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Abstract We develop a numerical algorithm for simulation of wave propagation in
double-porosity media, where the pore space is saturated with a single fluid. Spher-
ical inclusions embedded in a background medium oscillate to yield attenuation by
mode conversion from fast P-wave energy to slow P-wave energy (mesoscopic or
wave-induced fluid-flow loss). The theory is based on Biot theory of poroelasticity
and the Rayleigh model of bubble oscillations. The differential equation of the Biot-
Rayleigh (BR) variable is approximated with the Zener mechanical model, which
results in a memory-variable viscoelastic equation. These approximations are re-
quired to model mesoscopic losses arising from conversion of the fast P-wave energy
to slow diffusive modes. The model predicts a relaxation peak in the seismic band,
depending on the diameter of the patches, to model the attenuation level observed
in rocks. The wavefield is obtained with a grid method based on the Fourier differ-

ential operator and a second-order time-integration algorithm. Since the presence of
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two slow quasi-static modes makes the differential equations stiff, a time-splitting
integration algorithm is used to solve the stiff part analytically. The modeling has

spectral accuracy in the calculation of the spatial derivatives.

Keywords wave simulation - double porosity - Biot-Rayleigh theory - Zener

model - pseudospectral method

Introduction

The theory of wave propagation in porous media has multiple applications in dif-
ferent fields, notably in hydrocarbon exploration (e.g., Miiller et al., 2010). Since
Biot’s initial work (Biot, 1956), many generalizations have been performed, includ-
ing two fluids (Santos et al., 1990), two solids (Carcione and Seriani, 2001) and
double porosity (Pride et al., 2004; Ba et al., 2011).

The Lagrangian formulation of Ba et al. (2011), based on a combination of Biot’s
theory and Rayleigh’s model of oscillating bubbles, holds for uniform (constant)
porosity, since they use the average displacements of the solid and fluid phases as
Lagrangian coordinates, and the respective stress components as conjugate vari-
ables. Biot (1962) proposes as generalized coordinates the displacements of the solid
matrix and the variation of fluid content. In this case, the corresponding conjugate
variables are the total stress components and the fluid pressure. Here, we generalize
the double-porosity equations of Ba et al. (2011) to non-uniform (variable) porosity
using a similar approach.

Simulation of synthetic seismograms in the presence of mesoscopic loss requires
solving the corresponding differential equations. Because the loss mechanism involves
the conversion of fast P-wave energy to diffusion energy in the form of two slow

waves and the wavelength of these waves can be very small, the poroelastic solution
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requires a very large amount of storage and computer time. An efficient approach is
to approximate the attenuation and velocity dispersion curves using a viscoelastic

rheology (Carcione, 1998; Picotti et al., 2010; Picotti and Carcione, 2017).

The Biot-Rayleigh (BR) differential equations are of the form v = Mv, where v
is the field vector and M is the propagation matrix (the dot denotes time differen-
tiation). As in the poroacoustic case (Carcione and Quiroga-Goode, 1995) all the
eigenvalues of M have negative real part. While the eigenvalues of the fast waves
have a small real part (in absolute value), the eigenvalues of the slow waves (in the
quasi-static regime) have a large real part. The presence of these quasi-static modes
makes the differential equations stiff. Thus, seismic and sonic modeling are unstable
when using explicit time integration methods. Carcione and Quiroga-Goode (1995)
and Carcione and Seriani (2001) solved this problem by using a splitting or partition

method.

In this work, we do not replace the differential equations with the viscoelastic equa-
tions as in Carcione (1998) and Picotti et al. (2010) but keep the explicit poroelastic
formulation. The attenuation characteristic of wave propagation in the seismic band
are approximated with a Zener mechanical model for the bulk modulus (e.g., Car-
cione, 2014), which provides a perfect fit of the BR mesoscopic-loss mechanism and
its propagation characteristics, namely, velocity dispersion and quality factor. The
approach requires the introduction of a first-order in time memory-variable equation.
Snapshots and time histories are obtained by solving the equations of motion with
a direct grid algorithm based on the Fourier pseudospectral method for computing
the spatial derivatives (e.g., Carcione, 2014). An example of wave propagation in a

sandstone illustrates the potentialities of the theory and simulation algorithm.

© 2019 Society of Exploration Geophysicists.
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Uniform-porosity equations

The double-porosity medium is composed of a background medium (frame) with
embedded spherical inclusions made of the same mineral as the frame (but different
porosity) and saturated with the same fluid. A list of symbols and equations of the
medium properties are given in Appendix A. Ba et al. (2011) derived the equations

for uniform (constant)-porosity. They are given in the following subsections.

Strain-displacement relations

1 m .
€ij = 5(81% + Gjui), € = €44, Nm = ('ZUZ( ), 1 = 1, 2,3, m = 1,2 (1)

Stress-strain relations

Tij = 2p€i; + [Ae + Q1(m + ¢2€) + Q2(n2 — ¢1¢)]0i, 2)
Om = Qme + Rm(nm + ¢3fmC)>

Equations of momentum conservation

Biot-Rayleigh equation

e
®10 R1 (4)
(p2Q1 — P1Q2)€ + (P2 Ry — d1Rama) + (05 R1 + ¢ Ra)C.

The above formulation is obtained from Lagrange’s equations based on the strain
and kinetic energies and dissipation potential, associated with the local fluid flow
motion described by a generalization of Rayleigh’s theory of liquid collapse of a

spherical cavity.
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2D equations. Particle velocity-stress formulation
Assuming propagation in the (z, z)-plane:

Rate of strain-velocity relations

émz = 890”3:7 ézz = azvza
Qéxz = aacvz + azvxa
(5)
771 = ax‘/x(l) + az‘/z(l)’
7.72 = @zVYI(Q) + az‘/z(Q)

Rate of stress-rate of strain relations

Taw = 20z + A+ Q1(1h + ¢20) + Q212 — ¢10),

Tor = 2f1€5; + Aé + Q1 (1 + $20) + Q22 — ¢10),

61 = Qié + Ra(in + 620, (6)
03 = (Qa€ + Ry(12 — ¢10),

Tz = 2f1€qs.
Equations of momentum conservation

For each component ¢ = z, z, we have

. 1 2
Poo Po1 Po2 U,Z’(l) OpTiz + 0:T; — bi[v; — ‘/i( )] » ba[vi — Vi( )] Hi(l)
pot p11 0 Vi(z) = 0;o1 + by[v; — Vi( )] = Hi@)
Po2 0 P22 ‘/z @og + bz[vi — ‘/;(2)] Hz
(7)
or
Vg 1 [ PPz —poip —P02P11 1I;
A —Po1paz PoopP22 — Py P m”
i D 02 0102 ) i |
Vi(z) —pPo2P11  PoiPo2  PooP11 — Poi Hl-( ) (8)

D = poop11p22 — P110gs — P22 -

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition.
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Biot-Rayleigh equation

A velocity-stress formulation would require the additional variables x and 1, such

that
; . ; ®10m 3010 ;
= X =¥, = f?
(=X x=v ¥ Pf/‘ﬁldj * R(Q)Pféﬁ%%@o ©)
where
F = (¢2Q1 — 1Q2)é + (¢2R111 — 1 Ratip) + (63 R1 + ¢7 Ra) . (10)

However, this equation can be perfectly approximated by the more simple viscoelas-

tic memory-variable equation, as we show in the example.

Approzimation with the Zener mechanical model

We approximate the mesoscopic Biot-Rayleigh peak with that of a Zener model
(e.g., Carcione, 2014). First, we take Ry = oo in equation (9) to uncouple the BR

equation from the others. The first two equations (6) can be re-written as

. .2 . ) ) )
Tex = Keé+ §M(2€xm - €zz) + anl + Q27727

(11)

. L2 . . .
Ty = Ke + §N(2€zz - Emc) + anl + Q27727
where K = A+ (2/3)u. Then, we generalize this modulus to the viscoelastic case as

o 4w

K— K- (12)

110
T, tlw

where the 7’s are relaxation times:

TUI%(\/l—i—Q%—l), 7'6:7'0—1—%, (13)

where 79 = 1/(27 fo), fo is the peak frequency of the BR relaxation mechanism and
Qo is the minimum quality factor at fy [the Fourier convention is exp(+iwt)]. At the

low-frequency limit we have K — Ky = Ko7, /7.

© 2019 Society of Exploration Geophysicists.
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3 7
4 . .
5 In the time domain, we have
6 . 2
7 Tx:p =K *xé+ _//6(26:&'1: - 6'zz> + Qlﬁl + QZhZ;
8 3
i (14)
10 Tzz = K x e+ 5,“(262,2 - 611) + anl + QQTIQ,
11
12 where “x” is the time convolution and K is the relaxation function
13
14 Te
TE K(t) = KO I1—({1—— eXp(_t/Ta) H(t)v (15)
18 4
% where H(t) is the Heaviside step function (Carcione, 2014). We generalize the bulk
;G- modulus such that the shear wave is not affected, as in the BR case. The basic
i elastic deformations of a medium are dilatational and shear, determined by K and
e
Zé w. A P-wave is a combination of both while the shear waves solely depend on p (see
53 Carcione, 2014; Section 4.1.2).
pi)
B Following Carcione (2014, Section 2.10.3), we obtain the memory-variable equation
b
: 1 1Yy, 1
% é:(———)e——e, (16)
= Te To To
5% .
% for e = K 'K % 6 and a given function 6. The complete set of rate of stress-rate of
t'ﬁig strain relations is then
3
2
® 2
£ For = Koo(€+€) + Sp(2enr — és2) + Qui + Q.
%
5 o1 = Qi€+ Ry,
2 (1)
- 02 = Q26 + Rap,
= 1 1 1
43 e=(———=)e——e,
A Te  To To
50
51 where K, = K¢7./7, is the unrelaxed modulus.
52
53
54
55
56
57
58
59
60
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Non-uniform-porosity equations

The Lagrangian formulation used by Ba et al. (2011), and consequently the differ-
ential equations, hold for uniform porosity, since the average displacements of the
solid and fluid phases are used as Lagrangian coordinates and the respective stress
components are used as generalized forces. These equations are analogous to Biot’s
1956 equations describing wave propagation in a two-phase porous medium (Biot,
1956), which hold for constant porosity. The equations for variable porosity were
derived by Biot in 1962 (Biot, 1962) where he proposed the displacements of the
matrix and the variation of fluid content as generalized coordinates. In this more
general case, the corresponding generalized forces are the total stress components
and the fluid pressure. The equations in Biot (1962) are the correct ones for describ-
ing wave propagation in an inhomogeneous medium, because they are consistent
with Darcy’s law and the boundary conditions at interfaces separating media with
different properties. Here we derive the variable-porosity equations using a method
employed by Carcione et al (2003) (see also Carcione, 2014). For completeness, the
Lagrangian of the system, expressed in terms of the variation of fluid content, is
given in Appendix B.

We introduce the variation of fluid content as the divergence of the relative displace-

ment vector:

b = —divw™, wl™ =4 (U™ —u), m=1,2, (18)

which for uniform porosity becomes

gm = _¢m(77m - 6)7 m = 17 2. (19)

© 2019 Society of Exploration Geophysicists.
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2
3 9
4
5 Defining 0;; = 73 + (01 + 02)dij, Om = —@mPsm, and substituting 7, = € — &, /dn,
? into equations (1)-(4), we obtain:
8
?O Strain-displacement relations
11 €:€$m+€yy+€zza
12 €xa = OgUg, y — ayuya €22 = 0.z,
13 2€5y = Opty + 5yux,
14 2€,, = Oyu, + 0,u
> xz x Uz zUg, 20
Ir<i 2€yz - ayuz + azuyy ( )
15} —& = + 9wl + o,
1§ _52 - amw£2) + ayUJ352) + azw§2)-
1
i% Stress-strain relations
g Ope = 2M€zz + A€ — 1 M1 (&1 — P102C) — Mo (& + P162(),
= Oyy = 216y + A€ — a1 M1 (§1 — G102C) — aaMa(§2 + d1020),
£ O2p = 206, + A€ — a1 M1 (&1 — P1920) — aa Mo (& + d102C),
2 P = —oqMie + Mi(& — ¢1920), (21)
B P2 = 5042M2€ + My (&2 + d1920),
58 Oxy = afb€yy,
: Ogz = 2,U6xza
ég Oy = 2J1€y;.
L
% Equations of momentum conservation
t%g pux—l—pfw(l) —|—pfw2 O0pOsz + Oy0 gy + 0,04,
33 Py + pfwg(,l) + py w( ) = 0,04y + 0y0yy + 0,0,
32‘ PUz+wa£)+P wg) :8x0xz+ay0yz+8zazz>
38 . .. (1) bl (1) _ 9
3§’ Prigy + MWy~ + wa = —0zPf1,
2 . b
% LUy +m1’w3§1) + — ¢2 (1) = —0OyPr1,
o) 22
3 1Y uz + mlw( ) w(l) - _azp 1 ( )
4g f ¢2 f
5 .. .. by .
% Py + m2w§: ) + ¢_22w§;2) = _8xpf27
2
= (2) by (2) _
g pfuy+m2w + — ¢2 = —O0yPr2,
ba
?1) Py, + myii + ®3 S = —0:py2.
52
53
54
55
56
57
58
59
60
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Biot-Rayleigh equation

daR3[ps1C — i) = (23)
3p10[(an My — agMy)e 4 (Maéy — Mi&y) + drda( My + Ma)(].

Approximation with the Zener mechanical model

As in the uniform-porosity case, we approximate the mesoscopic Biot-Rayleigh peak
with that of a Zener model if we take Ry — oo. In this case the Gassmann modulus
Kg = Ae + 2u/3 becomes

1 .
K¢ = Kgoo - u, (24)

and we have Kgo = KgooTo/Te.
We present here the 2D equations; the 3D equations are a straightforward general-
ization. Assuming propagation in the (z, z)-plane, the stress-strain equations (21)

can be re-written as

2
Ore = Kge + §H<2€xm — €.2) — a1 M& — ap My,

2
0., = Kge+ §N<26zz — €32) — 0y M1 &y — an Moo,

(25)
pp1 = Mi(&§ — age),
pr2 = My(& — age),
Opz = 24€q,.
where we have highlighted K¢ = A.+2u/3, which becomes complex and frequency-
dependent when replaced by the Zener kernel. We generalize the Gassmann bulk
modulus such that the shear wave is not affected, as in the BR case.

Following the same procedure of the preceding section, the equations of motion in

the velocity-stress formulation, with memory variable, are:

© 2019 Society of Exploration Geophysicists.
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2
3 11
4 : . .
5 Rate of strain-velocity relations
6 . . .
7 € = €z + €5z,
8 Emz = axvxy ézz = azvza
9 26?2 = 6xv(zl)—|— 82%,(1) (26)
10 _§1 = a’rqx + azqz )
: & = 0, + 0.4,
13 Rate of stress-rate of strain relations
=4
g . ) 2 . ) . )
‘lg Ogy = KGOO<€ + 6) + §M(2€xx - ezz) - O‘lMlél - 042M2€2a
17
18 . . 2 . : : :
1% Oz = KGOO(E + 6) + g#(zezz - Exx) - O‘llel - OfQMQan
2
¥ ye1 = My (& — ayé
P 1(&1 — ),
E _ (27)
3 Pf2 = Ms(&2 — ané),
7
1 1 1
3 é:(———)é——e,
z% 7—6 TO’ TO’
U where Kgoo = A + 21/3.
‘>’_B§ | G p/ |
% Equations of momentum conservation
3% For each component ¢ = z, z, we have
3
?
3@ azaix + azaiz
) I
£ popsopg\ (Y O — 2 ;
Y prmn 0 ) L@ | = T g | = m (28)
4%, pr 0 my g? by (2) g
:; : iy — 24 :
4§ 2
or
43 i 1T;
4 mima/py —my —my i
% Dlg | = -ma (pm2/ps—py) Ps ;"
- i —m Py (o /ps = pg) ) \ 11? (29)
;% D =mimap/py — pr(mi+ my).
The algorithm to solve the wave equation numerically is illustrated in Appendix C.
51 g
52
53
54
55
56
57
58
59
60
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Results

We consider the properties shown in Table 1. In appendix D, we have performed
a plane-wave analysis of the equations of motion, to obtain the phase velocity and
dissipation factor of the fast P wave. These quantities are represented in Figure
1, where the dots correspond to the fit of the Zener model with @)y = 6.3. Two
other values of R, are considered. It can be seen that increasing Ry moves the
relaxation peaks to the low frequencies. This is the case of uniform porosity. For
non-uniform porosity, we generalize the wet-rock Gassmann modulus K¢, such that
Alw) = Kg(w) — K = 2u/3, or A (w) = Kg(w) — 2u/3, and Qo = 6.9. The fit is

equally perfect. The Biot peak can be observed at high frequencies.

The simulations use a n, xn, = 236 x 236 mesh, with a uniform grid spacing dr = dz
= 5 m. The source is a horizontal force (f,) and its time history (a Ricker wavelet) is
h(t) = (a—0.5) exp(—a), a = |7 f,(t —t5)]?, ts = 1.4/ f,, with f, = 30 Hz, the source
central frequency. Figure 3 shows the snapshots of the particle-velocity components
at 165 ms, with and without the BR attenuation mechanism. At the right panels, the
P wave (outer wavefront) has been attenuated compared to the inner wavefront (S

)

wave). Figure 4 shows qg(f) and qg for n = 0. In this case, the slow waves propagate
and can be identified as the inner wavefronts (see Ba et al., 2011). Seismograms of
the vertical components of the wavefield are shown in Figure 5, where the red line

corresponds to the case with BR loss mechanism. P-wave attenuation and velocity

dispersion can be appreciated.

The last example considers wave propagation in the presence of a planar interface
separating two half spaces. The lower one has the properties of the previous simu-

lation, whereas the upper half space has p, = 2550 kg/m?, K, = 20 GPa and u, =

© 2019 Society of Exploration Geophysicists.
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28 GPa and the other properties are the same as those given in Table 1. The phase
velocity and quality factor of the upper half space are obtained with f, = 21 Hz
and Qo = 11.9 Figure 6 shows snapshots of the v,-wavefield at 165 ms without (a)
and with (b) the BR mesoscopic attenuation. The source location is (590, 640) m.
Seismograms of the v, and v, components at the location (300, 300) m are displayed
in Figure 7. The red line corresponds to the case with BR loss mechanism. The P

wave is attenuated whereas the S wave is unaffected.
Conclusions

We have developed a numerical algorithm for wave simulation in a double-porosity
medium with seismic velocity and attenuation described by the Biot-Rayleigh loss
mechanism, where spherical patches or inclusions induce the conversion of fast P-
wave energy to slow diffusive modes (the theory predicts two slow modes). The
equations for uniform porosity have been generalized to the non-uniform porosity
case in order to obtain seismograms in inhomogeneous media. The differential equa-
tion of the Biot-Rayleigh field variable is approximated with the Zener mechanical
model, which results in a memory-variable viscoelastic equation. The model predicts
a relaxation peak in the seismic band, depending on the diameter of the patches, to
model the attenuation level observed in rocks.

The algorithm, which is second-order accurate in time and has spectral accuracy in
the space variable, allows general material variability and provides snapshots and
time histories of the rock-frame and fluid particle velocities and corresponding stress
components. Since the presence of slow quasi-static modes makes the differential
equations stiff, a time-splitting integration algorithm is used to solve the stiff part

analytically.

© 2019 Society of Exploration Geophysicists.
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5 Appendix A List of symbols and medium properties
6 .

- u; |frame displacement components.

9 m  |=1 (background medium.)

10 = 2 (inclusions.)

1 U; |fluid displacement components.

12 Vi |=Us.

13 w™ |relative fluid displacement.

14 (m) | (™)

18 N e T

1; €;; |strain components.

3 € solid dilatation.

b Nm  |divergence of the fluid displacement.

&, |variation of fluid content.
2 ¢ Biot-Rayleigh variable.
7 e memory variable.

23 7;;  |solid stress components.

= o, |fluid stress.

7 o;; |total stress components.

b2 Pfm |fluid pressure.

2 Omo |porosity.

B Vy, |proportion of each medium. 14 + vy = 1.

58 ¢m = Vm(bmo .

i ¢ |= ¢1+ @9 (total porosity.)

gﬁ% ps |grain density.
733 py |fluid density.
=3 K, |grain bulk modulus.
s ls |grain shear modulus.
L Ky |fluid bulk modulus.

2 Ky, |frame bulk modulus.

% 1 frame shear modulus.

5 A dry-rock Lamé constant.

% Ae  |wet-rock Lamé constant.

g n fluid viscosity.
Km |permeability.

ﬁ T |tortuosity.

5 Ry |radius of the inclusion.

e T,  |Zener relaxation time.

i T, Zener relaxation time.

S fo |frequency of the relaxation peak.
Qo |peak quality factor.
P |P-wave modulus.

45 K |Bulk modulus.

- Ky |Low-frequency limit bulk modulus.
K |High-frequency limit bulk modulus.

?1) K |Gassmann bulk modulus.
- Kgo |Gassmann low-frequency limit bulk modulus.
=3 Kgoo|Gassmann high-frequency limit bulk modulus.

v. |complex velocity.
phase velocity.
attenuation factor.
quality factor.
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A.1 Medium properties. Constant porosity.
po=(L—=0)ps, p1=d1ps, p2 = daps, pu1 = Tid1ps, paz = Tadapy,
po1r = p1— P11, Po2 = P2 — pa2, p = (1 —)ps+ ¢ps = po+ p1+ pa,
p1="Tips/01, P2 ="Taps/d2, poo = p— ¢1(2p5 — pré1) — G2(2pf — Pagh2),
T = 0.5(1 4+ 1/dpmo)],

A=(1-$)K, — 2u/3— K(Qi +Qu)/Ky. P=A+2 K=At 2p

3 (A
B:@ 1_(1_¢10)K3/Kb1:| ’}/:Ks< G2 + B )

P10 |1 — (1 — ¢20)Ks/ Ko |’ K \1-¢—-Ky/K,)’
Il _n  » _ A _ A
E =K, + Koy’ by —¢1¢10/{1, by —¢2¢20/{2,

B K 9K ;1K oKy
Q1_6+77Q2_1+77 R1_1+6//y7 2_1+1//}/
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1
2
3 19
4
5 A.2 Medium properties. Variable porosity.
6
7 p=(1—9)ps+ dpy,
8
9 Tmp Om + Vm)pr .
10 i = T2 O 0 i 7, — 05141/ 600
1 " "
12 2 2
13 )\c:Kb—ng‘F:)\‘FF; KG:)\C+§N7
g
& K K 2 2
19 F=(1-¢)K,—Ky+ (2- K, (praa My + goca M) — {1 — K, (97 M1 + g5 M>),
17
}% 5 4 BOK: 5y 4 2
a1 = o — _
] 1 1 VK 2 2 VK,
q K K
23 f f
— M =, M = —,
3 a1+ B/ T el +1/y)
% Qm = ¢mMm(O‘m - (bm)a R, = (b?an’ m=1,2,
g K=X—A=¢1M (201 — ¢1) + 92 M2 — ).
{ﬁ% (A.2)
=3 ppendix iot-Rayleigh Lagrangian for non-uniform porosity
5% A dix B Biot-Rayleigh L ian f ife i
og
: e basic equations are similar to those derived in Ba et al. , but using
Eﬂ;g The basi i imil hose derived in Ba et al. (2011), but usi
g% the relative fluid displacements, instead of the displacements. It is similar to the
3% difference between the theories given in Biot (1956) and Biot (1962) (see Carcione,
3
42 2014). Here, we pay special attention to the derivation of the Biot-Rayleigh equation,
43\
42 which describes the mesoscopic loss. The strain energy, W, is given by
43
45 2W = <)\c + 2#)62 - 2CY1M1(§1 - ¢1¢2<)€ - 20&2M2(§2 + ¢1¢2O€ ( )
5 B.1
% +M1 (& — $1020)* + Ma(&s + p12C) — 4puds,
48 where
45 c €11 €12 €13
— . _ | €11 €12 €22 €23 €33 €13
>0 h=ei = €12 €22 €23 €33 ey €| |S2ER2BY (B2)
51 €13 €23 €33
52
53
54
55
56
57
58
59
60
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€;; denote the strain components of the matrix, &, are the variations of fluid content,
as defined by Biot (1962) (see Carcione, 2014), and ( is the Biot-Rayleigh variable
(Ba et al., 2011).

The kinetic energy is

2T =pY W tpry Y. [zuiwl?m) + (wl(m))?} + 2Ty, (B.3)
where
1 265\ -
T = cpshs (¢2°¢1¢2) ¢ (B4)
6 ®10

is the kinetic energy of the inclusions.

The dissipation function, based on Biot’s approach (Biot, 1956, 1962), is

2D = Z Z bt ™™ + 2D, (B.5)
where
_1/in 2 212
Dy = P2007 P2 1GC (B.6)
K1

is the dissipation energy of the inclusions.

Lagrange’s equation

oL 8L 6D
oy | — =0, B.7
(ac) ac "o (B1)

yields the Biot-Rayleigh equation, where
L=T-W (B.8)

is the Lagrangian. See Appendix A for a detailed list of symbols.
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Appendix C The algorithm
The 2D velocity-stress differential equations can be written in matrix form as
v =Mv +s, (C.1)

where

vV = [U:lt; UZ? qil)7 qgl)u q;(5-2)7 qu); O-:L‘x7 UZZ? Uwz>pf17pf27 e]T (02)

is the unknown velocity-stress vector,
s = [s4,5.,0,0,0,0,0,0,0,0,0,0] " (C.3)

is the source vector, and M is the propagation matrix containing the spatial deriva-
tives and material properties. Sources are added in Euler-Newton equations.

The solution to equation (C.1) subject to the initial condition v(0) = vy is formally
given by

v(t) = exp(tM)vy + /0 exp(TM)s(t — 7)dr, (C4)

where exp(tM) is called evolution operator.

The eigenvalues of M have negative real parts and differ greatly in magnitude due to
the b; and by terms. The presence of large eigenvalues, together with small eigenval-
ues, indicates that the problem is stiff. The differential equations are solved with the
splitting algorithm used by Carcione and Quiroga-Goode (1995). The propagation

matrix can be partitioned as

M = M, + M,, (C.5)

where subscript r indicates the regular matrix, and subscript s denotes the stiff

matrix, involving the quantities b; and b,. The evolution operator can be expressed
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as exp(M, + Mj;)t. It is easy to show that the product formula

1 1
exp(Mdt) = exp <§Msdt) exp(M,.dt) exp (ﬁMsdt) (C.6)

is second-order accurate in dt. Equation (C.6) allow us to solve the stiff part sepa-
rately.

The stiff equations, involving the loss parameters b; and by, are

o mms/py s o o

D|¢' | =- —my  (pma/ps — py) Pf (b1/97)g;

B —my pf (pma/pg = pr) )\ (by)$2)q”
(C.7)

Let us discretize the time variable as ¢ = ndt, where dt is the time step, and denote
with a superscript “x” the intermediate fields to obtain the solution at (n + 1)dt
fields from fields at ndt. Equation (C.7) has the subsystem

Q"N _ L ((pma/ps = py)(01/8}) ps(ba/d3) ¢»
<q£2>)‘ D< pr(b1 /%) (pml/pji_pf)(@/qg))(qg)), (C.:8)

or

qg=Aq, (C.9)

whose solution is

exp(Adt) — exp(Aadt)

q* = exp()\ldt)Ig + (A - )\112) qn, (ClO)
AL — Ao
where \; and A\, are the eigenvalues of matrix A,
2M12 = ay +ag £ \/(au — a92)? + 4ayzas, (C.11)

ay, are the components of matrix A and I is the 2 x 2 identity matrix (Putzer,

1966). From equation (C.7), we obtain

. L (maby (1) | mabs (2)) (1) (2)
D < ot b5 (€12
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1
2
3 23
4 . i
5 Using equation (C.10) we have
6
7 0; = Aexp(Aidt) + Bexp(Aadt), (C.13)
8
?O where
n n ]‘ n n n n
:; A= aqgl) + qu-(z) + SV aqz(l) (a1 — M) + bqZ@) (age — A1) + aqz-(z) a9 + bql-(l) agl] ,
1= A2
13 1 n n n n
14 B = BV aqi(l) (a1 — A1) + bql@) (a2 — A1) + CLQZ@) a2 + bqi(l) Qg1 | -
= 1= A2
'3 (C.14)
g
% Equation (C.13) has the solution
1
A B
;%_ v = + /\—[exp(Aldt) -1+ /\—[exp()\2dt) — 1], (C.15)
5 1 2
pe or
i (n . @n
2] vi =0+ arg "+ axg™", (C.16)
p5
pid where b
c
g a, = )\—l[exp()\ldt) — 1]+ )\—l[exp(/\gdt) — 1],
; 1 2
(C.17)
- b2 Co
7g as = )\—[exp()\ldt) — 1]+ )\—[exp()\gdt) — 1],
e : ! ?
53 with
t%g b1 =a -+ )\1 _ )\2 [a(an — )\1) + bagl],
3%
1 C.18
% by =b+ AL — Az [b(azz — A1) + aara, ( )
3
4§> clza—bl, CQZb—bQ.
4%, Then, vector g* and v} are input to a second-order time-stepping algorithm (involv-
42 7
E ing matrix M,), and the spatial derivatives are calculated with the Fourier method
5 by using the FFT (Carcione, 2014). This spatial approximation is infinitely accu-
§ rate for band-limited periodic functions with cutoff spatial wavenumbers which are
g smaller than the cutoff wavenumbers of the mesh. Due to the splitting algorithm,
50
51 the modeling is second-order accurate in the time discretization.
52
53
54
55
56
57
58
59
60
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Appendix D Plane-wave analysis

Ba et al (2011) obtained the complex wavenumber, k, of the three wave modes for
a plane-wave kernel exp[i(k - x — wt)], where k is the wavenumber vector. Equation

(B1) in Ba et al. (2011) can be expressed as
det(A +B) =0, A =FkA, (D.1)

where the components of matrices A and B are given in equations (B2) and (B3)
of Ba et al. (2011) (the sign of 1 in eq. (B3) should be the opposite).
Using the properties det(k*A) = k°det(A) and

det(A+B) = det(A)+det(B)+tr(A'B)+tr(AB’), A’=A'detA, B’ =B 'detB,

(D.2)
we obtain the equation
kSdet A + k*det A tr(A™'B) + k*det B tr(AB™!) +det B = 0, (D.3)
which can be solved analytically for k& to obtain three complex velocities
w
.= —. D.4
- (D.4)

The phase velocity and quality factor of each wave mode are

o ()] 3

Re(v?)

~ Im(e2)’

and

Q

respectively (Carcione, 2014), where we have used the exp(+iwt) convention.
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1
: .
4
5 Table 1. Poro-elastic properties
6
7 Background medium
8
9 ps = 2650 kg/m”
10 Grain |K, = 38 GPa
11 s = 44 GPa
12 Ky = (1= ¢10) K /(1 + c1¢10)
13 p=(1—0¢)us/(1+csd)
=4 ¢10=0.1
1§ Frame|v; = 0.963
18 ¢ =10, cg = 10
17 k1 = 0.01 darcy
18 T = 0.5(1 4 1/¢10)
g ps = 1040 kg/m®
2% f
4 water |y = 2.5 GPa
n = 0.001 Pa s
Patch
Ky = (1 — ¢20) K /(1 + c2090)
20 — 03
V9 = 1-— %41
co = 200
ko = 1 darcy
To = 0.5(1+1/¢20)
Ry=2.1cm
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(a) 4500
4450
4400
@ 4
£ 4350
b= ]
S
L 4300
[}
> ]
) ——R_ =21cm
& 4250 1 0
o | —R,=05cm
4200 ——R,=0.1cm
4150 4 —RO = infinity
T T T T T T T
0 2 4 6
log[Frequency (Hz)]
(b) _ 7
70
60
50
40 4
g 4
8 304
=] ]
20 4
10
04
-10 : . T r T r T
0 2 4 6

Fig. 1 Phase velocity (a) and dissipation factor (b) of the fast P wave. The dots represent
the fit with the Zener model, with fo = 30 Hz (Ry = 2.1 cm), fo = 10*7 Hz (Ry = 0.5

log[Frequency (Hz)]

cm), fo = 1041 Hz (Ry = 0.1 cm), and Qp = 6.3.
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700 —
P3
600 —

500
400+
P2

300 —

200 +

Phase velocity (m/s)

100

log[Frequency (Hz)]

Fig. 2 Phase velocity of the slow P2 (a) and P3 (b) waves. The dots represent a fit with
the Zener model, with fo = 30 Hz and Qg = 6.3. In this case Ry = 2.1 cm.
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28

Distance (m)
400 600 800

N

Fig. 3 Snapshots of v, (a and b) and v, (c and d) without (a and c) and with (b and d) the
BR attenuation peak. The outer and inner wavefronts correspond to the P and S waves,
respectively. The numbers express the distance in meters.
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Distance (m)
200 400 600 800 1000
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Fig. 4 Snapshots of the qg(f) (a) and qu) (b) components for n = 0. The inner wavefronts

are the slow waves.
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(b) 1,0+
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™
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-0,4
-0,6
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-0,2 4

2)

(
q,

-0,4
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-0,8
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T T T
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Fig. 5 Seismograms of the v,, ¢

s)

(1)

z

and ¢

(2)

z

at the location (150, 200) m. The red line

corresponds to the case with BR loss mechanism. The fields are normalised to 1. Actually
the fluid particle velocities are smaller by approximately three orders of magnitude.
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Distance (m)

200 400 600 800

Fig. 6 Flat interface at 740 m (vertical distance) separating two half spaces of dissimilar
properties. Snapshots of the v,-wavefield at 165 ms without (a) and with (b) the BR
mesoscopic attenuation.
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v,-component

(b)

v,-component

Fig. 7 Seismograms of the v, and v, components at the location (300, 300) m. The red
line corresponds to the case with BR loss mechanism. The fields are normalized to 1.
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E Fig. 1 Phase velocity (a) and dissipation factor (b) of the fast P wave.
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Fig. 2 Phase velocity of the slow P2 (a) and P3 (b) waves.
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Fig. 3 Snapshots of vx (a and b) and vz (c and d) without (a and c¢) and with (b and d) the BR attenuation
peak. The outer and inner wavefronts correspond to the P and S waves, respectively. The numbers express
the distance in meters.
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Fig. 4 Snapshots of the q(2)x (a) and q(2)z (b) components for [0 = 0. The inner wavefronts are the slow
waves.
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Fig. 5 Seismograms of the vz, q(1) z and q(2) z at the location (150, 200) m. The red line corresponds to
the case with BR loss mechanism. The fields are normalised to 1. Actually the fluid particle velocities are
smaller by approximately three orders of magnitude.
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Fig. 6 Flat interface at 740 m (vertical distance) separating two half spaces of dissimilar properties.
Snapshots of the vx-wavefield at 165 ms without (a) and with (b) the BR mesoscopic attenuation.
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