the BISQ model are adopted, 
and we reformulate the wave equations by incorporating the effect of crack porosity and aspect 
ratio. The new model (Re-BISQ) can better explain the effects of rock heterogeneity on wave 
dissipation and velocity dispersion. Comparisons between models and experimental data for 
P-wave attenuation show that the Re-BISQ model is capable of providing a better description 
of the observed phenomena for sandstones. This reformulated theory provides a mathematic 
approach to compute and predict wave responses in heterogeneous reservoirs, and therefore it can 
be useful for reservoir fluid seismic characterisation.
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Appendix: Derivation of P-wave velocity and attenuation

The amplitude of a plane wave can be expressed as A(x,t)=A0e
i(1x-ωt). Attenuation may be 

introduced by allowing the wavenumber to be complex (Toksöz and Johnston, 1981; Carcione, 
2014): 1=Re(1)+i Im(1). The attenuation coefficient (a) and P-wave velocity (Vp) are:

(A1)

The inverse quality factor Q-1 is related to the coefficient and P-wave velocity as Q-1 = 2aVp/ω.
The expressions of solid displacement, fluid displacement and pressure are:

(A2a)

(A2b)

(A2c)

by substituting Eqs. A2a, A2b, and A2c into Eqs. 1a and 1b, and using Pt =-F (wxt+γuxt / φ) 
(Dvorkin and Nur, 1993), the following relation is obtained:

(A3a)

(A3b)

where: Y = (l / ω)2, ρ1 = (1-φ) ρs, and ρ2 = φρf ρ.
Eqs. A3a and A3b have nonzero solutions for the constants C1 and C2, only if the determinant 

is equal to zero, which leads to the following equation for Y:

(A4)
This equation has two solutions:
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Therefore, we obtain two values for the ratio 1/ω:

as well as:

The P-wave velocity and attenuation expressions are then:

(A5)
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