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S U M M A R Y
We consider surface-wave propagations at an interface separating a fluid layer and a double-
porosity medium embedded with cracks. The theory is based on a generalization of the
Biot-Rayleigh model from spherical cavities to penny-shaped cracks randomly embedded into
a host medium, where mesoscopic local fluid flow (LFF) plays an important role. We derive
closed-form dispersion equations of surface waves, based on potentials and suitable boundary
conditions (BCs), to obtain the phase velocity and attenuation by using numerical iterations.
Two special cases are considered by letting the thickness of the fluid (water) layer to be zero and
infinity. We obtain pseudo-Rayleigh and pseudo-Stoneley waves for zero and infinite thickness
and high-order surface modes for finite nonzero thickness. Numerical examples confirm that
the LFF affects the propagation at low frequencies, causing strong attenuation, whereas the
impact of BCs is mainly observed at high frequencies, due to the propagation of slow wave
modes. The crack density mainly affects the level of attenuation, whereas the aspect ratio
the location of the relaxation peak. The fundamental mode undergoes a significant velocity
dispersion, whose location moves to low frequencies as the thickness increases. In all cases,
there also exist two slower surface modes that resemble the two slow body waves, only present
for sealed BCs.

Key words: Wave propagation; Surface waves and free oscillations; Interface waves; Seismic
attenuation; Computational seismology.

1 I N T RO D U C T I O N

Propagation of surface and interface waves in porous media finds
applications in a variety of fields, such as geotechnical engineering,
seismology, borehole logging and exploration geophysics (Norris
1989; Tang & Cheng 1996; Yang 2005; Markov 2009; Zhang &
Müller 2019). Specifically, a quantitative investigation is important
for mapping the spatial distribution of medium properties, such
as permeability, porosity and saturation, which are essential for
reservoir characterization and fluid identification (Tang & Cheng
1996).

Many theories have been developed to describe wave motion in
porous media. Biot (1956, 1962) pioneered the study, and formu-
lated a set of equations for phenomenological wave propagation in
a medium saturated by a single fluid. The theory predicts two com-
pressional waves (P1 and P2) and one shear wave (S). The second
compressional wave is diffusive at low frequencies and wave-like at
high frequencies. The related surface waves, generated from the in-
terference among the three body waves, can be quite different from
the classic ones of the elastic case. Considering the free surface
of a porous half-space, Deresiewicz (1962) showed the existence

of a Rayleigh-type wave, and analyzed the frequency-dependent
phase velocity and dissipation. Tajuddin (1984) examined the ef-
fects of permeable and impermeable boundaries on Rayleigh-wave
propagation. Zhang et al. (2011) further discussed the influence of
partially permeable boundaries, and reported two Rayleigh waves,
where the second one propagates slightly slower than the bulk slow
P2 wave, but exists only for impermeable and partially permeable
conditions.

On the other hand, other studies focus on the surface-wave prop-
agations at a liquid/poroelastic flat interface (Feng & Johnson 1983;
Gubaidullin et al. 2004; Chao et al. 2006; van Dalen et al. 2011).
Deresiewicz (1964) derived the dispersion equations for Stoneley-
wave propagation in a porous half-space lying under a liquid layer,
and further obtained asymptotic expressions at low frequencies.
Feng & Johnson (1983) investigated surface-wave propagations
at high frequencies at an interface between a fluid and a fluid-
saturated half space. Their results confirm the existence of three
interface waves, namely, the pseudo-Rayleigh wave, the pseudo-
Stoneley wave and the true interface wave, depending on the BCs
at the interface. The true surface wave propagates slower than the
body waves in both the fluid and porous medium, and exists only
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for sealed-pore boundaries. The pseudo-Rayleigh wave propagates
faster than the bulk mode in the fluid and the slow mode, but slower
than the P1 and SV waves in the porous medium. The pseudo-
Stoneley wave has a velocity higher than that of the slow P2 wave.
Hence, the so-called pseudo interface wave leaks part of its en-
ergy into slower bulk modes as it propagates along the interface.
The results are confirmed experimentally by high-frequency sonic
measurements (Mayes et al. 1986; Adler & Nagy 1994), and nu-
merically by a novel algorithm based on the Fourier and Chebyshev
pseudospectral methods (Sidler et al. 2010). With the same config-
uration, Gubaidullin et al. (2004) incorporated the influence of a
frequency-dependent viscous correction factor. Chao et al. (2006)
studied the effect of partially saturated gas bubbles on velocity and
attenuation of surface wave modes, using a modified Biot theory.
Markov (2009) considered the interface between two fluid-saturated
porous media, and studied the frequency-dependent velocity and at-
tenuation of the Stoneley surface wave. More recently, Qiu et al.
(2019) considered a liquid/porous-medium interface underlaid by
a hard porous half-space, and analyzed the propagation of pseudo-
Rayleigh and pseudo-Scholte waves.

In many cases, the Biot theory is insufficient in estimating the
broadband velocity dispersion and attenuation. Squirt-flow mech-
anisms have been introduced to explain attenuation at ultrasonic
frequencies (Dvorkin & Nur 1993; Dvorkin et al. 1995; Carcione
& Gurevich 2011). It occurs mainly at the microscopic pore scale,
due to the different compliances of the soft and stiff pores. Us-
ing the theory of Dvorkin et al. (1995), Sharma (2018) analyzed
the effect of squirt flow on the propagation of Rayleigh waves, in-
cluding phase velocity, attenuation and polarisation. Alternatively,
mesoscopic flow has been introduced to account for attenuation at
seismic frequencies (Pride et al. 2004; Müller et al. 2010; Carcione
2022). It occurs due to the heterogeneities at a scale much larger
than the pore size but smaller than the wavelength. Many theo-
ries are developed to explain this mechanism, among which, the
double-porosity theory is a simple one. Pride & Berryman (2003a,
2003b) considered a model containing both the storage and frac-
ture porosities, and derived a frequency-dependent compressibility
law to describe the fluid transfer between these pore spaces, which
predicts realistic attenuation at the exploration-geophysics band.
It becomes an effective Biot model when the heterogeneity phase
is embedded in the host phase (Pride et al. 2004). Based on this
theory, Dai et al. (2006) analyzed Rayleigh-wave propagation in
a double-porosity half-space with permeable boundaries, and dis-
cussed the effect of porosity and fracture permeability. In addition,
Ba et al. (2011) proposed another double-porosity model based on
Biot theory and the Rayleigh model of bubble oscillations. The the-
ory is adopted by Sharma (2014) to study the effect of local fluid
flow (LFF) on propagation and polarization of Rayleigh waves in
a double-porosity half-space. His results suggest the existence of
an additional (second) Rayleigh wave when the saturating fluid has
a low viscosity. This second wave attenuates less and propagates
much faster than the first Rayleigh wave.

Cracks play an important role in wave propagation, affecting the
properties of the skeleton and the fluid flow. Specifically, significant
LFF occurs between compliant cracks and relatively stiff pores,
due to their dissimilar pore volumes, permeabilities and compress-
ibilities (Carcione et al. 2010; Müller et al. 2010). To take these
properties into account, Sharma (1996) introduced fluid-saturated
cracks into a porous medium and established a modified Biot the-
ory where the elastic constants and dynamical parameters are in
accordance with the theory of Budiansky and O’Connell (1976).
Then, he studied surface-wave propagation in a saturated poroelastic

half-space lying under a uniform layer of liquid. Chapman et al.
(2002) proposed a Gassmann-consistent squirt-flow model by con-
sidering a microstructure composed of randomly oriented thin
cracks and spherical pores. Using the fluid-mass conservation and
the T-matrix approach, Jakobsen & Chapman (2009) established a
crack-porous model that unifies the global and squirt flows. Tang
et al. (2012) incorporated randomly oriented cracks into Biot’s the-
ory, and proposed a pore-crack model, where squirt flow is taken
into account. One advantage of this theory is that, the relaxation
parameter is no longer necessary, because it can be expressed by
the crack density and aspect ratio. Other models consider anisotropy
induced by cracks (Galvin & Gurevich 2009; Fu et al. 2018; Guo &
Gurevich 2020). For example, Galvin & Gurevich (2009) considered
a poroelastic medium with a distribution of aligned penny-shaped
cracks and confirmed frequency-dependent anisotropy and attenu-
ation using a multiple-scattering theory. Fu et al. (2018) developed
an alternative solution by using the Waterman-Truell scattering ap-
proximation for a distribution of aligned silt cracks.

Zhang et al. (2019) established an extended Biot-Rayleigh
double-porosity model, where the spherical inclusions were re-
placed by randomly-oriented penny-shaped cylindrical cracks,
where LFF plays an important role. It is consistent with Gassmann
equations and honors experimental data. The theory has been used
to study the reflection of inhomogeneous waves at the free surface
of a cracked porous medium (Kumari & Kumar 2022). Using this
theory, the present work focuses on the propagation of surface and
interface waves, and analyzes the effect of cracks and the associated
LFF. A flat interface separating a double-porosity half-space and a
fluid (water) layer of thickness H is considered. The correspond-
ing surface-wave dispersion equations are derived in closed form,
based on potentials under sealed or open BCs. By letting H = 0
and H = +∞, two special cases are obtained, corresponding to the
propagations of pseudo-Rayleigh and pseudo-Stoneley waves, re-
spectively. The phase velocity and attenuation factor, as a function
of frequency and obtained from an iterative method, are illustrated,
and the effects of LFF, BCs, crack density and aspect ratio and water
thickness H are discussed.

2 G OV E R N I N G D I F F E R E N T I A L
E Q UAT I O N S

The crack-double-porosity theory of Zhang et al. (2019) involves
two porosities, namely a local porosity φ10 of the host medium
with a large volume fraction f1, and a local porosity φ20 of the
inclusions (cracks) with a smaller volume fraction f2 = 1 − f1.
The two porosities are associated to different permeabilities and
compressibilities, which therefore induce pressure gradients when
the wave propagates, and consequently relative fluid flows. The
inclusions (cracks) are assumed to be penny-shaped and cylin-
drical with the radius R0 and height h being much smaller than
the wavelength, which correspond to a mesoscopic-scale length
(Zhang et al. 2019).

With u, U(1) and U(2) denoting the averaged displacement vectors
of the matrix, fluid in host medium, and fluid in cracks, respectively,
the strain-displacement relations are

εi j = 1

2
(∂i u j + ∂ j ui ), ε = ∇ · u, η(m) = ∇ · U(m), m = 1, 2 (1)

where, εij are the solid strain components, ε and η(m) are the averaged
volumetric strains of the solid and the two variations of fluid content
in the host (m = 1) and inclusions (m = 2), respectively.
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Let σ ij and σ m be the solid stress components and fluid stresses in
the two phases, and ς the fluid variation between the host medium
and the penny-shaped cracks. We have

σ1 = Q1ε + R1(η(1) + φ2ς ),

σ2 = Q2ε + R2(η(2) − φ1ς ),

σi j = 2Nεi j + [
Aε + Q1(η(1) + φ2ς ) + Q2(η(2) − φ1ς )

]
δi j , (2)

where δij is the Kronecker delta, φm = fmφm0 are the porosities of
the host medium and inclusions, A and N are the composite moduli
equivalent to the Lamé constants in the theory of elasticity (Biot
1962), Qm represent the coupling between the volume change of the
solid and that of the fluid, and Rm are the pressures required on the
fluid to inject a given volume of fluid into the aggregate whereas
the total volume remains constant. These quantities are given in
Appendix A.

The equation of motion for the mesoscopic fluid-flow variable ς

is derived by a generalization of the Biot-Rayleigh theory (Ba et al.
2011) from spherical inclusions to penny-shaped cracks, where the
microvelocity fields inside the inclusions are additionally consid-
ered. It is

(
3

8
+ φ20

2φ10
ln

L + R0

R0

)
φ2

1φ2ρ f R2
0 ς̈

+
(

3η

8κ2
+ η

2κ1
ln

L + R0

R0

)
φ20φ

2
1φ2 R2

0 ς̇

= [
φ2 Q1 − φ1 Q2

]
ε + φ2 R1η

(1) − φ1 R2η
(2)

+ (φ2
2 R1 + φ2

1 R2)ς, (3)

where an overdot denotes the time derivative, ρ f is the fluid density,
η is the fluid viscosity, κ1 and κ2 are the permeabilities of the
host medium and inclusions, respectively, and L = (R2

0/12)1/2 is
the characteristic fluid flow length.

The equations of momentum conservation are

σi j, j = ρ00üi + ρ01Ü (1)
i + ρ02Ü (2)

i + b1(u̇i − U̇ (1)
i )

+ b2(u̇i − U̇ (2)
i ),

(σ1),i = ρ01üi + ρ11Ü (1)
i − b1(u̇i − U̇ (1)

i ),

(σ2),i = ρ02üi + ρ22Ü (2)
i − b2(u̇i − U̇ (2)

i ), (4)

where the comma preceding an index indicates spatial differentia-
tion, b1 = φ1φ10η/κ1 and b2 = φ2φ20η/κ2 are the viscous couplings
between the pore fluid and skeleton, and ρ ij are five density param-
eters, given in Appendix A.

By substituting eq. (2) into (4), we obtain

N∇2u + (A + N )∇ε + Q1∇(η(1) + φ2ς ) + Q2∇(η(2) − φ1ς )

= ρ00ü + ρ01Ü(1) + ρ02Ü(2) + b1(u̇ − U̇(1)) + b2(u̇ − U̇(2)),

Q1∇ε + R1∇(η(1) + φ2ς ) = ρ01ü + ρ11Ü(1) − b1(u̇ − U̇(1)),

Q2∇ε + R2∇(η(2) − φ1ς ) = ρ02ü + ρ22Ü(2) − b2(u̇ − U̇(2)). (5)

Eqs (3) and (5) constitute the basic equations for wave propa-
gation in cracked porous media. They hold for uniform porosity
because the average displacements of the solid and fluid phases are
used as Lagrangian coordinates and the respective stress compo-
nents are used as generalized forces.

In the non-uniform case, the relative fluid displacement w(m), the
total stress τ ij and pore-fluid pressure Pfm must be used and are

expressed by

w(m) = φm(U(m) − u),

τi j = σi j + (σ1 + σ2)δi j ,

Pf m = − 1

φm
σm, (6)

where m = 1, 2 refer to the host medium and inclusions, respectively.
Using eq. (2), we have

τi j = 2μbεi j + (λcε − α1 M1(ξ (1) − φ1φ2ς )

− α2 M2(ξ (2) + φ1φ2ς ))δi j ,

Pf 1 = −α1 M1ε + M1(ξ (1) − φ1φ2ς ),

Pf 2 = −α2 M2ε + M2(ξ (2) + φ1φ2ς ), (7)

where ξ (m) = −∇ · w(m) = −φm(η(m) − ε) are the two variations of
fluid content relative to the solid, μb is the dry-rock shear modulus,
and λc, α1, α2, M1 and M2 are stiffness coefficients given in Ap-
pendix A. Eq. (7) is the correct one for describing wave propagation
in an inhomogeneous media because it is consistent with Darcy’s
law and the BCs at interfaces separating media with different prop-
erties.

3 P L A N E - WAV E S O LU T I O N

Considering time harmonic oscillations with a Fourier convention
exp[−iωt] and solving eq. (3), we obtain

ς = d1ε + d2η
(1) + d3η

(2),

d1 = (φ1 Q2 − φ2 Q1)/Ld , d2 = −φ2 R1/Ld , d3 = φ1 R2/Ld ,

(8)

with

L1 =
(

3

8
+ φ20

2φ10
ln

L + R0

R0

)
φ2

1φ2ρ f R2
0,

L2 =
(

3η

8κ2
+ η

2κ1
ln

L + R0

R0

)
φ20φ

2
1φ2 R2

0,

Ld = L1ω
2 + L2iω + φ2

2 R1 + φ2
1 R2, (9)

where ω is the angular frequency and i is the imaginary unit. When
R0 = +∞, the coefficients di (i = 1, 2, 3) become zero, and hence
the mesoscopic fluid-flow effect disappears.

Substituting eq. (8) into eq. (5) yields

N∇2u + (A + N + Zd1)∇ε + (Q1 + Zd2)∇η(1)

+ (Q2 + Zd3)∇η(2)

= ρ00ü + ρ01Ü(1) + ρ02Ü(2) + b1(u̇ − U̇(1)) + b2(u̇ − U̇(2)),

(Q1 + R1φ2d1)∇ε + (R1 + R1φ2d2)∇η(1) + R1φ2d3∇η(2)

= ρ01ü + ρ11Ü(1) − b1(u̇ − U̇(1)),

(Q2 − R2φ1d1)∇ε − R2φ1d2∇η(1) + (R2 − R2φ1d3)∇η(2)

= ρ02ü + ρ22Ü(2) − b2(u̇ − U̇(2)), (10)

where Z = Q1φ2 − Q2φ1.
Based on the Helmholtz decomposition, the displacement vectors

u, U(1) and U(2) can be expressed in terms of potential functions ϕi

and �i (i = 0, 1, 2) as follows,

u = ∇ϕ0 + ∇ × �0, U(1) = ∇ϕ1 + ∇ × �1,

U(2) = ∇ϕ2 + ∇ × �2, (11)
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with⎧⎨
⎩

ϕ0 = A0exp
[
i(kp · r − ωt)

]
ϕ1 = A1exp

[
i(kp · r − ωt)

]
,

ϕ2 = A2exp
[
i(kp · r − ωt)

]
⎧⎨
⎩

�0 = B0exp [i(ks · r − ωt)]
�1 = B1exp [i(ks · r − ωt)] ,

�2 = B2exp [i(ks · r − ωt)]

(12)

where kp and ks are the wavenumbers of the compressional and
shear waves, r is the space vector, and Ai and Bi are amplitudes,
with subscripts i = 0, 1, 2 corresponding to the solid, and fluid phase
in the host medium and inclusions (cracks), respectively.

Applying the divergence operator to (10), we obtain

H · A = 0, (13)

where we have used eqs (11) and (12), A = [A0, A1, A2]T, and the
components of H are⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H11 = (A + 2N + Zd1)k2
p − ρ00ω

2 − iω(b1 + b2),
H12 = H21 = (Q1 + Zd2)k2

p − ρ01ω
2 + iωb1,

H13 = H31 = (Q2 + Zd3)k2
p − ρ02ω

2 + iωb2,

H22 = (R1 + R1φ2d2)k2
p − ρ11ω

2 − iωb1,

H23 = H32 = R1φ2d3k2
p,

H33 = (R2 − R2φ1d3)k2
p − ρ22ω

2 − iωb2.

(14)

The equation det(H) = 0 gives three complex roots (denoted as
k1, k2 and k3) for the unknown wavenumbers, corresponding to the
fast P wave (P1) and two slow P waves (P2 and P3). The related
velocities, being complex, describe the attenuation characteristics.

Solving eq. (13), we obtain the relative relations between the
amplitudes of two fluid-phase potentials and that of the solid phase
for the specific ki as,(

A1/A0

A2/A0

) ∣∣∣∣
k=ki

=
(

(H13 H21 − H11 H23)/(H12 H23 − H13 H22)
(H11 H22 − H21 H12)/(H12 H23 − H13 H22)

) ∣∣∣∣
k=ki

=
(

νi

δi

)
. (15)

For the shear wave, and based on eqs (10)–(12), we similarly
have

Q · B = 0, (16)

where, B = [B0, B1, B2]T, and the components of Q are⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q11 = Nk2
s − ρ00ω

2 − iω(b1 + b2),
Q12 = Q21 = −ρ01ω

2 + iωb1,

Q13 = Q31 = −ρ02ω
2 + iωb2,

Q22 = −ρ11ω
2 − iωb1,

Q23 = Q32 = 0,

Q33 = −ρ22ω
2 − iωb2.

(17)

The equation det(Q) = 0 gives one complex wavenumber (de-
noted as k4), corresponding to the shear wave (SV), and the relative-
amplitude ratio is solved as(

B1/B0

B2/B0

)
=

( −Q21/Q22

(Q21 Q12 − Q11 Q22)/(Q13 Q22)

)
=

(
ν4

δ4

)
. (18)

Once ki is determined, the corresponding phase velocity and
attenuation factor are computed as (Carcione 2022)

Vi =
[

Re

(
ki

ω

)]−1

, Qi = Re(ki )

2Im(ki )
, i = 1, 2, 3, 4, (19)

where, “Re” and “Im” denote real and imaginary parts and indexes
1 to 4 correspond to the wave modes P1, P2, P3 and SV, respec-
tively. The attenuation factor defined in this way is the ratio between
the total energy (strain plus kinetic) and the dissipated energy. The

z

x

z H

Figure 1. Geometry model of the problem.

definition of Q as twice the strain energy divided by the dissipated

energy, Qi = Re[(ω/ki )2]

Im[(ω/ki )2]
, can also be used, but it may yield nega-

tive values for slow waves, since the LFF and Biot mechanisms are
losses associated with the kinetic energy.

4 S U R FA C E - WAV E P RO PA G AT I O N

We consider a liquid layer of thickness H (denoted as medium I)
overlying a cracked double-porosity half-space (denoted as medium
II), shown in Fig. 1, where the x-axis is along the interface and z-axis
is in the direction of increasing depth into the porous medium. z = 0
is taken as the interface separating the liquid and the porous medium.
Hence the region −H < z < 0 defines the liquid layer, whereas the
cracked porous medium occupies the area z > 0. Because there is
no shear wave in the liquid layer, Love waves do not propagate at
the interface.

The equation of motion of the fluid in terms of potential �0 is

∂2�0

∂x2
+ ∂2�0

∂z2
= 1

v2
0

∂2�0

∂t2
, (20)

where v0 = (λ0/ρ0)1/2 is the velocity, with λ0 and ρ0 being the bulk
modulus and density, respectively.

The solution of eq. (20) for surface-wave propagation is

�0 = [D0exp(kzξ0) + E0exp(−kzξ0)] exp[i(kx − ωt)], (21)

where D0 and E0 are the amplitudes, k is the horizontal wavenum-
ber and ξ0 = (1 − c2/v2

0)1/2, with c = ω/k being the surface-wave
velocity.

The displacement and stress are

u0 = (ux , uz)
T = ∇�0,

τxz = 0, τzz = −p f = λ0

(
∂2�0

∂x2
+ ∂2�0

∂z2

)
, (22)

respectively.
On the other hand, the displacements of the solid and fluid in the

porous medium are

ux =
3∑

j=1

∂� j

∂x
− ∂�4

∂z
, uz =

3∑
j=1

∂� j

∂z
+ ∂�4

∂x
,

U (1)
x =

3∑
j=1

ν j
∂� j

∂x
− ν4

∂�4

∂z
, U (1)

z =
3∑

j=1

ν j
∂� j

∂z
+ ν4

∂�4

∂x
,

U (2)
x =

3∑
j=1

δ j
∂� j

∂x
− δ4

∂�4

∂z
, U (2)

z =
3∑

j=1

δ j
∂� j

∂z
+ δ4

∂�4

∂x
,

(23)
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Table 1. Porous-medium properties.

Ks (GPa) μs (GPa) ρs (kg/m3) φ10 φ20 c1 κ1 (darcy) κ2 (darcy) R0(m)

Rock 37.9 32.6 2650 0.25 0.32 11 0.1 100 0.03

Table 2. Fluid properties.

Kf (GPa) ηf (Pa·s) ρf (kg/m3)

Water 2.22 0.001 1000

(b)

(a)

Figure 2. Phase velocities (a) and dissipation factors (b) of the body wave
modes as a function of frequency (ε = 0.20 and γ = 0.002). The solid lines
represent the results in the presence of local fluid flow (LFF), whereas open
symbols correspond to results without LFF.

where the potentials �j(j = 1, ···, 4) represent the propagations of
P1, P2, P3 and SV waves. For harmonic surface-wave propagation,
they can be analytically expressed by

� j = D j exp[i(kx − ωt) − kzξ j ],

ξ j =
√

1 − c2/v2
j , j = 1, 2, 3, 4 (24)

where Dj are the amplitudes, vj = ω/kj are the complex velocities
of the four body waves (j = 1, 2, 3 and 4 correspond to the P1, P2,
P3, and SV waves). Using eqs (23) and (24), the total stress τ ij and
pore-fluid pressure Pfm can be obtained using eq. (7).

4.1 Boundary conditions

At the free surface of the liquid, defined by z = −H, we have

(τzz)I = 0. (25)

Then, we obtain

E0 = −D0exp(−2k Hξ0), (26)

and hence eq. (21) is simplified as

�0 = D0exp(−k Hξ0)
{

exp[kξ0(z + H )] − exp[−kξ0(z + H )]
}

× exp[i(kx − ωt)]. (27)

At the interface between the fluid layer and the porous medium,
defined at z = 0, the BCs are given (Deresiewicz & Skalak 1963)

(τxz)II = 0,

(τzz)I = (τzz)II,

(uz)I = (uz)II + (w(1)
z )II + (w(2)

z )II,

(p f )I − (Pf 1)II = Z1(ẇ(1)
z )II,

(p f )I − (Pf 2)II = Z2(ẇ(2)
z )II, (28)

where the first three equations represent the continuity of the normal
and shear stresses and the conservation of mass, whereas the last
two are conditions for the fluid pressure, where Z1 and Z2 are the
so-called interface impedances. In particular, Z1 = Z2 = 0 and Z1

= Z2 = ∞ represent fully open and sealed BCs, respectively (Car-
cione et al. 2021). For intermediate values, they represent partially
permeable boundaries (Nagy & Blaho 1994; Qi et al. 2021), which
are not considered here.

The five BCs form a system of equations of order five on the
unknown amplitudes D = [D0, D1, D2, D3, D4]T as follows,

MD = 0, (29)

where the elements of M are given in Appendix B.

4.2 Special cases

When H = 0, the BCs in eq. (28) become

(τxz)II = 0,

(τzz)II = 0,

−(Pf 1)II = Z1(ẇ(1)
z )II,

−(Pf 2)II = Z2(ẇ(2)
z )II, (30)

and the problem given in Fig. 1 reduces to the propagation of
Rayleigh waves at the free surface of a cracked poroelastic half-
space. The four BCs form a matrix equation of order four for the
unknown amplitudes D(1) = [D1, D2, D3, D4]T as

M(1)D(1) = 0, (31)

where the elements of M(1) can be obtained by eliminating the first
column and the third row of matrix M as,

M(1) =

⎡
⎢⎢⎣

M01 M02 M03 M04

M11 M12 M13 M14

M31 M32 M33 M34

M41 M42 M43 M44

⎤
⎥⎥⎦. (32)

Alternatively, if H = +∞, the problem corresponds to the propa-
gation of pseudo-Stoneley (Scholte) wave at the interface between a
liquid half-space and a cracked poroelastic half-space. In this case,
E0 = 0, and the potential �0 is

�0 = D0exp(kzξ0)exp[i(kx − ωt)]. (33)

At the interface, the BCs in eq. (28) remain the same, and the
matrix equation becomes

M(2)D = 0, (34)
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(a)

(c)

(b)

(d)

Figure 3. Phase velocities (a, b) and dissipation factors (c,d) of the P1 (a and c) and SV waves (b and d) as a function of frequency for different values of ε

and γ . The LFF is present.

(b)

(a)

Figure 4. Phase velocity (a) and phase dimensionless velocity (b) of R1
wave, with respect to the shear wave velocity (VS), as a function of frequency
(ε = 0.20 and γ = 0.002).

where the elements of M(2) can be obtained from M by letting H =
+∞. Hence, the elements of the first column become

M (2)
00 = 0, M (2)

10 = −ρ0, M (2)
20 = ξ0,

M (2)
30 = M (2)

40 = −ρ0, (35)

whereas all the other elements of M(2) remain the same as those
of M.

Note that the crack-double-porosity model reduces to the classic
Biot theory when f2 = φ2 = 0, in which case, the system of equa-
tion corresponding to (29) yields that derived by Feng & Johnson
(1983), as shown in Appendix C.

4.3 Dispersion equation

A nontrivial solution of eq. (29) requires

det(M) = 0. (36)

Eq. (36) involves transcendental functions and is nonlinear with
respect to the unknown velocity c. We obtain a solution by us-
ing Muller’s iteration method (Muller 1956). The existing complex
solution indicates that propagation of the surface wave is inho-
mogeneous. The wave decays with depth in the porous half-space
(increasing z for z > 0). Therefore, any solution of c requires a

positive real part for kξ j = ω

c
ξ j given in eq. (24). The complex ve-

locity c and wavenumber k = ω/c are then used to obtain the phase
velocity and attenuation factor as (Carcione 2022),

V =
[

Re

(
1

c

)]−1

and Q = Re(k)

2Im(k)
, (37)

respectively.
Similarly, the dispersion equations for H = 0 and H = +∞ are

det(M(1)) = 0 and det(M(2)) = 0, (38)

respectively.
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Figure 5. Dissipation factor of the R1 wave as a function of frequency.

(b)

(a)

Figure 6. Phase velocities of the R2 and R3 waves as a function of frequency
for sealed BCs, corresponding to the cases without LFF (a) and with LFF
(b), respectively. For open BCs, these two waves don’t exist.

Figure 7. Absolute values of displacements of the R1 wave as a function of
depth at 300 Hz. The displacements are normalized by the absolute vertical
uz at the surface (z = 0), and the depth is normalized by the R1 wavelength
λ. The open-pore BCs are used and the LFF is present.

There can be more than one surface wave for the problem studied
(Feng & Johnson 1983; Gubaidullin et al. 2004; Zhang et al. 2011;
Sharma 2014). Feng & Johnson (1983) studied the surface-wave
propagation at the interface between a fluid and a porous half-space
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Figure 8. Ellipticity (HZ ratio) of the R1 wave as a function of frequency for the porous medium at the surface z = 0.

(a)

(b)

Figure 9. Effect of crack density ε on (a) velocity dispersion and (b) dis-
sipation factor of the R1 wave. A constant γ = 0.002 is used. The LFF is
present.

(a)

(b)

Figure 10. Effect of crack aspect ratio γ on (a) velocity dispersion and (b)
dissipation factor of the R1 wave. A constant ε = 0.20 is used. The LFF is
present.
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(a)

(b)

Figure 11. Phase velocity (a) and phase dimensionless velocity (b) of T1
wave, with respect to the shear wave velocity (VS), as a function of frequency
(ε = 0.20 and γ = 0.002).

Figure 12. Dissipation factors of the T1 and shear waves as a function of
frequency.

using Biot’s theory, and confirmed the existence of a “true” sur-
face wave and pseudo surface waves at the high frequency range,
including the pseudo-Rayleigh and pseudo-Stoneley modes, de-
pending on the BCs and medium parameters. The double-porosity
model predicts two slow wave modes, and their interference with
the fast P1 and SV waves makes the surface-wave propagation more
complex.

(a)

(b)

Figure 13. Phase velocities of the T2 and T3 waves as a function of fre-
quency for sealed BCs, corresponding to the cases without LFF (a) and with
LFF (b), respectively. For open BCs, these two waves don’t exist.

4.4 Displacement motions

We obtain the displacements in the water layer I (−H ≤ z < 0) from
eqs (22) and (27) as,

(ux )I = D4 S0ikexp(−k Hξ0)

× {exp[kξ0(z + H )] − exp[−kξ0(z + H )]} exp[i(kx − ωt)],

(uz)
I = D4 S0kξ0exp(−k Hξ0)

× {exp[kξ0(z + H )] + exp[−kξ0(z + H )]} exp[i(kx − ωt)],

(39)

where S0 = D0/D4 is the amplitude ratio.
Similarly, in the double-porosity medium II, defined by z ≥ 0, the

corresponding displacement components are

(ux )II = (ux + w(1)
x + w(2)

x )II =
3∑

j=1

∂� j

∂x
t j − ∂�4

∂z
t4,

(uz)
II = (uz + w(1)

z + w(2)
z )II =

3∑
j=1

∂� j

∂z
t j + ∂�4

∂x
t4, (40)

where tj = 1 − φ1 − φ2 + φ1ν j + φ2δj, j = 1, 2, 3, 4. Substituting
eq. (24) into eq. (40), we have

(ux )II = i|βx |exp[i arg(βx )]exp[i(kx − ωt)],

(uz)
II = −|βz |exp[i arg(βz)]exp[i(kx − ωt)], (41)
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780 E. Wang, J. M. Carcione and J. Ba

Figure 14. Absolute values of displacements of the T1 wave as a function of
depth at 300 Hz. The displacements are normalized by the absolute vertical
uz at the surface (z = 0) in the double-porosity medium, and the depth is
normalized by the pseudo-Stoneley wavelength λ. The open-pore BCs are
used and the LFF is present.

Figure 15. Ellipticity (HZ ratio) of the T1 wave as a function of frequency
for the porous medium at the interface z = 0.

where

βx = k D4

⎛
⎝ 3∑

j=1

t j S j exp(−kzξ j ) − it4ξ4exp(−kzξ4)

⎞
⎠ ,

βz = k D4

⎛
⎝ 3∑

j=1

t j S jξ j exp(−kzξ j ) − it4exp(−kzξ4)

⎞
⎠ , (42)

(a)

(b)

Figure 16. Effect of crack density ε on (a) velocity dispersion and (b)
dissipation factor of the T1 wave. A constant γ = 0.002 is used. The LFF is
present.

and Sj = Dj/D4, which can be obtained from the singular system of
BCs (29) as⎡
⎢⎢⎣

M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

S0

S1

S2

S3

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

M04

M14

M24

M34

⎤
⎥⎥⎦, (43)

for H �= 0 including the special case of H = +∞. For H = 0, we
have⎡
⎣M01 M02 M03

M11 M12 M13

M31 M32 M33

⎤
⎦

⎡
⎣S1

S2

S3

⎤
⎦ = −

⎡
⎣M04

M14

M34

⎤
⎦. (44)

The oscillating particles described by eq. (41) are along an el-
liptical path, and the corresponding ellipticity (the absolute ratio
between the horizontal and vertical displacements) is defined as

H Z = |βx |
|βz | , (45)

which gives the aspect ratio of the particle-motion ellipse.

5 E X A M P L E S

We consider the properties given in Table 1, taken from Tang et al.
(2012) and Zhang et al. (2019). The fluid is water and its properties
are given in Table 2 (Gurevich et al. 2004). The volume fraction
f2 = φ2/φ20, where φ2 = φc = 2πεγ is the crack porosity, with ε
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(a)

(b)

Figure 17. Effect of crack aspect ratio γ on (a) velocity dispersion and (b)
dissipation factor of the T1 wave. A constant ε = 0.20 is used. The LFF is
present.

and γ being the crack density and aspect ratio, respectively (Zhang
et al. 2019). In the following, we consider ε = 0.2 and γ = 0.002
(Tang et al. 2012).

Fig. 2 shows the phase velocities and dissipation factors of the
body waves as a function of frequency. We observe that the LFF
affects the P1-wave propagation significantly, inducing a significant
attenuation peak between 10 Hz and 10 kHz, and consequently a
velocity dispersion. Hence, at low frequencies, the P1-wave velocity
becomes smaller than that when LFF is absent. At high frequencies,
the effect of LFF disappears and the Biot global flow plays an
important role, causing an attenuation peak. As a contrast, the LFF
hardly affects the propagation of the P3 and SV modes. Considering
that the surface waves result from the interference among the body
waves, their propagation will definitely be influenced by the LFF
mechanism.

The effects of crack density ε and aspect ratio γ on the prop-
agation of P1 and SV waves are displayed in Fig. 3. For the P1
wave, the crack density mainly affects the amount of attenua-
tion and velocity dispersion at low frequencies, whereas the as-
pect ratio is the main factor affecting the location of the relax-
ation peak. A higher crack density implies stronger attenuation,
and a smaller aspect ratio moves the peak to low frequencies. For
the SV wave, an increasing crack density implies a lower veloc-
ity, whereas the influence of the aspect ratio is opposite but not
significant.

(a)

(b)

Figure 18. Phase velocity (a) and dissipation factor (b) of the fundamental
mode with frequency at three different values of H (ε = 0.20, γ = 0.002).
The results of H = +∞ correspond to those given in Figs 11 and 12. The
LFF is present.

5.1 Waves at the surface of a double-porosity medium

First, we consider H = 0 to study the Rayleigh-type waves at the
free surface of the double-porosity medium. The theory predicts
three modes, denoted as R1, R2 and R3, respectively. The R1 wave
propagates slower than the shear wave, but faster than the two slow
P2 and P3 waves, which leaks its energy during the propagation and
corresponds to the pseudo-Rayleigh wave. The R2 and R3 modes
resemble the P2 and P3 waves and do not exist if the BCs are
open. The results are consistent with those of Zhang et al. (2011),
where they similarly found another slow surface mode for sealed
and partially sealed BCs using the classical Biot equations. This
mode is a true Stoneley wave because it has the smallest velocity
and is not leaky.

Fig. 4 shows the phase velocity of the R1 wave as a function of
frequency, and the corresponding dissipation factor is displayed in
Fig. 5. It is evident that this wave propagates slower and is more
attenuated than the SV wave (see Figs 4b and 5). The LFF mainly
affects its propagation at frequencies less than 10 kHz, inducing
a higher attenuation, particularly over the frequency band between
10 Hz and 1 kHz, and consequently giving a smaller phase velocity.
The phenomenon is similar to the propagation of body waves in
Fig. 2, because the LFF mechanism mainly occurs at the mesoscopic
scale. At high frequencies, the phase velocity with sealed-pore BCs
is higher than that with open-pores. But at the very low frequencies,
they are identical, since in this case, the two slow waves do not
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(a)

(b)

Figure 19. Phase velocity (a) and dissipation factor (b) of the fundamental
mode with frequency at two values of H for sealed BCs (ε = 0.20, γ =
0.002). The open symbols represent the results without LFF, whereas the
solid lines are the results in the presence of LFF.

propagate and the free surface becomes equivalent to the elastic
one. Moreover, the open-pore BCs imply a higher attenuation of the
pseudo-Rayleigh wave than that of the sealed-pore BCs, possibly
due to the energy transfer between the fast and slow wave modes.
Fig. 6 shows the phase velocities of the R2 and R3 modes as a
function of frequency for sealed BCs. Irrespective of whether the
LFF is present or absent, these two modes resemble the slow P2
and P3 waves, respectively, which are dispersive at low frequencies
and become wavelike at high frequencies. For open BCs, we find no
such waves. A similar true surface mode was confirmed in Zhang
et al. (2011) by using the classical Biot theory.

Fig. 7 shows the displacements of R1 wave as a function of a
dimensionless depth at a frequency of 300 Hz. The displacements
decrease with increasing depth, due to the energy decay, and critical
depth is approximately 2.0 times of the pseudo-Rayleigh wave-
length. The vertical displacement predominates in the propagation,
and exhibits a maximum at a depth of approximately one fifth the R1
wavelength λ, around which the horizontal displacement approaches
zero, indicating that, the vertical and horizontal displacements are
out of phase by approximately 90◦. The results are quite similar as
those of Qiu et al. (2019), and imply a retrograde elliptical motion
of the particles near the surface. When the depth is larger than 0.2λ,
the trajectory becomes clockwise (prograde). Fig. 8 further shows
the variation of the ellipticity (HZ ratio) with frequency at the sur-
face. The effects of the LFF and BCs are observed at low and high

(a)

(b)

Figure 20. Phase velocities of the higher-order surface modes for H = 5 m
(a) and H = 20 m (b), respectively. The sealed BCs are used and the LFF is
present (ε = 0.20, γ = 0.002).

frequencies, respectively. At low frequencies, the presence of the
LFF increases the ellipticity, whereas at high frequencies, the sealed
BCs yield a smaller ellipticity. The HZ ratio increases with increas-
ing frequency for open BCs, unlike the sealed case. The averaged
HZ ratio is approximately 0.65.

Figs 9 and 10 show the effects of the crack density ε and aspect
ratio γ on velocity dispersion and dissipation of the R1 wave. For
both sealed and open BCs, the higher the ε is the lower the phase
velocity of the R1 wave is and the higher the mesoscopic attenua-
tion between 10 Hz and 10 kHz. Increasing ε significantly decreases
the shear wave velocity, as shown in Fig. 3b, and the superposition
with the other body waves implies a low pseudo-Rayleigh velocity.
Increasing ε also enhances the P1-wave attenuation at low frequen-
cies (see Fig. 3c), and consequently the attenuation of the R1 wave.
On the other hand, increasing the aspect ratio γ , the velocity of the
R1 wave increases, but the variations are not significant as those in
Fig. 9. The relaxation frequency of the mesoscopic-scale attenua-
tion also increases, but the amount of attenuation is not evidently
affected. The reason is due to the fact that increasing γ implies a
higher shear-wave velocity and moves the relaxation peak to higher
frequencies. The variations in attenuation and velocity of the body
waves are smaller than those for ε between 0.18 to 0.2, and hence
the corresponding variations of the R1 wave are relatively small.
We then conclude that the crack density mainly affects the amount
of attenuation, whereas the crack aspect ratio is the main factor
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(a)

(b)

Figure 21. Phase velocity (a) and dissipation factor (b) of the first-order
mode with frequency at two values of H for sealed BCs (ε = 0.20, γ =
0.002). The open symbols represent the results without LFF, whereas the
solid lines are the results in the presence of LFF.

affecting the location of the relaxation peak, in agreement with
effects on the body waves (Zhang et al. 2019).

5.2 Waves at the liquid/double-porosity medium interface

Next, we consider H = +∞, corresponding to the propagation of
Stoneley-type waves at the interface between water and poroelas-
tic half-spaces. The theory confirms the existence of three modes,
denoted as T1, T2 and T3, respectively. The T1 wave propagates
slower than the fluid velocity, but faster than the two slow modes,
which is a pseudo-Stoneley wave, since it is leaky. The two T2 and
T3 waves are quite similar to the R2 and R3 modes and resemble
the P2 and P3 waves, respectively. They exist only for sealed BCs.

Figs 11 and 12 show the phase velocity and dissipation factor of
T1 wave as a function of frequency. Both the LFF and BCs affect the
propagation of this wave significantly, in a similar manner as those
on R1 wave, i.e., the BCs affect the propagation at high frequencies,
whereas the effect of LFF is mainly observed at frequencies lower
than 10 kHz. The LFF induces more attenuation on the frequency
band between 10 Hz and 10 kHz, and consequently the velocity
dispersion. At high frequencies, the sealed BCs yield a smaller
velocity than the open-pore ones, unlike the results for the R1
wave. Moreover, the pseudo-Stoneley wave has a smaller velocity
but stronger attenuation peaks than those of the pseudo-Rayleigh
wave. It should propagate slower than the acoustic wave in water
(v0 = √

λ0/ρ0 = 1490 m/s). Fig. 13 shows the phase velocities of

the two slow T2 and T3 modes. Irrespective of whether the LFF is
present or absent, these two waves resemble the P2 and P3 waves
and exist only for sealed BCs. Using the classical high-frequency
Biot theory, Feng & Johnson (1983) predicted a similar slow surface
mode. It propagates slower than the Biot slow wave and is not leaky,
i.e., it is a true Stoneley wave. As stated in Feng & Johnson (1983),
this Stoneley mode is asymptotically the bulk slow wave. Due to
the existence of two slow waves in the double-porosity theory, the
surface-wave dispersion equation gives two slow Stoneley modes.

Fig. 14 shows the displacements of T1 wave as a function of depth
when the frequency is 300 Hz. The vertical displacements in both
the water and porous half-spaces are continuous at the interface,
consistent with the BCs, whereas the horizontal displacements are
not. The horizontal displacement in water is much larger. The critical
depth is approximately 1.5 times the pseudo-Stoneley wavelength
in both half-spaces, indicating that the wave decays faster in water.
Similar as Fig. 7, a sharp variation of the horizontal displacement in
the porous half-space can also be observed, suggesting the change
in trajectories of the particle motions, whereas it is not evident in
water. Fig. 15 shows the variations of the ellipticity (HZ ratio) with
frequency at z = 0. The T1 wave has a relatively smaller ellipticity
than the R1 wave given in Fig. 8, which are similarly affected by the
LFF and BCs. At high frequencies, the ellipticity with open BCs
increases significantly, possibly due to conversion between fast and
slow modes through the open pores.

The crack density and aspect ratio affect the propagation of
pseudo-Stoneley wave in a similar manner as that of the R1 wave,
as shown in Figs 16 and 17. For both BCs, the phase velocity de-
creases with increasing ε, whereas it increases as γ increases. ε

mainly affects the amount of attenuation, whereas γ is the main
factor determining the relaxation frequency of the mesoscopic at-
tenuation. Unlike the propagation of the R1 wave, the sealed BCs
can give a smaller pseudo-Stoneley velocity at high frequencies,
and a stronger mesoscopic attenuation, when compared with the
open BCs.

5.3 Waves at the interface between a liquid layer and a
double-porosity half-space

Finally, we consider the general case of a finite thickness H of the
water layer. Similar to the results of the interface between a water
layer and an elastic solid, the theory predicts high-order surface
modes. In addition, for sealed-pore BCs, the theory predicts two
slow modes that are quite similar to the T2 and T3 waves given
in Fig. 13. Those two modes resemble the bulk P2 and P3 waves,
and are hardly affected by the water thickness H (and therefore not
displayed).

Fig. 18 shows the phase velocity and dissipation factor of the
fundamental mode with frequency for three values of H, when
LFF is present. At the low-frequency limit, the phase velocity is
much higher than that of H = +∞ and tends towards an asymp-
totic value of 1467 m/s = 0.9257 VS, which is the velocity of the
pseudo-Rayleigh wave (R1) traveling along the free surface of a
porous half-space, as given in Fig. 4. At high frequencies, the re-
sult overlaps that of H = +∞, corresponding to the propagation
of a pseudo-Stoneley wave, as in Fig. 11, which is dependent on
the BCs. Consequently, a significant velocity-dispersion decrease is
observed over intermediate frequencies, in particular between 0.1
and 300 Hz, unlike the case H = +∞, even though the attenuation is
less than the Biot peak at high frequencies. The dispersion location
moves to low frequencies when H increases. The effect of the BCs
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Figure 22. Absolute values of displacements of the fundamental mode (the pseudo-Stoneley) as a function of depth at 300 Hz for H = 5 m (left) and H =
20 m (right). The displacements are normalized by the absolute vertical uz at the surface (z = 0) in the double-porosity medium, and the depth is normalized
by the fundamental-mode wavelength λ. The open-pore BCs are used and the LFF is present.

Figure 23. Ellipticity (HZ ratio) of the fundamental mode as a function of
frequency for the porous medium at the interface z = 0 (H = 20 m).

is only significant at high frequencies, because at low frequencies,
the slow wave modes don’t propagate and the interface becomes
equivalent to the water/elastic-medium one. The velocity is smaller
than the fluid velocity v0 = 1490 m/s, and hence the fundamental
mode is a pseudo-Stoneley wave. Further comparisons, when the
LFF is absent, are given in Fig. 19. We observe a significant dis-
persion at low frequencies. The presence of the LFF enhances the
attenuation at frequencies between 10 Hz and 10 kHz. At the low-
frequency limit, the velocity in the absence of LFF is larger, because
the velocity of the pseudo-Rayleigh wave is higher, as displayed in
Fig. 4.

Fig. 20 shows the velocity dispersion of the higher-order modes
for H = 5 m and 20 m. The cut-off frequency regards the higher-
order mode, and it increases as the order increases. The velocity
of each mode is approximately equal to the shear-wave velocity

(a)

(b)

Figure 24. Effect of crack density ε on velocity dispersion (a) and dissipa-
tion factor (b) of the fundamental mode with H = 10 m. A constant γ =
0.002 is used. The LFF is present. The black dashed line corresponds to the
velocity of the acoustic wave in water.
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(a)

(b)

Figure 25. Effect of crack aspect ratio γ on velocity dispersion (a) and
dissipation factor (b) of the fundamental mode with H = 10 m. A constant
ε = 0.20 is used. The LFF is present.

at the cut-off frequency and decreases as the frequency increases,
reaching a limit equal to 1490 m/s, the velocity of the acoustic wave
in water. Therefore, the higher-order modes are pseudo-Rayleigh
waves. Decreasing H implies an increased cut-off frequency for
each mode. Fig. 21 shows the phase velocity and dissipation factor
of the first-order mode for two values of H. The presence of the
LFF induces a higher attenuation at low frequencies, but the loss is
quite small. It should be noted that, if the acoustic velocity in water
is greater than the P1-wave velocity in the porous half-space, such
higher-order surface modes do not exist.

Fig. 22 shows the displacements of the fundamental mode as a
function of depth at 300 Hz for H = 5 m and 20 m, corresponding to
1.2 and 4.7 times the fundamental-mode wavelength, respectively.
The variations are quite similar as those of Fig. 14. The fundamental
mode loses its energy as the distance from the interface z = 0
increases. The displacements are not completely zero at the water
surface when z = −H = −5 m, while they are zero when H =
20 m. There is also a sharp variation in the horizontal displacement
in porous medium, similarly indicating the change in trajectories of
the particle motions. The ellipticity (HZ ratio) of the fundamental
mode as a function of frequency at z = 0 is displayed in Fig. 23. At
low frequencies, the ellipticity is much higher than that displayed in
Fig. 15, and decreases as the frequency increases, in correspondence
to the significant velocity dispersion when H = 20 m (see Figs 18
and 19). At high frequencies, the results become the same as those
in Fig. 15. The effects of the LFF and BCs are similarly observed.

Figure 26. Absolute values of displacements of the fundamental mode (the
pseudo-Rayleigh) as a function of depth at 20 Hz for H = 10 m. The
displacements are normalized by the absolute vertical uz at the surface (z
= 0) in the double-porosity medium, and the depth is normalized by the
pseudo-Rayleigh wavelength λ. The open-pore BCs are used and the LFF is
present (ε = 0.18, γ = 0.002).

Finally, Figs 24 and 25 show the effects of the crack density ε and
aspect ratio γ on velocity and dissipation of the fundamental mode
when H = 10 m. The effects are quite similar to those displayed in
Figs 16 and 17, except that at low frequencies, a significant veloc-
ity dispersion (decrease) between 1 and 100 Hz is observed. Note
that when ε = 0.18 and 0.19, the velocities at low frequencies are
higher than the fluid velocity (see Fig. 24a), because the asymp-
totic values at the low-frequency limit, equal to the velocity of the
pseudo-Rayleigh wave, become larger than v0, as shown in Fig. 9.
This implies that in these cases the fundamental mode becomes
the pseudo-Rayleigh wave that oscillates in the water layer. Fig. 26
shows the corresponding absolute pseudo-Rayleigh displacements
as a function of depth for ε = 0.18 and γ = 0.002, at a frequency
of 20 Hz, where the phase velocity is 1494 m/s. In the water layer,
the horizontal displacement decays to zero sharply, whereas the
vertical one is not evidently attenuated, unlike the behavior of the
pseudo-Stoneley wave in Fig. 22.

6 C O N C LU S I O N S

We have analyzed the propagation of surface waves at an interface
between a water layer and a double-porosity half-space containing
penny-shaped cracks, where local fluid flow (LFF) attenuation is
present. Special cases are discussed by assuming the thickness of
the water layer to be zero and infinity. In particular, we study the
effects of the LFF, (open and sealed) boundary conditions (BCs) and
crack density/aspect ratio on the surface-wave propagation. In the
cases we study, we find a pseudo-Rayleigh wave for zero thickness, a
pseudo-Stoneley wave for infinite thickness, and high-order surface
modes for finite (non-zero) thickness. The results reveal the velocity
dispersion and attenuation of all these waves. The LFF mechanism
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affects the propagation at frequencies less than 1 kHz, enhancing
the attenuation, whereas the effects of the BCs are mainly observed
at high frequencies. The crack density mainly affects the amount
of mesoscopic attenuation, whereas the aspect ratio the location of
the relaxation peak in the frequency band. The pseudo-Rayleigh
wave propagates faster than the pseudo-Stoneley wave, with their
respective dimensionless velocities relative to the shear wave being
approximately 0.93 and 0.80. The fundamental mode exhibits a
significant velocity dispersion, which moves to low frequencies
when the thickness increases. In all cases, we additionally find two
slower surface modes that resemble the slow P2 and P3 waves
but exist only for sealed BCs, which are hardly affected by the
LFF, BCs or the thickness of water layer. Future research includes
the analysis of different medium properties and the derivation of
analytical solutions based on the Green function.
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A P P E N D I X A : E X P R E S S I O N S O F T H E
S T I F F N E S S A N D D E N S I T Y
C O E F F I C I E N T S

Following Zhang et al. (2019), the stiffness coefficients in eq. (7)
are

λc = (1 − φ)Ks − 2

3
μb +

(
2 − Ks

K f

)
(φ1α1 M1 + φ2α2 M2)

−
(

1 − Ks

K f

) (
φ2

1 M1 + φ2
2 M2

)
,

α1 = βφ1 Ks

γ K f
+ φ1, α2 = φ2 Ks

γ K f
+ φ2,

M1 = K f

(β/γ + 1)φ1
, M2 = K f

(1/γ + 1)φ2
,

γ = Ks

K f

[
βφ1 + φ2

1 − φ − Kb/Ks

]
, β = φ20

φ10

[
1 − (1 − φ10)Ks/Kb1

1 − (1 − φ20)Ks/Kb2

]
,

(A1)

where φ = φ1 + φ2 is the total porosity, Ks and Kf are the bulk
moduli of the solid and fluid, Kb is the dry-rock modulus, which
should be Biot-consistent (Thomsen 1985):

Kb = 2

3

1 + vB

1 − 2vB
μb, (A2)

with

μb = μs

(
1 − φ1

1 − bB
− BBε

)
,

bB = 2

15

4 − 5vB

1 − vB
, BB = 32

45

(1 − vB)(5 − vB)

2 − vB
, (A3)

where μs is the grain shear modulus, vB is the Poisson ratio, and ε

is the crack density; Kb1 and Kb2 are the dry-rock bulk moduli of
the host medium and inclusions, which can be determined from

Kb1 = (1 − φ10)Ks

1 + c1φ10
,

f2

Kb2
= 1

Kb
− f1

Kb1
, (A4)

where c1 is the consolidation parameter of the host medium.
In the uniform-porosity case, the corresponding quantities in

eq. (2) are

A = (1 − φ)Ks − 2N/3 − Ks(Q1 + Q2)/K f , N = μb,

Q1 = α1 M1φ1 − M1φ
2
1 , R1 = M1φ

2
1 ,

Q2 = α2 M2φ2 − M2φ
2
2 , R2 = M2φ

2
2 . (A5)

The five density coefficients ρ ij in eq. (4), defined in the same
manner as Biot (1962), are

ρ00 = (1 − φ)ρs − ρ f (φ − 1)/2,

ρ11 = (φ1 + f1)ρ f /2, ρ22 = (φ2 + f2)ρ f /2,

ρ01 = (φ1 − f1)ρ f /2, ρ02 = (φ2 − f2)ρ f /2, (A6)

where ρs is the grain density.

A P P E N D I X B : C O M P O N E N T S O F M I N
E Q. ( 2 9 )

Defining

n1 = λc − α1 M1φ1 − α2 M2φ2 + d1(α1 M1φ1φ2 − α2 M2φ1φ2),

n2 = α1 M1φ1 + d2(α1 M1φ1φ2 − α2 M2φ1φ2),

n3 = α2 M2φ2 + d3(α1 M1φ1φ2 − α2 M2φ1φ2),

h1 = −α1 M1 + M1φ1 − M1φ1φ2d1,

h2 = −M1φ1 − M1φ1φ2d2,

h3 = −M1φ1φ2d3,

g1 = −α2 M2 + M2φ2 + M2φ1φ2d1,

g2 = M2φ1φ2d2,

g3 = −M2φ2 + M2φ1φ2d3, (B1)

the elements of matrix M are

M00 = 0, M01 = 2ξ1, M02 = 2ξ2, M03 = 2ξ3,

M04 = −i(1 + ξ 2
4 ),

(B2)

M10 = −(1 − exp[−2k Hξ0])ρ0,

M11 = (n1 + n2ν1 + n3δ1 + 2μb)(1/v2
1) − 2μb/c2,

M12 = (n1 + n2ν2 + n3δ2 + 2μb)(1/v2
2) − 2μb/c2,

M13 = (n1 + n2ν3 + n3δ3 + 2μb)(1/v2
3) − 2μb/c2,

M14 = 2iμbξ4/c2, (B3)

M20 = ξ0(1 + exp[−2k Hξ0]),

M21 = ξ1(1 − φ1 − φ2 + φ1ν1 + φ2δ1),

M22 = ξ2(1 − φ1 − φ2 + φ1ν2 + φ2δ2),

M23 = ξ3(1 − φ1 − φ2 + φ1ν3 + φ2δ3),

M24 = −i(1 − φ1 − φ2 + φ1ν4 + φ2δ4), (B4)
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M30 = −(1 − exp[−2k Hξ0])ρ0,

M31 = −(h1 + h2ν1 + h3δ1)/v2
1 + i(ν1 − 1)

√
1

c2
− 1

v2
1

Z1φ1,

M32 = −(h1 + h2ν2 + h3δ2)/v2
2 + i(ν2 − 1)

√
1

c2
− 1

v2
2

Z1φ1,

M33 = −(h1 + h2ν3 + h3δ3)/v2
3 + i(ν3 − 1)

√
1

c2
− 1

v2
3

Z1φ1,

M34 = (ν4 − 1)
1

c
Z1φ1, (B5)

M40 = −(1 − exp[−2k Hξ0])ρ0,

M41 = −(g1 + g2ν1 + g3δ1)/v2
1 + i(δ1 − 1)

√
1

c2
− 1

v2
1

Z2φ2,

M42 = −(g1 + g2ν2 + g3δ2)/v2
2 + i(δ2 − 1)

√
1

c2
− 1

v2
2

Z2φ2,

M43 = −(g1 + g2ν3 + g3δ3)/v2
3 + i(δ3 − 1)

√
1

c2
− 1

v2
3

Z2φ2,

M44 = (δ4 − 1)
1

c
Z2φ2. (B6)

A P P E N D I X C : B I O T A N D F E N G A N D
J O H N S O N E Q UAT I O N S A S A
PA RT I C U L A R C A S E

We show that the double-porosity model reduces to the Biot theory
when some quantities are zero, and the corresponding equations de-
rived from the BCs become those of Feng & Johnson (1983) at a
fluid/porous-medium interface.

Considering φ20 = f2 = 0, as given in Appendix A, Q2 = R2 =
0. Correspondingly, ς does not play a role. Then, eq. (2) becomes

σ1 = −φ1 Pf 1 = Q1ε + R1η
(1),

σi j = 2Nεi j + [
Aε + Q1η

(1)
]
δi j . (C1)

Also, b2 = 0, and ρ22 = ρ02 = 0, and eq. (4) reduces to

σi j, j = ρ00üi + ρ01Ü (1)
i + b1(u̇i − U̇ (1)

i ),

(σ1),i = ρ01üi + ρ11Ü (1)
i − b1(u̇i − U̇ (1)

i ). (C2)

Then, eqs (5) becomes the classic Biot theory (1962):

N∇2u + (A + N )∇ε + Q1∇η(1) = ρ00ü + ρ01Ü(1)

+ b1(u̇ − U̇(1)),

Q1∇ε + R1∇η(1) = ρ01ü + ρ11Ü(1) − b1(u̇ − U̇(1)). (C3)

Based on the Helmholtz decomposition, we similarly have

u = ∇ϕ0 + ∇ × �0, U(1) = ∇ϕ1 + ∇ × �1, (C4)

with{
ϕ0 = A0exp

[
i(kp · r − ωt)

]
ϕ1 = A1exp

[
i(kp · r − ωt)

] ,

{
�0 = B0exp [i(ks · r − ωt)]
�1 = B1exp [i(ks · r − ωt)]

.

(C5)

Applying the divergence operator to eq. (C3), we have

Y · A = 0, (C6)

where A = [A0, A1]T, and the components of Y are⎧⎨
⎩

Y11 = (A + 2N )k2
p − ρ00ω

2 − iωb1,

Y12 = Y21 = Q1k2
p − ρ01ω

2 + iωb1,

Y22 = R1k2
p − ρ11ω

2 − iωb1,

(C7)

which gives two complex roots (k1 and k2), corresponding to the fast
P1 and slow P2 waves, respectively. Solving eq. (C6), we obtain the

amplitude ratio
A1

A0
at the specific ki as

A1

A0
|k=ki = −Y11

Y12
|k=ki = νi . (C8)

Those two ratios (ν1 and ν2) correspond to −G+ and −G− in
Feng & Johnson (1983), respectively.

Similarly, for the shear wave, we have

E · B = 0, (C9)

where, B = [B0, B1]T, and the components of E are⎧⎨
⎩

E11 = Nk2
s − ρ00ω

2 − iωb1,

E12 = E21 = −ρ01ω
2 + iωb1,

E22 = −ρ11ω
2 − iωb1.

(C10)

There exists one complex root (k3), and the amplitude ratio becomes

B1

B0
= − E21

E22
= ν4, (C11)

which corresponds to
α̃ − 1

α̃
in eq. (A5) of Feng & Johnson (1983).

In the Biot medium (z > 0), the displacements of the solid and
fluid particles are

ux =
2∑

j=1

∂� j

∂x
− ∂�4

∂z
, uz =

2∑
j=1

∂� j

∂z
+ ∂�4

∂x
,

U (1)
x =

2∑
j=1

ν j
∂� j

∂x
− ν4

∂�4

∂z
, U (1)

z =
2∑

j=1

ν j
∂� j

∂z
+ ν4

∂�4

∂x
,

(C12)

where �1, �2 and �4 correspond to the P1, P2 and SV waves, which
can be expressed as in eq. (24).

At the interface, the following BCs are satisfied as

(σxz)II = 0,

(τzz)I = (σzz)II + (σ1)II,

(uz)I = (uz)II + φ1(U (1)
z − uz)II,

(p f )I − (Pf 1)II = Z1φ1(U̇ (1)
z − u̇z)II. (C13)

These BCs form a system of equations of order four as follows

NDb = 0, (C14)

where Db = [D0, D1, D2, D4]T , and the elements of N are

N00 = 0, N01 = 2ξ1, N02 = 2ξ2, N03 = −i(1 + ξ42 ), (C15)

N10 = −(1 − exp[−2k Hξ0])ρ0,

N11 = (A + Q1 + ν1(R1 + Q1) + 2N )(1/v2
1) − 2N/c2,

N12 = (A + Q1 + ν2(R1 + Q1) + 2N )(1/v2
2) − 2N/c2,

N13 = 2iNξ4/c2, (C16)
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N20 = ξ0(1 + exp[−2k Hξ0]),

N21 = ξ1(1 − φ1 + φ1ν1),

N22 = ξ2(1 − φ1 + φ1ν2),

N23 = −i(1 − φ1 + φ1ν4), (C17)

N30 = −(1 − exp[−2k Hξ0])ρ0,

N31 = (Q1 + R1ν1)/φ1/v
2
1 + i(ν1 − 1)

√
1

c2
− 1

v2
1

Z1φ1,

N32 = (Q1 + R1ν2)/φ1/v
2
2 + i(ν2 − 1)

√
1

c2
− 1

v2
2

Z1φ1,

N33 = (ν4 − 1)
1

c
Z1φ1. (C18)

It is evident that the above equation can be derived by letting φ2

= 0 in the elements of M and then eliminating the fourth column
and fifth row.

Now, we compare eqs (C14) with those of Feng & Johnson (1983).
By letting H = +∞, and P = A + 2N, and defining

D0 = C0, D1 = C1, D2 = C2, D4 = iC4

ν1 = −G+, ν2 = −G−, ν4 = α̃ − 1

α̃
, Z1 = T,

(C19)

in the same manner as Feng & Johnson (1983), the first equation in
(C14) becomes

2ξ1C1 + 2ξ2C2 + (1 + ξ 2
4 )C4 = 0. (C20)

After a simplification, we derive eq. (C2) of Feng & Johnson (1983).
The second equation in (C14) becomes

ρ0c2C0 +
(

[G+(R1 + Q1) − (P + Q1)] c2

v2
1

+ 2N

)
C1

+
(

[G−(R1 + Q1) − (P + Q1)] c2

v2
2

+ 2N

)
C2

+ 2Nξ4C4 = 0, (C21)

which is eq. (C1) of Feng & Johnson (1983).
The third equation in (C14) becomes

ξ0C0 + ξ1(1 − φ1 − φ1G+)C1 + ξ2(1 − φ1 − φ1G−)C2

+
(

1 − φ1

α̃

)
C4 = 0, (C22)

which is eq. (C3) of Feng & Johnson (1983).
The last equation in (C14) becomes

−ρ0C0 +
[

Q1 − R1G+
φ1v

2
1

− i
(G+ + 1)ξ1T φ1

c

]
C1

+
[

Q1 − R1G−
φ1v

2
2

− i
(G− + 1)ξ2T φ1

c

]
C2 − i

T φ1

cα̃
C4 = 0.

(C23)

By multiplying −φ1c2 on both sides, we derive eq. (C4) of Feng &
Johnson (1983).
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