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Abstract
We obtain the reflection and transmission coefficients for inhomogeneous plane waves 
incident on a flat interface separating two double-porosity media described by the Biot–
Rayleigh model, which takes into account the effect of local fluid flow (LFF). Three lon-
gitudinal and one transverse waves are reflected and transmitted, represented by poten-
tial functions specified by the propagation and attenuation directions. The continuity of 
the energy at the interface for sealed and open-boundary conditions yields a system of 
equations for the coefficients, and the expressions of the energy ratios for the reflected 
and refracted waves are derived in closed form. Numerical examples showing the mag-
nitude, phase and energy ratio as a function of frequency and incidence angle are carried 
out to investigate the influence of the inhomogeneity angle, boundary condition, type of 
incidence wave and LFF effect. The results confirm that the LFF affects the reflection and 
transmission behaviors for the incident P1 and SV waves, irrespective of whether the inter-
face is open or sealed. The effect causes interference fluxes between different waves, a con-
sequence of energy conservation at the interface. We also perform full-waveform simula-
tions to validate the results.
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1 Introduction

The study of wave reflection and transmission at an interface separating two fluid-satu-
rated porous media is of interest in a variety of fields, such as geomechanics, hydroge-
ology, petroleum engineering, soil dynamics, and exploration geophysics (Deresiewicz 
and Rice 1962; Cui and Wang 2003; Tomar and Arora 2006; Dai et al. 2006a; Yeh et al. 
2010; Sharma 2013; Carcione 2014). A better understanding of it is crucial for quantita-
tively inferring spatial distributions of key medium properties, such as permeability and 
porosity.

Various theories have been presented to describe wave motion in porous rocks. 
Biot (1956, 1962) pioneered the study and derived fundamental constitutive relations 
for analyzing wave motion in a medium saturated by a single viscous fluid. The theory 
predicts the existence of two compressional waves and one shear wave. Based on it, 
Deresiewicz and Rice (1962, 1964) studied the reflection and transmission coefficients 
at normal incidence. Extensions to more general cases of oblique incidence were car-
ried out by Dutta and Odé (1983). The reflection and transmission at a plane interface 
between a fluid and a Biot medium were also studied (Santos et  al. 1992), and more 
work was performed by Denneman et al. (2002) and Gurevich et al. (2004). The related 
boundary conditions have been applied to full-waveform modeling in complex environ-
ments by Sidler et al. (2013) among others.

Biot’s theory describes wave propagation in media saturated with a single fluid. Brut-
saert (1964) introduced extended Biot’s theory to the case of immiscible fluids, and 
Santos et  al. (1990) presented a similar model by considering two fluids and surface 
tension. These theories predict the existence of an additional highly attenuated com-
pressional wave, due to the capillary pressure. A comprehensive study on wave motion 
in porous solids saturated with multiphase fluids was also given in Tuncay and Corap-
cioglu (1997). Based on this theory, the reflection and transmission characteristics at 
an interface between an elastic medium and a porous solid saturated by two immisci-
ble fluids were investigated (Tomar and Arora 2006; Sharma and Kumar 2011). How-
ever, a main drawback of these approaches is that they neglect inertial coupling effects. 
Lo et al. (2005) considered the inertial effect, as well as other researchers (Arora and 
Tomar 2008; Yeh et al. 2010; Kumar and Saini 2012; Kumar and Sharma 2013; Shekhar 
and Parvez 2016). The influences of pore fluid, frequency, pore connections and wave 
inhomogeneity on the amplitude and energy of the reflected and transmitted waves were 
comprehensively investigated in Kumar and Sharma (2013).

Studies considering more than one solid (two frames) have also been performed. 
Leclaire et al. (1994) presented a Biot-type three-phase theory based on first principles, 
where the solid frame, ice particles and unfrozen water coexist. The theory assumes no 
interaction between the solids and predicts the existence of three compressional waves 
and two shear waves. The interaction between the mineral and ice particles was further 
included by Carcione and Tinivella (2000), and the theory was used to obtain the reflec-
tion coefficients related to a bottom simulating reflector. A more rigorous generaliza-
tion to the case of non-uniform porosity for media with composite solids saturated by 
a single fluid was given in Carcione and Seriani (2001) and Santos et al. (2004). Using 
this theory, Rubino et al. (2006) studied the behavior of the energy reflection and trans-
mission coefficients at an interface separating two porous media. Arora et  al. (2015) 
further presented a four-phase poroelastic theory, in which the medium is composed of 
two solids and saturated by two fluids. The theory considers the interference fluxes and 
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predicts the coexistence of four compressional waves and two shear waves. Following 
this theory, Painuly and Arora (2018) studied the reflection and transmission of inhomo-
geneous waves.

Apart from the aforementioned theories, other researchers extended Biot’s poroelas-
tic theory to the case of double-porosity. Berryman and Wang (2000) presented a dou-
ble-porosity/dual-permeability model, such that storage porosity and fracture porosity 
are both considered. Based on this theory, Dai et al. (2006a, b) studied the reflection and 
transmission at the interface between an elastic solid and a double-porosity medium, 
as well as between a fluid-saturated porous solid and a double-porosity medium. The 
effects of frequency, incidence angle, fracture permeability, porosity, and boundary con-
ditions were studied. This theory was further improved by Pride and Berryman (2003a, 
b), in which a frequency-dependent compressibility law describes macroscopic fluid 
transfer between the porous constituents. The improved theory models realistic attenu-
ation levels due to wave-induced fluid flow. It reduces to the effective Biot theory if the 
heterogeneity phase is assumed to be embedded in the host phase (Pride et  al. 2004). 
Based on this effective theory, Zhao et  al. (2015) investigated the effects of wave-
induced fluid flow on wave signatures of seismic reflectivity.

Wave propagation in heterogeneous porous media induces fluid pressure gradients 
and consequently local fluid flow (LFF). LFF causes viscous loss and leads to energy 
dissipation at a mesoscopic scale, which is responsible for intrinsic wave attenuation 
at seismic frequencies (Pride et  al. 2004; Müller et  al. 2010). Over the past decades, 
significant efforts have been made to understand the mesoscopic loss mechanism due 
to LFF (Gurevich et  al. 1997; Pride and Berryman 2003a; Carcione and Picotti 2006; 
Brajanovski et al. 2006; Agersborg et al. 2009; Müller et al. 2010; Carcione et al. 2010; 
Ba et al. 2011). Among these, the double-porosity model is notably a simple and effec-
tive one. Apart from Pride and Berryman’s theory, Ba et al. (2011) derived another set 
of equations for describing wave propagation in double-porosity media based on Biot’s 
theory of poroelasticity and Rayleigh model of bubble oscillations. The governing equa-
tions associated with LFF are described by a generalization of Rayleigh’s theory of liq-
uid collapse of a spherical cavity. Numerical examples show that this theory explains 
the levels of dispersion and attenuation in the seismic frequency band and predicts the 
existence of an additional highly attenuated compressional wave. Using this theory, 
Sharma (2013) studied the effect of LFF on the reflected waves but considered only the 
free surface of a double-porosity medium. Until now, the reflection and transmission 
problems between fluid-saturated double-porosity media, that take into account the LFF, 
have not been investigated.

The wave-induced LLF affects wave propagation and hence affects the behavior of the 
reflection and transmission coefficients, particularly in double-porosity media. The present 
work aims at investigating the influence of LFF on the reflection and transmission behav-
iors at an interface between two double-porosity media. For an oblique incidence (P1 wave 
or SV wave) upon the interface, three compressional and one transverse waves are reflected 
and transmitted. The waves are described by potential functions depending on the propaga-
tion and attenuation directions and the complex velocity. The particle displacements, solid 
stresses and fluid pressures are derived from these potentials by using the non-uniform 
porosity constitutive relations. The expressions for the reflection and transmission coef-
ficients, as well as the corresponding energy ratios, are derived in closed form for open and 
sealed boundaries. The effects of the frequency and inhomogeneity angle are further dis-
cussed. Numerical wavefield simulations corresponding to the reflection and transmission 
problem are carried out to validate the results derived from the analysis.
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2  Biot–Rayleigh Theory

The Biot–Rayleigh double-porosity medium (Ba et al. 2011) considers spherical inclusions 
embedded into an unbounded host medium, where two kinds of porosities and the same 
fluid coexist, namely a porosity �10 of the host medium with a large volume fraction �1 , and 
a porosity �20 of spherical inclusions with a lower volume fraction �2 = 1 − �1 . The two 
porosities correspond to different permeabilities and compressibilities, and hence LFF is 
induced during wave propagation. The theory is based on the following assumptions: (1) 
the inclusions are spherical and homogeneous with a radius that is much smaller than the 
wavelength; (2) the fraction of inclusions is low and the interactions between the inclusions 
are neglected; (3) the boundary between inclusions and the host media is open such that 
LFF is allowed.

Denoting the spatial variables by xi , i = 1, 2, 3, the displacement vector of the solid 
matrix by � =

(
u1, u2, u3

)T , and the average fluid displacement vectors in the pores of the 
host media and inclusions by �(1) =

(
U

(1)

1
,U

(1)

2
,U

(1)

3

)T

 and �(2) =
(
U

(2)

1
,U

(2)

2
,U

(2)

3

)T

 , 
respectively, the main governing equations are (Ba et al. 2011),

where � , � (1) , and � (2) are the volume strains of the solid, fluid in the host medium, and fluid 
in the inclusions, respectively. They are the function of displacement vectors � , �(1) , and 
�(2) as follows,

where �i in Eq. (2) is the partial derivative with respect to the spatial variable xi , and the 
Einstein convention over repeated indices is used. The dot above the variables in Eq. (1) 
represents the derivative with respect to the time variable. The equations involve six stiff-
ness parameters (A, N, Q1 , Q2 , R1 , R2 ), five density coefficients ( �11 , �12 , �13 , �22 , �33 ), three 
geometrical coefficients ( �1 , �2 , R0 ), the transport properties �1 and �2 , and the fluid vis-
cosity � . All these parameters can be estimated on the basis of measurable properties of 
the solid and fluid, and their detailed expressions are given in Appendix 1. Equation (1d) 
describes the LFF motion for the fluid strain’s increment � and is derived from a generali-
zation of Rayleigh’s theory of liquid collapse of a spherical cavity characterized by radius 
R0 (Ba et al. 2011).

(1a)
N∇2𝐮 + (A + N)∇𝜀 + Q1∇

(
𝜁 (1) + 𝜙2𝜍

)
+ Q2∇

(
𝜁 (2) − 𝜙1𝜍

)

= 𝜌11�̈� + 𝜌12�̈�
(1) + 𝜌13�̈�

(2) + b1
(
�̇� − �̇�(1)

)
+ b2

(
�̇� − �̇�(2)

)
,

(1b)Q1∇𝜀+R1∇
(
𝜁 (1)+𝜙2𝜍

)
= 𝜌12�̈� + 𝜌22�̈�

(1) − b1
(
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)
,
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(
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)
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(2) − b2
(
�̇� − �̇�(2)

)
,

(1d)

𝜙2
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(
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=
1

3
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2
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Equation (1) holds for uniform porosity, since the average displacements of the solid and 
fluid phases are used as Lagrangian coordinates and the respective stress components are used 
as generalized forces. Wang et al. (2019) further generalized these equations to the non-uni-
form porosity case. These variable-porosity equations are consistent with the boundary con-
dition at interfaces separating media with different properties. In the non-uniform case, the 
constitutive relations for the total normal stress, shear stress and fluid pressures with respect 
to the solid and average fluid displacements u, �(1) and �(2) are given by Wang et al. (2019).

where �ij is the Kronecker function. The related medium parameters for the variable-poros-
ity equations are also given in Appendix 1. The Biot–Rayleigh equation for describing the 
LLF motion is then

3  Plane‑Wave Solutions

For time harmonic oscillations (the Fourier convention is e−i�t ), the solution for Eq. (1d) is

where L = R1�
2
2
+R2�

2
1
+ �f�

2R2
0
�2
1
�2�20

/(
3�10

)
+i���2

1
�2�20R

2
0

/(
3�1

)
.

Substituting Eq. (7) into Eq. (1) and after a simplification, we obtain

The three displacement vectors in Eq. (8) can be expressed in terms of potential functions 
with the aid of the Helmholtz decomposition,

(3)�ij = �
(
�i�uj + �j�ui

)
+ �ij

[(
�c − �1M1�1 − �2M2�2

)
� + �1M1�1�

(1)

+ �2M2�2�
(2) + �1�2

(
�1M1 − �2M2

)
�

]
,

(4)Pf1 =
(
− �1M1 +M1�1

)
� −M1�1�

(1) −M1�1�2�,

(5)Pf2 =
(
− �2M2 +M2�2

)
� −M2�2�

(2) +M2�1�2�,

(6)

𝜙20R
2
0

3𝜙10

[
𝜌f𝜙1�̈� + b1�̇�

]

=
[(
𝛼1M1 − 𝛼2M2 +M2𝜙2 −M1𝜙1

)
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(1) −M2𝜙2𝜁
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(
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)
𝜍
]
.

(7)� =
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�1Q2 − �2Q1

)
� + R2�1�

(2) − R1�2�
(1)
]/

L,

(8)
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(9)� = ∇�s + ∇ × �s, �(1) = ∇�1 + ∇ × �1, �(2) = ∇�2 + ∇ × �2,
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where �s and �s are the potential functions of the solid-phase, �1 and �1 are the potential 
functions of the fluid in the host matrix, while �2 and �2 are the potential functions of the 
fluid in the inclusions.

After applying the Helmholtz decomposition, Eq. (8) becomes

for the compressional waves, and

for the shear wave.
The general plane-wave solutions for the potential functions in Eqs. (10) and (11) are

where �� and �� are the complex wavenumber vectors for the compressional and shear 
waves, r is the location vector, and � is the angular frequency. Because the fluid is viscous 
and the wave is inhomogeneous, the attenuation direction deviates from the propagation 
direction. Therefore, the wavenumber vectors �� and �� are the functions of the propagation 
direction, attenuation direction and the complex velocity for a given frequency.

Substituting Eq. (12a) into (10), and after a simplification, we obtain

(10)

⎛⎜⎜⎝
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⎟⎟⎠

⎛
⎜⎜⎝
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⎞
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⎛
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⎞
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(12a)
⎛⎜⎜⎝

�s

�1

�2

⎞⎟⎟⎠
=

⎛⎜⎜⎝

As exp
�
i
�
�� ⋅ � − �t

��
Af1 exp

�
i
�
�� ⋅ � − �t

��
Af2 exp

�
i
�
�� ⋅ � − �t

��
⎞⎟⎟⎠
,

(12b)
⎛⎜⎜⎝
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Af1
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where T is a symmetric 3 × 3 matrix with elements given by:

In Eq. (13), the relation det (T) = 0 generates three complex wavenumbers (denoted as 
kp1, kp2, kp3 , respectively), corresponding to a fast P wave (P1) and two slow P waves (P2 
and P3). By solving Eq. (13), the amplitude ratio between Af1 or Af2 and As can be deter-
mined as

Similarly, substituting Eq. (12b) into (11) yields

where Q is a symmetric 3 × 3 matrix with elements given by:

In Eq.  (15), the relation det (Q) = 0 gives only one physically meaningful complex 
wavenumber (denoted as ks ), corresponding to the shear wave (SV). By solving Eq. (15), 
the amplitude ratio between Bf1 or Bf2 and Bs can be determined as

Once the complex wavenumbers are determined, the phase velocity and attenuation fac-
tor are (Carcione 2014)

t11 = �11�
2 + i�

(
b1 + b2

)
−
(
A + 2N −

(
Q1�2 − Q2�1

)2/
L
)
�2
�
,

t12 = t21 = �12�
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(
Q1 − R1�2

(
Q1�2 − Q2�1

)/
L
)
�2
�
,

t13 = t31 = �13�
2 − i�b2 −

(
Q2 + R2�1

(
Q1�2 − Q2�1

)/
L
)
�2
�
,

t22 = �22�
2 + i�b1 −

(
R1 −

(
R1�2

)2/
L
)
�2
�
,

t23 = t32 = −
(
R1�2R2�1∕L
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�
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)2/
L
)
�2
�
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=
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)
)
.

(15)
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/
Bs

Bf2

/
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=
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− q21∕q22(
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)/(

q13q22
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for i = p1, p2, p3, s . The symbols Re{} and Im{} indicate the real and imaginary parts of a 
complex variable, respectively.

4  Reflection and Transmission Coefficients

This study considers a 2D plane interface, defined by z = 0, between two double-porosity 
media �1 (z > 0) and �2 (z < 0), and an inhomogeneous plane wave (P1 wave or SV wave, 
denoted with index 0) in �1 incident at the interface with an oblique angle at a given angu-
lar frequency. The incident wave generates four reflected waves (P1, P2, P3, SV, denoted 
with the indexes 1, 2, 3, and 4, respectively) in �1 and four transmitted waves (P1, P2, P3, 
SV, denoted with the indexes 5, 6, 7, and 8, respectively) in �2 . A scheme of the problem is 
illustrated in Fig. 1.

The double-porosity medium is saturated with viscous fluids and hence behaves anelastic, 
indicating that the waves in Fig. 1 are attenuated. Following Carcione (2014), the attenuated 
wave can be defined as inhomogeneous in general, in the sense that the propagation and atten-
uation directions are not the same. If these coincide, the wave is termed homogeneous. Given 
the propagation direction ( �0 ), the inhomogeneity angle �0 (the angle between the attenuation 
and propagation directions) and the complex velocity, the incident inhomogeneous plane wave 
can be defined, and the corresponding potential functions for the solid-phase �0

s
 , the fluid-

phase in the host matrix �0
f1

 , and the fluid-phase �0
f2

 in the inclusions are

(17)vi =
[
Re

{
ki
/
�
}]−1

,

(18)Q−1
i

= 2Im
{
ki
}/

Re
{
ki
}
,

(19)

�i
s
= �0

s
= A0

s
exp

[
i�
(
s0
x
x + s0

z
z
)
− i�t

]

�i
f1
= �0

f1
= A0

f1
exp

[
i�
(
s0
x
x + s0

z
z
)
− i�t

]

�i
f2
= �0

f2
= A0

f2
exp

[
i�
(
s0
x
x + s0

z
z
)
− i�t

]
,

Fig. 1  The reflection and trans-
mission problem at a double-
porosity interface. The solid 
and dashed arrows represent 
the propagation and attenuation 
directions, respectively. The 
inhomogeneity angle �0 is the 
angle between the attenuation 
and propagation directions
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where s0
x
 and s0

z
 are the horizontal and vertical complex slowness. The horizontal slowness 

is given by Sharma (2013)

The positive sign for Re
{
s0
x

}
 guarantees that the wave propagates along the positive 

x-direction. The magnitudes of the propagation vector �0 and attenuation vector �0 are

The vertical complex slowness s0
z
 is then determined as

where the symbol p ⋅ v⋅ represents the principal value of the complex quantity d0 . d0
R
 and 

d0
I
 represent the real and imaginary parts of d0 . The minus sign in Re

{
s0
z

}
 ensures that the 

incident wave propagates along the negative z-direction, while the minus sign in Im
{
s0
z

}
 

ensures that the energy decays along the negative z-direction. The amplitude ratio between 
A0
f1

 or A0
f2

 and A0
s
 can be determined from Eq. (14) or (16) using the incident wavenumber 

k0.
The potential functions of the reflected compressional waves in �1 are

For the reflected shear wave in �1 , the expressions are

The equations for the transmitted compressional waves in �2 are

(20)s0
x
=

||�0
||

�
sin �0 + i

||�0
||

�
sin

(
�0 − �0

)
.

(21a)2||�0
||2 = �2

[
Re

(
k2
0

/
�2

)
+

√(
Re

(
k2
0

/
�2

))2
+
(
Im

(
k2
0

/
�2

)/
cos �0

)2]
,

(21b)2||�0
||2 = �2

[
−Re

(
k2
0

/
�2

)
+

√(
Re

(
k2
0

/
�2

))2
+
(
Im

(
k2
0

/
�2

)/
cos �0

)2]
.

(22)s0
z
= − d0

R
− id0

I
, d0 = ± p ⋅ v ⋅

√(
k2
0

/
�2

)
−
(
s0
x

)2
,

(23a)�r
s
=

3∑
l=1

�l
s
=

3∑
l=1

Al
s
exp

[
i�
(
sl
x
x + sl

z
z
)
− i�t

]
,

(23b)�r
f1
=

3∑
l=1

�l
f1
=

3∑
l=1

Al
f1
exp

[
i�
(
sl
x
x + sl

z
z
)
− i�t

]
,

(23c)�r
f2
=

3∑
l=1

�l
f2
=

3∑
l=1

Al
f2
exp

[
i�
(
sl
x
x + sl

z
z
)
− i�t

]
.

(24)

� r
s
= �4

s
= A4

s
exp

[
i�
(
s4
x
x + s4

z
z
)
− i�t

]

� r
f1
= �4

f1
= A4

f1
exp

[
i�
(
s4
x
x + s4

z
z
)
− i�t

]

� r
f2
= �4

f2
= A4

f2
exp

[
i�
(
s4
x
x + s4

z
z
)
− i�t

]
.

(25a)�t
s
=

7∑
l=5

�l
s
=

7∑
l=5

Al
s
exp

[
i�
(
sl
x
x + sl

z
z
)
− i�t

]
,
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For the transmitted shear wave in �2 , we have

According to the Snell’s law, the horizontal slowness of all the reflected and transmitted 
waves is equal to that of the incident wave, which yields

The vertical slowness of the reflected and transmitted compressional and shear waves 
is given by

In medium �1 , the positive signs of Re
{
sl
z

}
 and Im

{
sl
z

}
 are chosen such that wave 

propagation is along the positive z-direction and the energy decays away from the inter-
face. In medium �2 , the minus signs in Re

{
sl
z

}
 and Im

{
sl
z

}
 are chosen to ensure that the 

wave propagation is along the negative z-direction and the energy decays away from the 
interface.

The amplitude ratio between Al
f1

 or Al
f2

 and Al
s
 in Eqs. (23)–(26) can be obtained by 

solving Eqs. (14) and (16) using the corresponding wavenumbers.

Using the above equations, the solid and average fluid displacements u, �(1) and �(2) 
are expressed by

(25b)�t
f1
=

7∑
l=5

�l
f1
=

7∑
l=5

Al
f1
exp

[
i�
(
sl
x
x + sl

z
z
)
− i�t

]
,

(25c)�t
f2
=

7∑
l=5

�l
f2
=

7∑
l=5

Al
f2
exp

[
i�
(
sl
x
x + sl

z
z
)
− i�t

]
.

(26)

� t
s
= �8

s
= A8

s
exp

[
i�
(
s8
x
x + s8

z
z
)
− i�t

]

� t
f1
= �8

f1
= A8

f1
exp

[
i�
(
s8
x
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z
z
)
− i�t

]

� t
f2
= �8

f2
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f2
exp

[
i�
(
s8
x
x + s8

z
z
)
− i�t

]
.

(27)s0
x
= s1

x
= s2

x
= s3

x
= s4

x
= s5

x
= s6

x
= s7

x
= s8

x
.

(28a)sl
z
= dl

R
+ idl

I
, dl = ± p ⋅ v ⋅

√(
k2
l

/
�2

)
−
(
sl
x

)2
, l = 1, 2, 3, 4,

(28b)sl
z
= − dl

R
− idl

I
, dl = ± p ⋅ v ⋅

√(
k2
l

/
�2

)
−
(
sl
x

)2
, l = 5, 6, 7, 8.

(29)

⎛
⎜⎜⎝
Al
f1

�
Al
s

Al
f2

�
Al
s

⎞
⎟⎟⎠
=

� �
t13t21 − t11t23

���
t12t23 − t13t22

�
�
t11t22 − t21t12

���
t12t23 − t13t22

�
�

=

�
�l
f1s

�l
f2s

�
at k = kl, for l = 1, 2, 3, 5, 6, 7.

(30)
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�
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s
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�
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=
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���
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�
�

=

�
�l
f1s

�l
f2s

�
at k = kl, for l = 4, 8.

(31a)�I =
(
uI
x
, uI

z

)
= ∇

(
��i

s
+ �r

s

)
+
(
−�z, �x

)
�
[
(1 − �)�i

s
+ � r

s

]
,
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for medium �1 and as

for medium �2 . The indexes I and II represent media �1 and �2 , respectively. The param-
eter � defines the incident P1 wave with � = 1 and incident SV wave with � = 0 . The cor-
responding expressions for the solid stresses �

zz
 and �

xz
 , and fluid pressures P

f1
 and P

f2
 can 

then be derived from the non-uniform porosity Eqs. (3), (4), (5) and (7).
Many boundary conditions at the interface have been developed (Deresiewicz and 

Rice 1962, 1964; Dai et al. 2006a; Yeh et al. 2010; Sharma 2013; Kumar and Sharma 
2013). Here we consider two boundary conditions (i.e., fully open and sealed) originally 
presented by Deresiewicz and Rice (1962, 1964). In case of a permeable boundary (i.e., 
the pores are fully open), the following continuity conditions should be satisfied at z = 0:

(1) Continuity of the z-component of solid displacement, uI
z
= uII

z
.

(2) Continuity of the x-component of solid displacement, uI
x
= uII

x
.

(3) Continuity of the total normal stress in the solid, �I
zz
= �II

zz
.

(4) Continuity of the total shear stress in the solid, �I
xz
= �II

xz
.

(5) Continuity of the rate of fluid flow in the host matrix, �I
1

(
UI

1z
− uI

z

)
=�II

1

(
UII

1z
− uII

z

)
.

(6) Continuity of the fluid pressure in the host matrix, PI
f1
=PII

f1
.

(7) Continuity of the rate of fluid flow in the inclusion, �I
2

(
UI

2z
− uI

z

)
=�II

2

(
UII

2z
− uII

z

)
.

(8) Continuity of the fluid pressure in the inclusion, PI
f2
=PII

f2
.

When the interface is assumed impermeable (i.e., the pores are sealed), there is no 
relative fluid flow across the boundary. The above boundary conditions (1)–(4) still 
hold, whereas the other four boundary conditions (5)–(8) become

(5) No fluid flow in the host matrix in medium �1 , �I
1

(
UI

1z
− uI

z

)
= 0.

(6) No fluid flow in the host matrix in medium �2 , �II
1

(
UII

1z
− uII

z

)
= 0.

(7) No fluid flow in the inclusion in medium �1 , �I
2

(
UI

2z
− uI

z

)
= 0.

(8) No fluid flow in the inclusion in medium �2 , �II
2

(
UII

2z
− uII

z

)
= 0.

Substituting the displacements and pressures into the boundary conditions and after 
a simplification using Snell’s law, we obtain the following linear system of order eight,

(31b)�
(1)
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=
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,UI
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= ∇
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��i
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,
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,
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,
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where x represents the ratio vector of the complex-value amplitudes to that of the incident 
wave defined by � =

[
xl
]
l=1,…,8

=
[
Al
s

/
A0
s

]
l=1,…,8

 . The detailed expressions for the elements 
of G and y are given in Appendix 2.

The complex-value ratios in Eq.  (33) can then be converted to the reflection and 
transmission coefficients as

The ||Rl
|| and ||Tl

|| are the absolute values of the complex quantities, Rl and Tl , and 
represent the reflection and transmission magnitudes, whereas the �l defines the respec-
tive phase angle (Dai et al. 2006a).

5  Energy partitions

The scalar product of the surface traction and the particle velocity represents the energy flux 
carried across the surface (Kumar and Saini 2012; Sharma 2013; Carcione 2014; Shekhar and 
Parvez 2016). For the double-porosity theory, the averaged energy intensity of a wave at the 
surface, with a normal along the z-direction, is given by

where w1z and w2z are the displacements of the pore-fluid particles relative to the solid 
frame, defined by w1z = �1

(
U

1z
− uz

)
,w2z = �2

(
U

2z
− uz

)
 , and the bar denotes complex 

conjugate. In order to investigate the energy fluxes of the incident wave, reflected waves, 
and also their interactions in �1 , the following square matrix of order five is introduced,

where

(33)[�][�] =
[
�
]
,

(34a)Rl =
Al
s
kl

A0
s
k0

= ||Rl
||ei�l , l = 1, 2, 3, 4,

(34b)Tl =
Al
s
kl

A0
s
k0

= ||Tl||ei�l , l = 5, 6, 7, 8.

(35)E=
1

2
Re

{
𝜎zz ̄̇uz+𝜎xz ̄̇ux − Pf1

̄̇w1z − Pf2
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}
,

(36)�𝛺1
=

⎡
⎢⎢⎢⎢⎣

E00 E01 E02 E03 E04

E10 E11 E12 E13 E14
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⎤
⎥⎥⎥⎥⎦
=
1

2
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�
�5x4�̄4x5

�
,

(37)�5x4 =
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xz
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−P0
f2

𝜎1
zz

𝜎1
xz

−P1
f1

−P1
f2

𝜎2
zz

𝜎2
xz

−P2
f1

−P2
f2

𝜎3
zz

𝜎3
xz

−P3
f1

−P3
f2

𝜎4
zz

𝜎4
xz

−P4
f1

−P4
f2

⎤⎥⎥⎥⎥⎥⎦

,�4x5 =

⎡⎢⎢⎢⎣
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ẇ0
2z

ẇ1
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The diagonal entries E00 , E11 , E22 , E33 and E44 define the energy fluxes of the incident 
wave, and the reflected P1, P2, P3 and SV waves, respectively, while all the off-diagonal 
entries represent the interference energy fluxes among the incident wave, and reflected P1, 
P2, P3 and SV waves.

By applying Eqs. , (3)–(5), (31) and (32), the elements in matrix A and B can be further 
simplified as

for l = 1, 2 and 3. The expressions for parameters DI
i
(i = 1, 2,… , 8, 9) are given in Appen-

dix 3. The corresponding expressions for the shear wave are

(38a)�l
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s
�2
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1
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2
�l
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3
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f2s

)((
sl
x
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− 2�I

(
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)2]
,

(38b)�l
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�22�Isl

x
sl
z
,
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s
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5
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6
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)((
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x
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(
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,

(38d)Pl
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,
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with l = 4. The corresponding expressions for the incident wave are dependent on the type 
of wave [i.e., Equation (38) with l = 0 for the incident P1 wave, and Eq. (39) with l = 0 for 
the incident SV wave].

Similarly, in �2 , the energy fluxes of the transmitted P1, P2, P3, and SV waves can be cal-
culated as

where

The corresponding expressions for 𝜎l
zz
, 𝜎l

xz
,Pl

f1
,Pl

f2
, u̇l

x
, u̇l

z
, ẇl

1z
, ẇl

2z
 with l = 5, 6, and 

7 are the same as Eq.  (38) except using the parameters DII
i
 , �II , �II

1
 and �II

2
 . In Eq.  (39), 

instead of using parameters �I , �I
1
 and �I

2
 , the expressions for the transmitted SV wave can 

be obtained by using �II , �II
1
 and �II

2
.

The reflected and transmitted energy fluxes Eii are scaled to E00 to yield the reflected 
and transmitted energy ratios as follows,

The energy-ratio sum resulting from the interaction between the incident wave and the 
four reflected waves as well as interactions among the four reflected waves is given by

Similarly, for the interactions among the four transmitted waves, the energy ratio sum is

The conservation of the total energy at the stress-free surface can then be given by
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,
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𝜎7
xz

−P7
f1

−P7
f2

𝜎8
zz

𝜎8
xz

−P8
f1

−P8
f2

⎤
⎥⎥⎥⎥⎦
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(42)RAii =
Eii

E00

, (i = 1, 2,… , 7, 8).

(43)RAir =
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+
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.
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)
.

(45)RAsum =

4∑
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6  Examples

We consider the following medium properties of the upper and lower media:
Medium I: �10 = 0.1, �20 = 0.3, �1 = 0.963, �s = 2650 kg/m3, �f  = 1040 kg/m3, Ks = 18 GPa, 

Kf  = 2.5 GPa, �s = 24 GPa, c1 = 10, c2 = 200, cs = 10, R0 = 0.02 m, � = 0.001 Pa s, �1 = 0.01 D, 
�2 = 1 D;

Fig. 2  Phase velocities of the P1, SV, slow P2, and slow P3 waves as a function of frequency. The red and 
gray solid lines correspond to the results of the lower and upper media with local fluid flow (LFF), whereas 
the blue and black dashed lines correspond to those of the lower and upper media without LFF

Fig. 3  Dissipation factors of the P1 wave (left) and SV wave (right) as a function of frequency. The red and 
olive solid lines correspond to the results of the lower and upper media with LFF, whereas the blue and red 
dashed lines correspond to those of the lower and upper media without LFF
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Medium II: �10 = 0.1, �20 = 0.3, �1 = 0.963, �s = 2850  kg/m3, �f  = 1040  kg/m3, Ks = 48 
GPa, Kf  = 2.5 GPa, �s = 54 GPa, c1 = 10, c2 = 200, cs = 10, R0 = 0.02  m, � = 0.001  Pa  s, 
�1 = 0.01 D, �2 = 1 D.

Most of the parameters given above are taken from Berryman and Wang (2000). The 
bulk and shear moduli are modified to introduce a stronger impedance contrast. In the 
following, the velocity dispersion and attenuation characteristics are firstly analyzed. 
Figure 2 shows the variations in phase velocities as a function of frequency. The dashed 
lines show the corresponding results when the LFF function is absent. The velocities are 
dependent on the frequency and are significantly affected by the LFF. In the presence 

Fig. 4  Absolute value (magnitude) of the reflection and transmission coefficients as a function of the inci-
dence angle at 42 Hz with different inhomogeneity angles, when the interface is open (incident P1 wave). 
Note that, when LFF is absent, the three curves are overlapped with each other
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of it, the Biot–Rayleigh model predicts significant P1-wave velocity variations in the 
seismic frequency band from  10−1 to  103 Hz and can model velocity dispersion levels 
observed in rocks. By contrast, if the LFF effect is absent, the P1 phase velocity does 
not exhibit frequency dependence. The phase velocity of the SV wave is not affected by 
the LFF and exhibits an increase around a frequency of 100 kHz, resulting from the Biot 
loss mechanism. The phase velocities of the P2 and P3 waves are much smaller in com-
parison with those of the P1 and SV waves and are hardly affected by the LFF at all the 
frequencies. Figure 3 shows the dissipation factor as a function of frequency. Between 
 10−1 and  103 Hz, the presence of LFF induces significant attenuation of the P1 wave. 
The attenuation level is maximum at 42 Hz. In contrast, if the LFF is absent, no evident 
attenuation occurs. The dissipation factor of the SV wave is much smaller than that of 

Fig. 5  Phases of the reflection and transmission coefficients as a function of the incidence angle at 42 Hz, 
when the interface is open (incident P1 wave). The inhomogeneity angle is at 45◦
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the P1 wave and exhibits a maximum around a frequency of 100 kHz, which is mainly 
induced by the Biot loss mechanism.

6.1  Incident P1 Wave

An incident P1 wave is first investigated. Three inhomogeneity angles at 0◦ , 45◦ , and 70◦ 
are considered. We use Eq.  (33) to calculate the reflection and transmission coefficients 
and Eqs. (42), (43) and (44) to determine the corresponding energy ratios for both the open 
and sealed boundaries.

Fig. 6  Energy ratios as a function of the incidence angle at 42  Hz with different inhomogeneity angles, 
when the interface is open (incident P1 wave). Note that, when LFF is absent, the three curves are over-
lapped with each other
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We first consider an open boundary. Figures 4 and 5 show the variations in the magni-
tude and phase of the reflection and transmission coefficients as a function of incidence 
angle. The corresponding energy-ratio variations are illustrated in Fig. 6. A frequency of 
42 Hz is chosen such that the LFF effect is most evident. There exists a critical angle, but 
unlike in lossless media, all the velocities are complex and Snell’s law may not yield a 
real critical angle. Actually, the critical angle in dissipative media is determined under the 
restrictions of the inhomogeneity angle and the quality factor (Borcherdt 1982). Rubino 
et al. (2006) alternatively defined a critical angle as the one beyond which the correspond-
ing energy flux becomes zero. In this sense, with no LFF, the presence of a critical angle 
at 45◦ can be recognized from Fig. 6. This critical angle changes if LFF is present, because 
the P1-wave phase velocities in both layers are affected in this case.

The effect of LFF is visible, especially around the critical angle. This effect, regarding 
the magnitudes of the reflected and transmitted P1 waves, increases with oblique incidence 
and reaches a maximum at the critical angle. Beyond this angle, the effect decreases and 
disappears when approaching the grazing incidence. It causes a decrease in the magnitudes 
of both the reflected and transmitted P1 waves. The magnitude of the reflected SV wave 
is decreased in the presence of LFF for incidences beyond the critical. Whereas that of 
the transmitted SV wave is less affected and only exhibits a slight increase. In comparison 
with the P1 and SV waves, the magnitudes of P2 and P3 waves are smaller. The P2 waves 
have larger magnitudes than the P3 waves and are more evidently affected by the LFF. 
The presence of LFF enhances the magnitudes of reflected and transmitted P2 waves for 
small oblique incidences, but decreases these over large incidences, especially at the criti-
cal angle. As a contrast, the magnitudes of the reflected and transmitted P3 waves are only 
slightly affected by LFF for a small angle range around the critical. The LFF effect affects 
the phase angles as well, as shown in Fig. 5. For all incidence angles, the phases of all the 
waves vary continuously in the presence of LFF. If LFF is absent, they are constant for 
small incidence angles, specifically between 10◦ and the critical angle, and then exhibit a 
discontinuity at the critical angle.

The LFF induces energy attenuation of the P1 wave and consequently will affect the 
energy partitions, as illustrated by Fig. 6. The LFF effect on P1-wave energy is most evi-
dent at the critical angle and decreases toward the grazing incidence. When the LFF is 
absent, the medium behaves elastically at 42 Hz. In this case, beyond the critical, the trans-
mitted P1 wave degenerates into a surface wave and travels along the interface, thus carry-
ing no energy flux in the vertical direction. This explains the sudden disappearance of the 
energy of the transmitted P1 wave at the critical angle, as well as the sudden energy varia-
tion of the reflected P1 wave. However, if the LFF is present, the medium behaves anelasti-
cally, implying that the transmitted wave is not confined to the interface but propagates into 
the medium and hence it has vertical energy. This explains the continuous energy variation 
of the reflected and transmitted P1 waves in the presence of LFF. Meanwhile, beyond the 
critical angle, the LFF attenuates the energies of reflected P1 and SV waves, whereas it 
strengthens these of the transmitted P1 and SV waves. The reflected and transmitted P2 
and P3 waves exhibit a much smaller energy. Before the critical angle, the LFF induces an 
energy increase, which becomes less significant toward the critical angle. This suggests 
that more energy transfer to the slow waves occurs when the LFF is present. Moreover, 
the LFF enhances the interference energy fluxes, as is shown in Fig. 7, whereas there is no 
interaction when without LFF. The same phenomenon has also been studied and illustrated 
in Sharma (2013). The sum of all the energy ratios at the interface is -1.0 for all incidence 
angles, indicating that the conservation of energy is satisfied.
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If the LFF is absent, reflection and transmission are not affected by �0 . As shown in 
Fig. 3, the dissipation factor, defined by Eq. (18), is zero at 42 Hz. In this case, we have,

With Eq. (46), the magnitudes of the propagation and attenuation vectors are

(46)
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Fig. 7  Interference fluxes and sum of the energy ratio at 42 Hz with different inhomogeneity angles, when 
the interface is open (incident P1 wave). Note that, when LFF is absent, the three curves are overlapped 
with each other
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Using Eq. (47), the wavenumber of the incident wave defined in Eq. (20) as a function 
of ||�0

|| and ||�0
|| is independent of �0 , if the LFF is absent. Since the incident wave is not 

affected by �0 , reflection and transmission behaviors are not affected. If the LFF effect is 
present, Q−1

i
 is not zero, a consequence of non-zero Im

{(
ki
)2}/

Re
{(

ki
)2} in Eq. (46). 

This leads to the dependence of both ||�0
|| and ||�0

|| on �0 . In this case, the inhomogeneity 
angle �0 affects the incident wave, and also the reflected and transmitted fields. The effect is 
mainly observed at post-critical incidences. The increase of �0 leads to an increasing ||�0

|| 
and consequently yields a decrease in the magnitudes of the reflected and transmitted P1 

Fig. 8  Absolute value (magnitude) of the reflection and transmission coefficients as a function of the inci-
dence angle at 42 Hz with different inhomogeneity angles, when the interface is sealed (incident P1 wave). 
The three curves are overlapped with each other when LFF is absent
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and SV waves. It also induces increased interference energy fluxes between the incident 
and reflected waves at post-critical incidences.

Next, the sealed boundary is considered. The variations in magnitudes, phases and 
energy ratios are given in Figs.  8, 9 and 10. The same critical angle as aforementioned 
occurs. Compared to Figs. 4 and 5, the magnitudes and phases of P1 and SV coefficients 
are kept the same, whereas those of the P2 and P3 coefficients change. The magnitudes are 
reduced and the variation trends change. In comparison with P3 waves, the reflected and 
transmitted P2 waves are more affected by the LFF. Its presence causes a visible decrease 
in the P2-wave magnitudes for most of the incidence angles. Furthermore, their phases are 
significantly affected. The inhomogeneity angle �0 affects the behavior of the reflected and 
transmitted P1 and SV waves in the same manner as in the case of open boundary.

Fig. 9  Phases of the reflection and transmission coefficients as a function of the incidence angle at 42 Hz, 
when the interface is sealed (incident P1 wave). The inhomogeneity angle is at 45◦
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The sealing boundary does not affect the energy ratios of the P1 and SV waves for the 
given inhomogeneity angle �0 , as is illustrated in Fig. 10, but significantly influences those 
of the P2 and P3 waves. In comparison with Fig. 6, the sealing boundary reduces the ener-
gies of the P2 and P3 waves. Below the critical angle, the presence of LFF strengthens the 
energies of the reflected P3, transmitted P2, and transmitted P3 waves, implying that more 
energy conversion to slow wave modes occurs. For post-critical incidences, the LFF evi-
dently enhances the transmitted P3 wave but weakens the reflected P2 wave. The interfer-
ence energy fluxes and sum in this case are similar as those given in Fig. 7.

Fig. 10  Energy ratios as a function of the incidence angle at 42 Hz with different inhomogeneity angles, 
when the interface is sealed (incident P1 wave). When LFF is absent, the three curves are overlapped with 
each other
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6.2  Incident SV Wave

The SV-wave incidence with three different inhomogeneity angles at 0◦ , 45◦ , and 70◦ is 
considered, with both open and sealed boundaries.

The open boundary is first studied. Figures 11, 12, and 13 show the variations in mag-
nitudes, phases, and energy ratios of the reflection and transmission coefficients at 42 Hz. 
It can be observed that the inhomogeneity angle �0 does not affect the reflected and trans-
mitted fields, irrespective if the LFF is present or absent. The explanations are similar to 

Fig. 11  Absolute value (magnitude) of the reflection and transmission coefficients as a function of the inci-
dence angle at 42 Hz with different inhomogeneity angles, when the interface is open (incident SV wave). 
Note that, irrespective of the LFF being absent or present, the corresponding three curves with different 
inhomogeneity angles overlap
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those of the examples related to the P1-wave incidence without LFF. The dissipation fac-
tor Q−1 of the SV wave at 42 Hz is zero. Therefore, the incident SV wave with the wave-
number defined in Eq. (20) as a function of ||�0

|| and ||�0
|| is not affected by �0 . The effect 

of LFF on the reflection and transmission behaviors is not as significant as those yielded 
from P1-wave incidence. Two critical angles associated to the P1 and SV waves at about 
25◦ (the first) and 45◦ (the second) can be recognized, where the magnitudes, phases, and 
energies exhibit most evident change. At the two critical angles, the magnitude of the 
reflected P1 wave exhibits two minima, whereas that of the transmitted P1 wave has peaks. 
The LFF effect noticeably induces a decrease in magnitude of the P1 wave only between 
the two critical angles. The magnitudes of the two slow waves are not so significant. The 
LFF decreases the magnitudes of the reflected and transmitted P2 waves, whereas it hardly 
affects those of the P3 waves. This effect is most evident at the two critical angles. The LFF 

Fig. 12  Phases of the reflection and transmission coefficients as a function of the incidence angle at 42 Hz, 
when the interface is open (incident SV wave). The inhomogeneity angle is at 45◦
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effect affects the phases as well, especially these of the P2 and P3 waves. At the two critical 
angles, the phase varies most evidently.

The LFF affects the reflected and transmitted P1 waves, thus affects the energy partitions, 
as is given in Fig. 13. The main energy goes to the transmitted SV wave below the second crit-
ical angle, and to the reflected SV wave beyond that angle. When the LFF effect is absent, the 
P1 wave is not attenuated. In this case, the transmitted P1 wave degenerates into a surface wave 
and travels along the interface for post-critical incidence angles. Thus, its energy decreases to 
zero rapidly. If the LFF effect is present, the transmitted wave is attenuated and propagates 
into the medium. Therefore, it carries energy, as predicted by the energy ratio RA55 displayed 

Fig. 13  Energy ratios as a function of the incidence angle at 42 Hz with different inhomogeneity angles, 
when the interface is open (incident SV wave). Irrespective of the LFF being absent or present, the corre-
sponding three curves with different inhomogeneity angles overlap
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in Fig. 13. As a consequence, the energy of reflected P1 wave is influenced, which exhibits an 
increase beyond the second critical angle. The enhanced energy shared by the reflected and 
transmitted P1 waves beyond the second critical angle explains the reason of energy decrease 
in the reflected SV wave in the presence of LFF. Similar to the magnitudes, the energy ratios of 
P2 and P3 waves are not so much significant. Peaks at the two critical angles can be observed, 
affected by the LFF. The LFF implies an energy decrease in the reflected and transmitted P2 
waves, whereas it increases the energy of the reflected and transmitted P3 waves. A possible 
explanation is that part of the P2-wave energy is converted to the P3 wave. The sum of all the 
energy ratios is -1.0 for all angles, which verifies the energy conservation at the interface.

Fig. 14  Absolute value (magnitude) of the reflection and transmission coefficients as a function of the inci-
dence angle at 42 Hz with different inhomogeneity angles, when the interface is sealed (incident SV wave). 
Irrespective of the LFF being absent or present, the corresponding three curves with different inhomogene-
ity angles are overlapped with each other
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Next, the sealed boundary is considered. Figures 14, 15, and 16 show the variations in 
the magnitudes, phases, and energies. Similar to the P1 incidence, the change of sealing 
boundary does not influence the behaviors of reflected and transmitted P1 and SV waves, 
but affects these of P2 and P3 waves significantly, including the magnitudes, phases, and 
the energies. The presence of LFF decreases the magnitude of transmitted P2 wave for 
nearly all incidences. However, it hardly affects these of the reflected and transmitted P3 
wave. The energy shares of the reflected and transmitted P2 and P3 waves become more 
insignificant due to the sealing boundary. The LFF effect enhances the reflected P2 wave, 
but weakens the transmitted P2 wave. On the contrary, the P3 wave is not visibly affected. 
The sum of the energy ratios including the interference is − 1.0 for all incidences, which 
confirms the conservation at the surface.

Fig. 15  Phases of the reflection and transmission coefficients as a function of the incidence angle at 42 Hz, 
when the interface is sealed (incident SV wave). The inhomogeneity angle is at 45◦
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7  Full‑wave modeling and frequency‑dependent AVO

In this section, numerical wavefield simulations are further carried out to validate the 
reflection and transmission behaviors. Moreover, the effect of frequency on the coeffi-
cients is studied, with application to amplitude versus offset (AVO).

Fig. 16  Energy ratios as a function of the incidence angle at 42 Hz with different inhomogeneity angles, 
when the interface is sealed (incident SV wave). Irrespective of the LFF being absent or present, the corre-
sponding three curves with different inhomogeneity angles overlap
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7.1  Wave simulation in double‑porosity media

Wang et al. (2019) developed a numerical algorithm for simulation of wave propagation in 
Biot–Rayleigh double-porosity media, including the LFF effect and its influence on the disper-
sion and attenuation of the P1 and SV waves. The algorithm also allows computing wavefields 
in the absence of LFF accurately. Without LFF, the velocity-stress equations for non-uniform 
porosity in the 2D case are given by Wang et al. (2019)

(48)
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Fig. 17  Snapshots of a the 
solid vertical particle velocity 
component vz and b the energy, 
at 300 ms, corresponding to the 
double-porosity reflection-trans-
mission problem, in the absence 
of local fluid flow (LFF)
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and

where vi , q
(1)

i
 , and q(2)

i
 are the solid and relative fluid particle velocity components deter-

mined by

The simulations based on Eqs. (48) and (49) are carried out with a grid method using 
staggered-grid Fourier differential operator and a second-order time-integration algorithm. 
The presence of slow quasi-static modes (the slow waves) in Eq.  (49) makes the differ-
ential equations stiff and a time-splitting integration algorithm is used to solve the stiff 
part analytically (Wang et al. 2019). The numerical mesh has 451 × 451 points with a grid 
spacing of 5 m in both axes. The interface is located at a depth of 1250 m. The source, 
located at (1125, 950) m, is a Ricker-type wavelet with a dominate frequency of 42 Hz. It is 
implemented in the solid stress components (i.e., �xx and �zz ) to generate incident P1-wave 
energy. Figure 17a shows a snapshot of the vertical solid particle velocity at 0.3 s, which 
covers the incidence angles from 0◦ to approximately 68◦ . Figure 17b displays the corre-
sponding energy snapshot at 0.3 s. No slow compressional waves are observed due to the 
strong dissipation and attenuation. Some qualitative interpretation can be attempted from 
Fig.  17b. First, in agreement with RA55 in Fig.  6, most of the incident energy is trans-
mitted as P1 wave when the incidence angle is small. The energy of transmitted P1 wave 
decreases with increasing incidence angle, in agreement with RA55 . Second, the energies 
of the reflected and transmitted SV waves are very low at normal incidence, as predicted 
by RA44 and RA88 in Fig. 6. With increasing incidence angle, the energy of the transmitted 
SV wave increases first and then decreases beyond approximately 50◦ , in agreement with 
RA88 . The energy of the reflected SV wave first increases, and after attaining a maximum, 
it decreases, and then sharply increases; this agrees with RA44 . Also in agreement is the 
energy variation of the reflected P1 wave. Its energy decreases firstly, attains a minimum, 
and then increases, as predicted by RA11 in Fig. 6. Evidently, the energy variations derived 
from the wave simulations exhibit similar trends as those predicted by Eq. (33), which indi-
cates that the analysis is correct.

7.2  Frequency‑Dependent AVO

In exploration geophysics, frequency-dependent reflection AVO has been widely discussed 
(Castagna et al. 1998; Liu et al. 2011; Zhao et al. 2015). Many factors affect AVO, with 
velocity dispersion being an important factor. The Biot–Rayleigh theory predicts compa-
rable velocity dispersion as measured in rocks (Ba et al. 2011), and therefore, its transmis-
sion and transmission behaviors exhibit frequency-dependent characteristics.

Figure 18 shows the magnitudes and phases of the reflection and transmission coeffi-
cients of the P1 and SV waves as a function of frequency at three incidence angles ( 0◦ , 
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Fig. 18  Magnitudes (a) and phases (b) of the reflection and transmission coefficients of the P1 and SV 
waves as a function of frequency at three different incidence angles (incident P1 wave). The solid and 
dashed lines correspond to the presence and absence of LFF. The inhomogeneity angle is at 45◦
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Fig. 19  Same as Fig. 18 but for incident SV wave
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15◦ , and 30◦ ), in the case of P1-wave incidence, irrespective of the interface being open 
or sealed, since they are not affected. At normal incidence, no shear wave occurs. In the 
presence of LFF, the magnitudes and phases of all the reflected and transmitted P1 and 
SV waves exhibit significant frequency-dependent characteristics from 20 to 200 Hz, cor-
responding to the exploration-geophysics frequency band. The maximum phase delay is 
approximately 12◦ . Zhao et al. (2015) obtained a similar dispersion trend for the P1 reflec-
tion coefficient at normal incidence, using the effective Biot theory obtained from the 
double-porosity theory of Pride et al. (2004). The frequency-dependent behavior illustrated 
here can be attributed to the frequency-dependent phase velocities displayed in Fig. 2. In 
contrast, the magnitudes and phases of the reflected and transmitted P1 and SV waves show 
no significant frequency dependence in the absence of LFF. For frequencies higher than 
10 kHz, the LFF makes no difference to the P1 and SV reflection and transmission coef-
ficients, and no evident frequency dependence can be appreciated.

Figure 19 shows the results for an incident SV wave. At normal incidence, no P1 wave 
occurs, and there exists no evident frequency dependence for the reflected and transmitted 
SV waves. For the other two incidence angles, noticeable frequency dependence can be 
appreciated in the presence of LFF, which mainly occurs between  10−1 and  103 Hz. The 
magnitudes and phase angles are affected and vary with frequency due to the LFF. In con-
trast, they do not change in the absence of LFF. The frequency-dependent behavior derived 
here provides insights for improving reservoir characterization.

8  Conclusions

We have computed the reflection and transmission coefficients of plane waves at an inter-
face separating two double-porosity media for open and sealed boundary conditions. 
The waves are expressed in terms of potential functions specified by the propagation and 
attenuation directions, and the complex velocities. The aim is to study the influence of the 
local fluid flow (LFF) on wave propagation. Full-wave numerical simulations validate the 
results. The main conclusions are summarized as follows.

(1) The phase velocity of the P1 wave is more affected by frequency in the presence of 
the LFF effect, in comparison with the P2, P3, and SV waves. The model predicts the 
velocity dispersion level observed in rocks at the exploration-geophysics frequency 
band, and frequency-dependent reflection and transmission coefficients.

(2) For the case considered, the P1 wave is not attenuated if the LFF effect is absent. In this 
case, the transmitted P1 wave degenerates into a surface wave and there is not verti-
cal energy flux beyond the critical angle. When the LFF effect is present, the medium 
behaves anelastically, and the transmitted P1 wave is not confined to the interface but 
propagates into the medium beyond the critical angle. The presence of the LFF effect 
results in more interference fluxes, irrespective of the interface being open or sealed. 
Meanwhile, we test the energy conservation at the interface.

(3) The inhomogeneity angle affects the reflection and transmission characteristics only 
when the LFF is present and the incidence is compressional.

(4) The reflection and transmission behaviors of the P1 and SV waves are not affected by 
the type of boundary condition, while those of the P2 and P3 waves are significantly 
affected, with the sealed boundary causing a significant decrease in magnitude and 
energy.
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(5) The wavefield simulations corresponding to the reflection and transmission problem 
confirm the results of the plane-wave analysis.

The findings provide insights for improving reservoir characterization in typical fluid-
saturated porous media.
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Appendix 1

Let us denote the volume fractions of the two phases by �1 and �2 ( �2 = 1 − �1 ), the two local 
porosities in the host and inclusions by �10 and �20 , the densities of solid grain and fluid by 
�s and �f  , the grain bulk and shear moduli by Ks and �s , the fluid bulk modulus by Kf  , the two 
kinds of permeability by �1 and �2 , the fluid viscosity by � , the radius of the inclusion by R0 , 
and the three consolidation parameters by c1 , c2 and cs.

In uniform porosity case, the two partial porosities are defined by Ba et al. (2011)

where � is the total porosity. The five density parameters in Eq. (1) are defined as

The stiffness parameters are

b1 and b2 are

In the non-uniform porosity case (Wang et al. 2019),
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Kb1 =

(
1 − �10

)
Ks

1 + c1�10

,Kb2 =

(
1 − �20

)
Ks

1 + c2�20

,�b =
(1 − �)�s

1 + cs�
,

1
/
Kb = �1

/
Kb1 + �2

/
Kb2,

� =
�20

[
1 −

(
1 − �10

)
Ks

/
Kb1

]

�10

[
1 −

(
1 − �20

)
Ks

/
Kb2

] , � =
Ks

[
�2 + ��1

]

Kf

[
1 − � − Kb

/
Ks

] ,

Q1 =
��1Ks

� + �
,Q2 =

�2Ks

1 + �
,R1 =

�1Kf

1 + �∕�
,R2 =

�2Kf

1 + 1∕�
,

A = (1 − �)Ks − 2�b

/
3 − Ks

(
Q1 + Q2

)/
Kf , N = �b.

(54)b1 = �1�10�∕�1, b2 = �2�20�∕�2.
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Parameter �c is

Following Eqs. (55) and (53), the relations among Qi , Ri , �i , and Mi are

The density � is

Appendix 2

The elements of matrix G in Eq. (33) are

For the open boundary,

(55)�1 = �1 +
��1Ks

�Kf

, �2 = �2 +
�2Ks

�Kf

,M1 =
Kf

�1(1 + �∕�)
,M2 =

Kf

�2(1 + 1∕�)
.

(56)

�c = −
2

3
� + (1 − �)Ks

+
(
1 − Ks

/
Kf

)(
�1M1�1 + �2M2�2 −M1�

2
1
−M2�

2
2

)
+
(
�1M1�1 + �2M2�2

)
.

(57)Qi = �iMi

(
�i − �i

)
,Ri = �2

i
Mi, i = 1, 2.

(58)� = (1 − �)�s + ��f .

(59)G1l = sl
z
, (l = 1, 2, 3), G14 = s4

x
, G1l = − sl

z
, (l = 5, 6, 7) , G18 = − s8

x
.

(60)G2l = sl
x
, (l = 1, 2, 3), G24 = −s4

z
, G2l = −sl

x
, (l = 5, 6, 7), G28 = s8

z
.

(61)

G3l =
(
DI

1
+ DI

2
�l
f1s

+ DI
3
�l
f2s

)((
sl
x

)2
+
(
sl
z

)2)
− 2�I

(
sl
z

)2
, (l = 1, 2, 3)

G34 = − 2�Is4
x
s4
z

G3l = −
[(

DII
1
+ DII

2
�l
f1s

+ DII
3
�l
f2s

)((
sl
x

)2
+
(
sl
z

)2)
− 2�II

(
sl
z

)2]
, (l = 5, 6, 7)

G38 = 2�IIs8
x
s8
z
.

(62)
G4l = 2�Isl

x
sl
z
, (l = 1, 2, 3),G44 = �I

((
s4
x

)2
−
(
s4
z

)2)

G4l = − 2�IIsl
x
sl
z
, (l = 5, 6, 7),G48 = −�II

((
s8
x

)2
−
(
s8
z

)2)
.

(63)
G5l = �I

1

(
�l
f1s

− 1
)
sl
z
, (l = 1, 2, 3),G54 = �I

1

(
�4
f1s

− 1
)
s4
x

G5l = −�II
1

(
�l
f1s

− 1
)
sl
z
, (l = 5, 6, 7),G58 = −�II

1

(
�8
f1s

− 1
)
s8
x
.

(64)
G6l =

(
DI

4
+ DI

5
�l
f1s

+ DI
6
�l
f2s

)((
sl
x

)2
+
(
sl
z

)2)
, (l = 1, 2, 3),G64 = 0

G6l = −
[(

DII
4
+ DII

5
�l
f1s

+ DII
6
�l
f2s

)((
sl
x

)2
+
(
sl
z

)2)]
, (l = 5, 6, 7),G68 = 0.
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For the sealed boundary,

In the case of an incident P1 wave, irrespective of the boundary being open or sealed, 
the first four elements in y are

For the open boundary,

For the sealed boundary,

(65)
G7l = �I

2

(
�l
f2s

− 1
)
sl
z
, (l = 1, 2, 3),G74 = �I

2

(
�4
f2s

− 1
)
s4
x
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2

(
�l
f2s

− 1
)
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z
, (l = 5, 6, 7),G78 = −�II

2

(
�8
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− 1
)
s8
x
.

(66)
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(
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7
+ DI

8
�l
f1s

+ DI
9
�l
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)((
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x

)2
+
(
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z
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x
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(
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(
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)
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1

(
�4
f1s
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)
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x
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G6l = −�II
1

(
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)
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z
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1

(
�8
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)
s8
x
.

(69)
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�l
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)
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z
, (l = 1, 2, 3),G74 = �I

2

(
�4
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x
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x
.

(71)
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z
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x
,
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1
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2
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3
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z
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(
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s0
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(72)
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(
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)
s0
z
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[(
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5
�0
f1s
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6
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x
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(
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z
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,

y7 = −�I
2

(
�0
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z
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[(
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7
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8
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f1s
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9
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f2s

)((
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(
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)2)]
.

(73)y5 = −�I
1

(
�0
f1s

− 1
)
s0
z
, y6 = 0, y7 = −�I

2

(
�0
f2s

− 1
)
s0
z
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In the case of an incident SV wave, irrespective of the boundary being open or sealed, 
the elements in y are

The parameters DI
i
 and DII

i
 in Eqs. (61), (64), (66), (71), and (72) are given in “Appendix 

3”.

Appendix 3

The expressions for DI
i
(i = 1, 2,… , 8, 9) in Eq. (38) in medium �1 are

where

(74)y1 = − s0
x
, y2 = s0

z
, y3 = 2�Is0

x
s0
z
, y4 = − �I

((
s0
x

)2
−
(
s0
z

)2)
.

(75)y5 = −�I
1

(
�0
f1s

− 1
)
s0
x
, y6 = 0, y7 = −�I

2

(
�0
f2s

− 1
)
s0
x
, y8 = 0.

(76)
DI

1
= − �I
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+�I

1
MI

1
�I
1
+�I

2
MI
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�I
2

+
3�I

10
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1
�I
2

(
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1
MI
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2
MI

2

)(
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1
MI
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2
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+MI
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2
−MI

1
�I
1

)
,

(77)DI
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2
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2

)
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1
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,
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1
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1
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2
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2
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2
MI
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By replacing index I with II in Eqs. (76)–(85), the corresponding formulae for medium �2 
can be obtained.
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