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ABSTRACT

We have applied the nearly perfectly matched layer
(N-PML) absorber to the viscoelastic wave equation based on
the Kelvin-Voigt and Zener constitutive equations. In the first
case, the stress-strain relation has the advantage of not requir-
ing additional physical field (memory) variables, whereas the
Zener model is more adapted to describe the behavior of rocks
subject to wave propagation in the whole frequency range.
In both cases, eight N-PML artificial memory variables are
required in the absorbing strips. The modeling simulates 2D
waves by using two different approaches to compute the spa-
tial derivatives, generating different artifacts from the bounda-
ries, namely, 16th-order finite differences, where reflections
from the boundaries are expected, and the staggered Fourier
pseudospectral method, where wraparound occurs. The time
stepping in both cases is a staggered second-order finite-differ-
ence scheme. Numerical experiments demonstrate that the N-
PML has a similar performance as in the lossless case. Com-
parisons with other approaches (S-PML and C-PML) are car-
ried out for several models, which indicate the advantages and
drawbacks of the N-PML absorber in the anelastic case.

INTRODUCTION

Wave modeling is a valuable tool for seismic interpretation and is
an essential part of inversion algorithms. Most problems regarding
environmental geophysics, seismic exploration, earthquake seis-
mology, and nondestructive testing of materials require the use
of full-wave modeling methods based on model discretization (a
mesh). However, the finite nature of the discretized models gener-
ates reflections and/or wraparound from the edges of the mesh, and
damping has to be implemented on these boundaries in the form of

absorbing strips. This is also a common problem in laboratory
experiments (Krawczyk et al., 2013; Bodet et al., 2014).
Kosloff and Kosloff (1986) introduce a modification of the wave

equation inside the absorbing strips, where the solution is a wave
traveling without dispersion, but whose amplitude decreases with dis-
tance at a frequency-independent rate. A traveling pulse will thus di-
minish in amplitude without a change of shape. On the other hand,
the split perfectly matched layer (S-PML) method has been proposed
by Bérenger (1994) as an absorbing boundary condition (ABC) for
electromagnetic waves. Later, the method has been modified to im-
prove its performance at grazing angles (convolutional C-PML) (e.g.,
Komatitsch and Martin, 2007). The method has been widely used in
finite-difference (FD) and finite-element methods. Carcione and
Kosloff (2013) reinterpret all of the PML methods in terms of
mechanical models and show their relationships in the time and fre-
quency domains. The S-PML and Kosloff and Kosloff methods are
based on a Maxwell viscoelastic model, whereas the C-PML is based
on the well-known memory-variable equations used to model wave
propagation in anelastic media (Carcione, 2014). Many high-order
ABCmethods (Bécache et al., 2010; Etienne et al., 2010; Rabinovich
et al., 2010; Hagstrom et al., 2012) and hybrid ABCs (Liu and Sen,
2010, 2012; Ren and Liu, 2013) have also been developed, in the
time and frequency domains, for modeling acoustic and elastic
equations.
As shown by Chen (2011, 2012), the so-called nearly perfect

matched layer (N-PML) differs from the previous PML models by
using fewer auxiliary variables and ordinary differential equations,
while having the same performance. He implements the method for
the 2D isotropic elastic wave equation and clearly shows its effi-
ciency compared with the previous PML methods. Moreover, Hu
and Cummer (2004) and Hu et al. (2007) show that despite the word
“nearly,” the N-PML absorber is analytically (exactly) equivalent to
the standard PML in Cartesian coordinates for 1D, 2D, and 3D
problems. The difference between the two PML forms is only in
implementation, the N-PML being particularly simple to code
because it retains the form of the regular medium partial difference
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equations even in lossy and anisotropic materials and does so with
a minimum of auxiliary variables and additional computation.
Recently, Lai and Minkoff (2017) evidence additional advantages
of the method, such as that the equations are the same as the original
governing equations and code parallelization remains unaffected.
The purpose of the present work is to show how to implement

the N-PML absorber in anelastic wave equations based on the
Kelvin-Voigt (KV) and Zener mechanical models, two of the most
used mechanical models to describe attenuation and velocity
dispersion in solids (e.g., Carcione and Helle, 2004; Carcione et al.,
2004). The method is illustrated in two dimensions, but extension to
the 3D space is straightforward. The KV model requires the calcu-
lations of additional spatial derivatives and avoids the viscoelastic
memory variables (Carcione et al., 2004), saving computer memory,
whereas the Zener model is more physical to describe wave propa-
gation in solids, but it requires viscoelastic memory variables.
In both cases, eight additional artificial memory variables for the
absorbing strips are required (2D space), which are based on the
Maxwell mechanical model. The equations are solved with a sec-
ond-order FD scheme for time stepping and 16th-order staggered
FD to compute the spatial derivatives (e.g., Virieux, 1986), which
is the same algorithm used by Chen (2011, 2012), but here we use a
more accurate spatial differentiation. In this case, reflections from
the mesh boundaries are expected. In addition, we solve the prob-
lem using the staggered Fourier pseudospectral method to compute
the spatial derivatives where the wavefield wraparound occurs
(Carcione, 1999).

KELVIN-VOIGT MODEL

Equation of motion

The equations of momentum conservation can be expressed as

ρüi ¼
∂σij
∂xj

þ fi; (1)

where ρ is the density, ui are the displacement components, σij de-
note the stress components, and fj are the body forces. A dot above
a variable denotes time differentiation, and the Einstein convention
for repeated indices is used.
The stress-strain relations for a KV solid are a simple generali-

zation of those for 1D media (Carcione et al., 2004; Carcione,
2014). They are

σij ¼ ðλθ þ λ 0 _θÞδij þ 2μϵij þ 2μ 0 _ϵij; (2)

where λ and μ are the Lamé constants, λ 0 and μ 0 are the correspond-
ing anelastic parameters,

ϵij ¼
1

2

�
∂ui
∂xj

þ ∂uj
∂xi

�
(3)

are the strain components,

θ ¼ ∂ui
∂xi

; (4)

and δij is Kronecker’s delta.

Following Carcione et al. (2004), the anelastic parameters can
be obtained from the quality factors at a given (reference) frequency
ω0 as

λ 0 ¼ 1

ω0

�
E
QP

−
2μ

QS

�
and μ 0 ¼ μ

ω0QS
; (5)

where QP and QS are the quality factors at ω ¼ ω0 and E ¼ λþ 2μ
and μ are the moduli at ω ¼ 0. In terms of velocities, E ¼ ρV2

P and
μ ¼ ρV2

S, where VP and VS are the low-frequency limit phase
velocities.

Velocity-stress formulation

The 3D particle velocity-stress formulation has been proposed in
Carcione et al. (2004). The 2D case is as follows. Define the quan-
tities

Πx ¼
1

ρ

�
∂σxx
∂x

þ ∂σxz
∂z

þ fx

�
; (6)

Πz ¼
1

ρ

�
∂σxz
∂x

þ ∂σzz
∂z

þ fz

�
; (7)

ψ ¼ ∂Πx

∂x
þ ∂Πz

∂z
and ϑ ¼ ∂vx

∂x
þ ∂vz

∂z
: (8)

Then, the KV momentum and stress-strain relations equations are

_vx ¼ Πx; _vz ¼ Πz (9)

and

_σxx ¼ λϑþ λ 0ψ þ 2μ
∂vx
∂x

þ 2μ 0 ∂Πx

∂x
; (10)

_σzz ¼ λϑþ λ 0ψ þ 2μ
∂vz
∂z

þ 2μ 0 ∂Πz

∂z
; (11)

_σxz ¼ μ

�
∂vx
∂z

þ ∂vz
∂x

�
þ μ 0

�
∂Πx

∂z
þ ∂Πz

∂x

�
; (12)

respectively.
Equations 9–12 constitute the velocity-stress formulation for the

KV model in 2D space. The extra cost to avoid memory-variable
requirements is the calculation of additional spatial derivatives cor-
responding to the acceleration components.

N-PML equations

In the N-PML method, all of the variables in the spatial deriva-
tives are rescaled by a complex damping function, e.g.
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∂vx
∂x

→
∂wx

∂x
; wx ¼

vx
sx

; sx ¼ 1þ dx
iω

; (13)

where ω is the angular frequency and dx is a damping parameter
(e.g., Chen, 2011). The damper sx is equivalent to a Maxwell model
(Carcione and Kosloff, 2013). In the time domain, equation 13 is

wx ¼ vx �
1

sx
¼ vx � ∂t½HðtÞ expð−dxtÞ�; (14)

where H is the Heaviside function. Let us find an equation for wx

(it is similar to a memory-variable equation, e.g., Carcione, 2014).
Differentiating equation 14, we easily obtain

_wx ¼ _vx − dxwx: (15)

However, we have to distinguish between

∂x
�
vx
sx

�
and ∂z

�
vx
sz

�
; (16)

so we redefine

wxx ¼
vx
sx

and wzx ¼
vx
sz

; (17)

where the first subindex on the left side corresponds to the spatial
derivative.
We rescale the primary unknown variables ½vx; vz; σxx; σzz; σxz�.

Considering equations 9–12, the complete set of artificial memory-
variable equations in the absorbing strips is

8>>>>>>>>>><
>>>>>>>>>>:

_wxx ¼ _vx − dxwxx;
_wzx ¼ _vx − dzwzx;
_wxz ¼ _vz − dxwxz;
_wzz ¼ _vz − dzwzz;
_τxx ¼ _σxx − dxτxx;
_τzz ¼ _σzz − dzτzz;
_τxxz ¼ _σxz − dxτxxz;
_τzxz ¼ _σxz − dzτzxz;

(18)

where

wxx ¼
vx
sx

; wzx ¼
vx
sz

; wxz ¼
vz
sx

; wzz ¼
vz
sz

;

τxx ¼
σxx
sx

; τxxz ¼
σxz
sx

; τzxz ¼
σxz
sz

; τzz ¼
σzz
sz

: (19)

The equation of motion 9 is replaced by

8><
>:

_vx ¼ Π̄x ¼ 1
ρ

�
∂τxx
∂x þ ∂τzxz

∂z þ fx

�
;

_vz ¼ Π̄z ¼ 1
ρ

�
∂τxxz
∂x þ ∂τzz

∂z þ fz

�
;

(20)

and the stress-strain relations 10–12 by

_σxx ¼ λϑ̄þ λ 0ψ̄ þ 2μ
∂wxx

∂x
þ 2μ 0 ∂Π̄x

∂x
; (21)

_σzz ¼ λϑ̄þ λ 0ψ̄ þ 2μ
∂wzz

∂z
þ 2μ 0 ∂Π̄z

∂z
; (22)

_σxz ¼ μ

�
∂wzx

∂z
þ ∂wxz

∂x

�
þ μ 0

�
∂Π̄x

∂z
þ ∂Π̄z

∂x

�
: (23)

To obtain a velocity-stress formulation, we have to replace equa-
tions 20–23 into equation 18, obtaining

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

_wxx ¼ Π̄x − dxwxx;
_wzx ¼ Π̄x − dzwzx;
_wxz ¼ Π̄z − dxwxz;
_wzz ¼ Π̄z − dzwzz;
_τxx ¼ λϑ̄þ λ 0ψ̄ þ 2μ ∂wxx

∂x þ 2μ 0 ∂Π̄x
∂x − dxτxx;

_τzz ¼ λϑ̄þ λ 0ψ̄ þ 2μ ∂wzz
∂z þ 2μ 0 ∂Π̄z

∂z − dzτzz;

_τxxz ¼ μ

�
∂wzx
∂z þ ∂wxz

∂x

�
þ μ 0

�
∂Π̄x
∂z þ ∂Π̄z

∂x

�
− dxτxxz;

_τzxz ¼ μ

�
∂wzx
∂z þ ∂wxz

∂x

�
þ μ 0

�
∂Π̄x
∂z þ ∂Π̄z

∂x

�
− dzτzxz:

(24)

Then, we solve equations 20–24, with dx and dz different from zero
only in the absorbing strips.
In the 2D N-PML formulation, we pass from ½vx; vz; σxx; σzz; σxz�

(5 unknown variables) to ½vx; vz; wxx; wzz; wxz; wzx; σxx; σzz; σxz; τxx;
τzz; τxxz; τzxz� (13 variables).
Parameters dx and dz are of the form

dx ¼ d0ðx∕LÞN; d0 ¼ −ðN þ 1Þvmax logðRÞ∕ð2LÞ; (25)

where L is the length of the strip, N ¼ 2, R ¼ 0.001, and vmax is the
maximum velocity (x ¼ 0 is the entrance to the strip) (Komatitsch
and Martin, 2007; Chen, 2011).

ZENER MODEL

The equations for the Zener model, based on the physical
memory variables (Carcione and Helle, 2004), are given by the
equations of momentum conservation (equation 9), the constitutive
equations:

_σxx ¼ λϑþ 2μ
∂vx
∂x

þ λe1 þ μðe1 þ e2Þ; (26)

_σzz ¼ λϑþ 2μ
∂vz
∂z

þ λe1 þ μðe1 − e2Þ; (27)

_σxz ¼ μ

�
∂vx
∂z

þ ∂vz
∂x

þ e3

�
; (28)

where e1, e2, and e3 are the memory variables, and λ and μ are the
unrelaxed (high-frequency) Lamé constants, respectively, and the
memory-variable equations
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_e1 ¼
�

1

τð1Þϵ

−
1

τð1Þσ

�
ϑ −

e1

τð1Þσ

; (29)

_e2 ¼
�

1

τð2Þϵ

−
1

τð2Þσ

��
∂vx
∂x

−
∂vz
∂z

�
−

e2

τð2Þσ

;

(30)

_e3 ¼
�

1

τð2Þϵ

−
1

τð2Þσ

��
∂vx
∂z

þ ∂vz
∂x

�
−

e3

τð2Þσ

;

(31)

where τðνÞσ and τðνÞϵ are the material relaxation
times, corresponding to the dilatational (ν ¼ 1)
and shear (ν ¼ 2) deformations. The relaxation
times can be expressed as

τðνÞϵ ¼ τ0
Qν

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

ν þ 1

q
þ 1

�
;

τðνÞσ ¼ τðνÞϵ −
2τ0
Qν

; (32)

where τ0 is a relaxation time, such that 1∕τ0 is the
center frequency of the relaxation peak and Qν

are the minimum quality factors. We assume
τ0ω0 ¼ 1, where ω0 is a reference frequency that
can be the dominant frequency of the source. The
quality factorQ1, associated with the bulk modu-
lus, is obtained from the relation:

1þ σ

Q1

¼ 3ð1 − σÞ
QP

−
2ð1 − 2σÞ

Q2

;

σ ¼ ðVP∕VSÞ2 − 2

2ðVP∕VSÞ2 − 2
; (33)

where σ is the Poisson’s ratio, and QP is the
P-wave quality factor, whereas the S-wave quality
factor is QS ¼ Q2. Here, VP and VS are the un-
relaxed (infinite-frequency) velocities.

Table 1. Field variables of the ABCs.

Model S-PML N-PML C-PML

Number Variables Number Variables Number Variables

KV 15 vx; vxx; vxz; vz; vzx; vzz; σxx; σxxx;
σxxz; σzz; σzzx; σzzz; σxz; σxzx; σxzz

13 vx; vz; σxx; σzz; σxz; wxx; wzx;
wxz; wzz; τxx; τzz; τxxz; τzxz

17 vx; vz; σxx; σzz; σxz;ψxðσxxÞ;ψ zðσxzÞ;
ψxðσxzÞ;ψzðσzzÞ;ψxðvxÞ;ψ zðvzÞ;

ψxðvzÞ;ψzðvxÞ;ψxðΠxÞ;
ψ zðΠzÞ;ψxðΠzÞ;ψ zðΠxÞ

Zener 24 vx; vxx; vxz; vz; vzx; vzz; σxx; σxxx;
σxxz; σzz; σzzx; σzzz; σxz; σxzx; σxzz;
e1; e1x; e1z; e2; e2x; e2z; e3; e3x; e3z

16 vx; vz; σxx; σzz; σxz; wxx; wzx; wxz;
wzz; τxx; τzz; τxxz; τzxz; e1; e2; e3

16 vx; vz; σxx; σzz; σxz;ψxðσxxÞ;
ψ zðσxzÞ;ψxðσxzÞ;ψ zðσzzÞ;

ψxðvxÞ;ψ zðvzÞ;ψxðvzÞ;ψ zðvxÞ; e1; e2; e3
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Figure 1. Snapshots at three propagation times (0.4, 0.7, and 0.9 s) (a) without absorb-
ing layers, (b) with C-PML ABC, (c) with N-PML ABC, and (d) with S-PML ABC,
based on the KV stress-strain relation.
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N-PML equations

In this case, the N-PML equations are the momentum equation 20,
the modified stress-strain relations

_σxx ¼ λϑ̄þ 2μ
∂wxx

∂x
þ λe1 þ μðe1 þ e2Þ; (34)

_σzz ¼ λϑ̄þ 2μ
∂wzz

∂z
þ λe1 þ μðe1 − e2Þ; (35)

_σxz ¼ μ

�
∂wzx

∂z
þ ∂wxz

∂x
þ e3

�
; (36)

the modified memory-variable equations

_e1 ¼
�

1

τð1Þϵ

−
1

τð1Þσ

�
ϑ̄ −

e1

τð1Þσ

; (37)

_e2 ¼
�

1

τð2Þϵ

−
1

τð2Þσ

��
∂wxx

∂x
−
∂wzz

∂z

�
−

e2

τð2Þσ

; (38)

_e3 ¼
�

1

τð2Þϵ

−
1

τð2Þσ

��
∂wzx

∂z
þ ∂wxz

∂x

�
−

e3

τð2Þσ

; (39)

and the N-PML memory-variable equations, similar to equation 24,
but including the physical memory variables

Table 2. The CPU time (s).

Model Geologic model S-PML N-PML C-PML

KV Homogeneous 146 140 142

Marmousi 3295 3257 3302

Zener Homogeneous 90 80 81

Marmousi 1411 1253 1257

a)

b)

Figure 2. Waveform comparisons at (500, 250) m between the
reference and numerical results, based on the KV model. The figure
(b) shows the difference between the numerical results and the refer-
ence one.

a)

b)

Figure 3. Waveform comparison at (500, 250) m between the refer-
ence and numerical results, based on the Zener model. The figure
(b) plot shows the difference between the numerical results and the
reference one.
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8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

_wxx ¼ Π̄x − dxwxx;
_wzx ¼ Π̄x − dzwzx;
_wxz ¼ Π̄z − dxwxz;
_wzz ¼ Π̄z − dzwzz;
_τxx ¼ λϑ̄þ 2μ ∂wxx

∂x þ λe1 þ μðe1 þ e2Þ − dxτxx;
_τzz ¼ λϑ̄þ 2μ ∂wzz

∂z þ λe1 þ μðe1 − e2Þ − dzτzz;

_τxxz ¼ μ

�
∂wzx
∂z þ ∂wxz

∂x þ e3

�
− dxτxxz;

_τzxz ¼ μ

�
∂wzx
∂z þ ∂wxz

∂x þ e3

�
− dzτzxz:

(40)

The number of field variables used by the three ABCs is shown in
Table 1. Overall, the N-PML ABC involves the minimum number
of variables. The differential equations are solved with a second-or-
der FD algorithm in time, whose workflow is given in Appendix A.

EXAMPLES

Homogeneous model

A homogeneous model is implemented to compare the absorbing
performances of the C-PML, N-PML, and S-PML ABCs. The refer-
ence solution, obtained with a much larger computational domain,
is also shown. The model size is 2000 × 2000 m, and the grid size
along the x- and z-axes is 10 m. A Ricker wavelet with a dominant

frequency of 15 Hz is located at the center of the
mesh. Absorbing layers with a thickness of
100 m, which corresponds to 10 grid cells, are
implemented at the four boundaries. The medium
properties are VP ¼ 4000 m∕s, VS ¼ 2000 m∕s,
ρ ¼ 2100 kg∕m3, QP ¼ 133, and QS ¼ 67.
Figure 1 shows snapshots at three propagation

times, based on the KV model. All three methods
effectively absorb the reflections. Waveform
comparisons of the horizontal particle velocity
component at (500, 250) m with the reference
one are shown in Figure 2. It can be seen that
the reflection amplitude is smaller by three orders
of magnitude. The absorbing levels are compa-
rable among the three methods. However, the
N-PML ABC is more efficient in terms of com-
puter time as shown in Table 2 because this ABC
uses fewer field variables (see Table 1). A similar
analysis based on the Zener model is given in
Figure 3. The application of the N-PML ABC
in this case effectively absorbs the boundary re-
flections, achieving the same performance of the
C-PML ABC, but using fewer field variables for
the KV model, and it outperforms the S-PML
ABC. The run times displayed in Table 2 show
that the N-PML ABC is much more efficient than
the S-PML ABC, and is slightly more efficient
than the C-PML ABC.

Two-layer model

This example considers a soft half-space
(1) overlying a stiff half-space (2) (see Figure 4),

Figure 4. Model and source location (star), including the PML
absorbing layers.
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Figure 5. Snapshots of the vertical particle-velocity component at 500 ms. KV model,
(a) without and (b) with N-PML absorbers. Zener model, (c) without and (d) with
N-PML absorbers. The dashed yellow lines indicate the boundaries in the absorbing
strips. The numerical scheme is (2, 16) accurate (FD).
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whose S-wave velocities are VS1 ¼ 1155 m∕s and VS2 ¼ 2500 m∕s,
respectively. The other properties are obtained as VP ¼ ffiffiffi

3
p

VS

(Poisson medium), ρ ¼ 0.31V1∕4
P (Gardner’s relation, VP given

in m/s), QS ¼ VS∕ð30 m∕sÞ (VS in m∕s), QP ¼ ð1∕2ÞγQS, and
γ ¼ ðVP∕VSÞ2. The simulations use a nx × nz ¼ 231 × 231 mesh,
with a uniform grid spacing dx ¼ dz ¼ 10 m. The 10 grid points
of absorbing strips at the sides, top, and bottom of the model are used.
The source is a vertical force (fz), and its time history (a Ricker wave-
let) is hðtÞ ¼ ða − 0.5Þ expð−aÞ, a ¼ ½πfpðt − tsÞ�2, ts ¼ 1.4∕fp,
with fp ¼ 15 Hz, the source central frequency. The source is located
at (nx∕4; nz∕2Þ. The length of the strips is L ¼ 100 m; i.e., 10 grid
points are used to damp the wavefield.
Figure 5 shows the snapshots of the vertical particle-velocity

component at 500 ms for the KV model (Figure 5a and 5b) and
for the Zener model (Figure 5c and 5d). Finite differences
(staggered 16th-order) are used to compute the spatial derivatives.
The right panels correspond to the simulations with the N-PML
absorbers. The dashed yellow lines indicate the boundaries of the
absorbing strips. As can be seen, the performance is optimal. To
provide a quantitative verification of the field decay with time, we
represent in Figure 6 the energy decay, where it can be appreciated
that the energy has been lost in agreement with the values obtained
by Chen (2011) in the lossless case.

Model with large velocity and VP∕VS-ratio contrasts

In the presence of large velocity and VP∕VS-ratio contrasts, the
application of ABCs may introduce instability. A heterogeneous
model with these characteristics (Oprsal and Zahradnik, 1999; Liu
and Sen, 2012) is given in Figure 7, used to test the stability when
applying the N-PML ABC. The model size is 1000 × 1000 m, and
the grid spacing is 5 m. A Ricker wavelet with a dominant frequency
of 8 Hz is located at ð500; 200Þ m, and the time step is 0.5 ms. Fig-
ure 8 displays the simulated vx-component snapshots at three differ-
ent propagation times using the KV model (Figure 8a) and the Zener
model (Figure 8b). It is evident that the boundary reflections are ef-
fectively absorbed when the N-PML ABC is applied. The decay of
the total energy with the time displayed in Figure 9 proves that the

Figure 6. Decay of the total energy with time for the FD spatial
differentiation.
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the N-PML ABC, based on the (a) KV model
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modeling is stable for a long time, in this case 8 s, and the energy has
effectively decayed for the KV and Zener models.

Marmousi model

To further test the effectiveness of the N-PML ABC for a complex
model, we use the Marmousi one. The model size is 5010 × 3530 m,
with a grid spacing of 10 m, and a time step of 0.8 ms. The source is
a Ricker wavelet with a dominant frequency of 15 Hz, located at

Figure 9. Decay of the total energy with propagation time for the
heterogeneous model with high velocity contrasts and VP∕VS ratio,
using the N-PML absorber.
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Figure 10. Seismic records of the vx-component obtained with the C-
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models. In each figure, the rightmost panel exhibits the difference be-
tween the results generated from the C-PML and N-PML ABCs.
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Figure 11. Decay of the total energy with propagation time for the
Marmousi model, based on the (a) KV and (b) Zener models. Note
that, the S-PML becomes unstable when the propagation time is
larger than 7 s for the KV model.
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(2505, 50) m. For simplicity, we assume that the QP ¼ 50 and
QS ¼ 120 everywhere. Absorbing layers with a thickness of 100 m,
which corresponds to 10 grid cells, are implemented on all of the
boundaries. Figure 10 shows the simulated records with the C-PML
and N-PML ABCs, based on the KVand Zener models. It is evident
that the boundaries reflections are effectively absorbed, and that the
N-PML ABC achieves a comparable performance as the C-PML
ABC. The small differences displayed in each figure can be attributed
to the different computational errors.
Figure 11 shows the decay of the total energy with propagation

time for the KV and Zener models. For times less than 5 s, the
N-PML ABC exhibits a similar absorbing performance as the
C-PML ABC. The S-PML ABC becomes unstable when the propa-
gation time is larger than 7 s. Numerical tests show that the model-
ing is still stable for the N-PML and C-PML ABCs at 12 s.
However, the C-PML ABC attenuates the reflections better than
the N-PML ABC for time larger than 6 s.
Table 2 shows that, for a propagation time of 7.2 s, the application

of the N-PML to the KV model takes less computational time than
the C-PML and S-PML ABCs because it uses fewer field variables.
The improvement when modeling with the 3D wave equation can
be much more significant. For the Zener model, the N-PML and
C-PML ABCs have a comparable computational time, much
smaller than that of the S-PML ABC. Therefore, considering the
balance between efficiency and absorbing accuracy, the N-PML
ABCs for the KV model is superior to the C-PML one, and com-
parable for the Zener model.

Grazing incidence

At grazing incidence, the C-PML method has
been developed to effectively absorb the reflections
(Komatitsch and Martin, 2007; Martin and Koma-
titsch, 2009). Here, a simple example using the KV
model is given to test the accuracy of the N-PML
ABC at grazing incidence. The model size is
9000 × 3100 m, the grid spacing is 10 m, and
the time step is 1 ms. The medium properties are
VP¼2000m∕s, VS¼1155m∕s, ρ¼2073kg∕m3,
QP ¼ 58, and QS ¼ 38. The source is a Ricker
wavelet with a 15 Hz dominant frequency, located
at (3500, 100) m. The 10 N-PML grid points are
used at all of the boundaries.
Figure 12 shows snapshots at 2 s, generated

with the C-PML and N-PML ABCs. We observe
that, compared with the C-PMLABC, the N-PML
ABC exhibits a slight grazing reflection at the top,
suggesting that the N-PML is slightly less accu-
rate, which can also be seen in Figure 13 that
shows the energy decay with time. The C-PML
ABC absorbs the energy more efficiently for
propagation times longer than 6 s. Therefore, at
grazing incidence, the C-PML ABC is preferred
to the N-PML ABC. However, the advantage of
the N-PML ABC lies in requiring much less
memory to store the variables, as shown in Table 1.
This advantage is much more significant for the
3D modeling case, with a further decrease in com-
putational time, for the KV and Zener models.

Pseudospectral modeling

Using the same two-layer model displayed in Figure 4, we further
discuss the application of the N-PML ABC when using the Fourier
pseudospectral method to compute the spatial derivatives. In this

Figure 13. Decay of the total energy with propagation time for the
grazing-incidence problem, corresponding to the KV model.
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case, dt ¼ 0.5 ms. The same plots as in Figures 5 and 6 are shown
in Figures 14 and 15. Without the ABC, wraparound can clearly be
seen, whereas applying the N-PML ABC, these artifacts are effec-
tively attenuated. The application of the N-PML ABC in pseudo-
spectral modeling achieves equally satisfactory performance as in
the FD simulation, as can be deduced from Figure 15, which shows
the decay of the total energy with propagation time.

CONCLUSION

We have shown how to implement the N-PML absorber in ane-
lastic forward modeling, illustrated with two mechanical models,
namely, the KVand Zener constitutive equations. Although viscoe-
lasticity is described by memory variables in the Zener case, similar
artificial memory variables are used in the absorbing strips to damp
the wavefield. The wave equations are solved with an FD method
(16th-order in space) and with the pseudospectral method. The sim-
ulations show that the proposed equations effectively attenuate
the field at the boundaries, either reflections or wraparound. The
N-PML absorber exhibits a comparable accuracy as the C-PML
one, involving fewer auxiliary variables and ordinary differential
equations in the simulation of KV viscoelastic wave equation,
and it is therefore more efficient computationally.
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APPENDIX A

SECOND-ORDER FD SCHEME

Let us consider the Zener equations and denote the time by
t ¼ ndt, where dt is the time step. The algorithm proceeds as fol-
lows at each time step:

1) Compute ∂wxx∕∂x, ∂wzz∕∂z and ϑ̄ ¼ ∂wxx∕∂xþ ∂wzz∕∂z.
Then, we update e1 as

enþ1
1 ¼½1−dt∕ð2τð1Þσ Þ�en1þdtð1∕τð1Þϵ −1∕τð1Þσ Þϑ̄

1þdt∕ð2τð1Þσ Þ
; (A-1)

and e2 with a similar equation (see equations 37 and 38).
2) Update τxx as

ð1þ dxdt∕2Þτnþ1
xx ¼ ð1 − dxdt∕2Þτnxx þ λdtϑ̄

þ 2μdtð∂wxx∕∂xÞ þ λdtðen1 þ enþ1
1 Þ∕2

þ μdtðen1 þ enþ1
1 þ en2 þ enþ1

2 Þ∕2; (A-2)

and τzz with a similar equation (see equation 40).
3) Update σxx as

σnþ1
xx ¼σnxxþλdtϑ̄þ2μdtð∂wxx∕∂xÞþλdtðen1þenþ1

1 Þ∕2
þμdtðen1þenþ1

1 þen2þenþ1
2 Þ∕2; (A-3)

and σzz with a similar equation (see equations 34 and 35).
4) Compute ∂wxz∕∂x, ∂wzx∕∂z and update e3:

enþ1
3 ¼½1−dt∕ð2τð2Þσ Þ�en3þdtð1∕τð2Þϵ −1∕τð2Þσ Þð∂wxz∕∂xþ∂wzx∕∂zÞ

1þdt∕ð2τð2Þσ Þ
(A-4)

(see equation 39).
5) Update τxxz as

ð1þ dxdt∕2Þτnþ1
xxz ¼ ð1 − dxdt∕2Þτnxxz

þ μdtð∂wxz∕∂xþ ∂wzx∕∂zÞ
þ μdtðen3 þ enþ1

3 Þ∕2; (A-5)

and τzxz with a similar equation (see equations 40).
6) Update σxz (see equation 36) similarly to step (3).
7) Compute ∂τxx∕∂x, ∂τzxz∕∂z, ∂τxxz∕∂x and ∂τzz∕∂z, and update

wxx, wzx, wzz, wxz as

wnþ1∕2
xx ¼ð1−dxdt∕2Þwn−1∕2

xx þðdt∕ρÞð∂τxx∕∂xþ∂τzxz∕∂zþfxÞ
1þdxdt∕2

;

(A-6)

wnþ1∕2
zx ¼ð1−dzdt∕2Þwn−1∕2

zx þðdt∕ρÞð∂τxx∕∂xþ∂τzxz∕∂zþfxÞ
1þdzdt∕2

;

(A-7)

Figure 15. Decay of the total energy with time for the pseudospec-
tral method.
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wnþ1∕2
zz ¼ð1−dzdt∕2Þwn−1∕2

zz þðdt∕ρÞð∂τxxz∕∂xþ∂τzz∕∂zþfzÞ
1þdzdt∕2

;

(A-8)

wnþ1∕2
xz ¼ð1−dxdt∕2Þwn−1∕2

xz þðdt∕ρÞð∂τxxz∕∂xþ∂τzz∕∂zþfzÞ
1þdxdt∕2

(A-9)

(see equation 40).
8) Update vx and vz using equation 20.
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